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Abstract—We developed a convolution neural networks 
(CNN) and ensemble learning based method, called Malphite, to 
predict protein secondary structures. Maphite has three sub-
models: the 1st CNN, PSI-PRED and the 2nd CNN. The 1st CNN 
and PSI-PRED are used to predict the initial secondary structure 
based on the position specific scoring matrix generated from PSI-
BLAST. The 2nd CNN performs ensemble learning by combining 
the prediction result of the 1st CNN and PSI-PRED and generate 
the final predictions. Malphite achieved a Q3 score of 82.3% and 
82.6% for independently built dataset of 400 and 538 proteins 
respectively, and 82.6% ten-fold-cross validated accuracy for a 
dataset of 3000 proteins. In addition, Malphite accomplished a 
remarkable Q3 score of 83.6% for 122 targets from CASP10 
(Critical Assessment of protein Structure Prediction), surpassing 
any secondary structure prediction technique to date. For all four 
datasets, Malphite consistently makes 2% more accurate 
prediction than PSI-PRED, which is a significantly step towards 
the estimated upper limit of protein secondary structure 
prediction accuracy of 90%. 

Keywords—protein secondary structure, convolutional neural 
network, ensemble learning;  

I. INTRODUCTION 
 Protein secondary structure (SS) is the regular local 
structure segment of protein formed by hydrogen bonds. There 
are three different types of SS: α -helix (H), β-strand (E), and 
coil (C). The prediction of secondary structure from amino acid 
sequence plays an important role in protein structure modeling 
and function analysis. For example, many ab initio folding 
based protein 3D structure prediction methods, like VECFOLD 
[1] and RosettaDom [2], use predicted SS elements as the basic 
subunits to fold into protein tertiary structure. The accuracy of 
secondary structure prediction is critical for the challenging 
task of protein tertiary structure prediction.  

 The most often used criteria to measure the performance of 
a protein secondary structure predictor is the Q3 score, which is 
the total number of correctly predicted residues divided by the 
total number of residues. The accuracies for helices (QH), 
sheets (QE) and coils (QC) are also assessed in term of the 
fraction of correctly predicted residues out of the total number 

of residues in a given state. The Q3 accuracy, however, is 
believed to have an estimated upper bond of about 90% due to 
the 5~15% discrepancy between X-ray determined protein 3D 
structures and NMR based ones, and the ignorance of long-
range amino acid interactions by current protein secondary 
structure assignment tools [3]. CASP (Critical Assessment of 
protein Structure Prediction) [4] is a biennially held worldwide 
experiment since 1994, aiming at establishing the current state 
of the art in protein structure prediction. The protein targets 
from CASP experiments are frequently used as the benchmarks 
for evaluating the accuracies of many protein secondary 
structure prediction methods.  

 Protein secondary structure prediction has been intensively 
studied during the past decades, but the Q3 accuracy remains at 
a bottleneck of around 81% and further improvement is very 
hard. Machine learning approach is widely used for protein 
secondary structure prediction. Many methods apply Support 
Vector Machines [5-9], Hidden Markov Model [10-12] or 
Artificial Neural Networks [13-21]. In the currently most 
effective secondary structure prediction methods, a two stage 
neural network based method PSI-PRED [20], achieves a Q3 
accuracy of 81.7%; SPINE X [21], which makes use of 5 
iterative neural networks, yields a Q3 score of 81.8%. 

 Though great efforts were paid by previous researchers to 
find better protein secondary structure predictors, no serious 
attempt was made to try to improve prediction accuracy by 
combining existing methods. TABLE I. shows the secondary 
structure prediction accuracy of PSI-PRED and SPINE X for 
CASP9 targets. We found that there is a significant diversity in 
the prediction distributions of the two methods: though the 
overall Q3 accuracy of the two methods almost tie, PSI-PRED 
makes more accurate prediction in coil residues (5%) while 
SPINE X does better in helical residues (5.8%). Such kind of 
diversity can also be observed in many other secondary 
structure prediction methods. Therefore, the concept of 
ensemble learning [22], which achieves a strong classifier by 
combining several base classifiers, might be able to improve 
protein secondary structure prediction by taking the advantage 
of the diversity in existing SS prediction methods. 

This work is partially supported by JSPS KANENHI grant numbers 252-
8002 and 24106007. 
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TABLE I.  SECONDARY STRUCTURE PREDICTION ACCURACY FOR THE 
CASP9 SET 

Method 
Score  

Q3 QH QE QC 

PSI-PRED 81.7 82.2 75.9 84.5 
SPINE X 81.8 88.0 76.2 79.5 

The data in this table come from [21] 

 

 In this paper, we proposed a convolutional neural network 
(CNN) and ensemble learning based protein secondary 
structure prediction method named Malphite. The design of 
CNN was inspired by visual mechanisms in living organisms 
and later improved by Yan LeCun [23]. CNN has been applied 
to many pattern recognition problems like image classification 
[24], voice analysis and natural language processing [25], and 
achieves high performance. We used a modified version of 
CNN so that it is prepared for the task of protein structure 
prediction. Two CNNs with different configurations are used in 
Malphite, where a first CNN is trained to predict initial 
secondary structure from amino acid sequence and a second 
CNN is trained to perform ensemble learning by combining the 
prediction of the first CNN and PSI-PRED. A set of 122 
prediction targets from CASP10 was used as main benchmarks. 
The first CNN and PSI-PRED achieve Q3 accuracy of 82.4% 
and 81.4% respectively, showing that CNN is a more capable 
method than PSI-PRED. The great potential of ensemble 
learning for protein secondary prediction was also revealed by 
the second CNN, which further improved the Q3 accuracy to 
83.6% against the same 122 CASP10 targets. The 83.6% Q3 
accuracy is by far the highest performance for any published 
method. Given the success of Malphite for CASP10, it is 
reasonable to be confident that the evaluation presented here 
gives a fair indication of the performance of the method in 
general. 

 

II. METHODS 

A. Convolutional Neural Network 
A Convolutional Neural Network (CNN) is comprised of 

one or more convolutional layers and then followed by one or 
more fully connected layers as in a standard multilayer neural 
network. The input and output of each convolutional layer are 
sets of arrays called feature maps.  Generally, the feature maps 
can vary from 1D to 3D arrays. For instance, if the input is a 
RGB mode image, 3 feature maps will be used and each of 
them is a 2D array containing the red, green or blue color 
channel. In this work, the feature maps are 1D arrays because 
the input data are related to 1D amino acid sequence. For more 
details on the CNN, readers are referred to [23, 24, 25, 26, 27, 
28]. In addition, an easy CNN tutorial and implementation for 
MINIST handwriting digit recognition problem can be found 
here:( http://deeplearning.net/tutorial/lenet.html). 

The overall architecture of the CNN for protein secondary 
structure prediction is depicted in Fig. 1. It has 2 convolutional 
layers, and an universal classifier with one hidden layer. All 
feature maps are 1D arrays that are related to protein sequence 
(Two CNNs are used in this work, each of them uses different 
kind of data as input feature maps. The input feature maps for 

the 1st CNN will be explained in II-B and II-C-1), and the ones 
for the 2nd CNN can be seen in II-C-3)). Filters are smaller 1D 
arrays. In a convolutional layer, the convolution products 
between a single filter and all input feature maps are calculated 
and then added together, and the result will be used to generate 
a single output feature map.  Due to the smooth effect of 
convolution operator, the newly generated feature map tends to 
contain less noise data and becomes more representative than 
the input feature maps. By using different filters of the same 
size, a convolutional layer can generate many different new 
feature maps, the number of which equals to the number of 
filters have been used. The purpose of stacking two 
convolutional layers is to extract a deep hierarchical represent-
ation of features, which is able to improve the performance of 
the classification module. Finally, the topmost feature maps 
will be classified by classification module. The detail of the 
CNN is now described. 

1) Convolutional layer: As depicted in Fig. 2, the input is 
a 2D array with n1 1D feature maps of length n2. Each feature 
map is denoted xi and i is in range [1, n1]. The output of a 
convolution layer is also a 2D array with m1 1D feature maps 
of length m2. Each feature map is denoted yj and j is in range 
[1, m1]. A trainable 1D filter kj in the filter bank has length l 
and connects input feature maps x1, x2, …, xn1 to an output 
feature map yj. For j in range [1, m1], the convolution layer 
computes yj = tanh   (b! + kj ∗ xi

n!
i=1 ) , where * is the 1D 

discrete convolution operator, bj is a trainable bias parameter 

Fig. 1. Fully connected convolutional neural network. Each horizatal 
color strip represents a 1D featur map. Classification module is a 
standard fully connected neural network with one hiden layer. 

Fig. 2. A convolutional layer. xi and yj represents a input and an output 
feature map respectively.  kj is the filter that connects all input features 
with an output feature yj.  
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and tanh() is a pointwise function that transfers each data 
point into range [-1, 1]. 

2) Classification module: A standard feed forward back 
propagation neural network architecture [29] with a single 
hidden layer was used for classification module. The number 
of input units equals the number of feature maps times the 
length of each feature map in the second convolution layer.  

Supervised learning [30] is done using gradient descent to 
minimize the difference between the expected output and the 
real output of the network. All the parameters, including the 
values of all the filters, weights and bias in all the layers, are 
updated simultaneously by the learning procedure. The 
gradients are computed with the back-propagation method.  

B. Feature Maps from Position Specific Scoring Matrix 
It has been widely considered that position-specific scoring 

matrix (PSSM) is the most informative resource for protein 
secondary structure prediction [20]. PSSM is the intermediate 
sequence profile generated from the searching process of PSI-
BLAST. This matrix has M×b elements, where M is the length 
of target protein sequence and b, equals 20, is the number of 
amino acid types (The latest version of PSI-BLAST generate 
PSSM with 40 columns, which have been shown to reveal 
more valuable information about the protein).  Each element in 
PSSM represents the log-likelihood of that particular residue 
substitution at that position in the template (based on a 
weighted average of BLOSUM62 matrix scores for the given 
alignment position).  

Then, here comes the key question for applying 
convolutional neural network to protein secondary structure 
prediction: how to get input feature maps from PSSM?  

We trained a small protein secondary structure classifier to 
answer this question: The classifier has 3 neurons, and no 
hidden layer was used. We used P(y=i |X)=softmax(X ∙Wi+b), 
as the activation function where i ∈{‘H’, ‘E’, ‘C’}, representing 
helix, sheet and coil respectively, 𝑋 is the input vector of size 
300 (15-residue window of 20 column version PSSM), Wi is 
the weight vector for i, and b is the bias value. We trained this 
module with 1044 proteins and it achieved a Q3 accuracy of 
about 68%.  The three neurons’ weight vectors were plotted 
after the module was well trained. The plot is shown in Fig. 3. 
Note that the plot of a neurons’ weight vector roughly implies 
the pattern of the input vector that can activate this neuron 
because the inner product X ∙Wi become huge when X matches 
Wi. 

Despite that the classifier only got a score of 68%, the 
weight vectors’ plot still expose two significant points about 
the relationships between PSSM elements’ values and 
secondary structure. First of all, weight’s absolute values grow 
bigger towards the center of the window. This is because the 
model was trained to predict the secondary structure of the 
center residue in the 15-residue window, and protein secondary 
structure is primarily determined by local interactions between 
residues closely spaced [31]. Secondly, elements that belong to 
the same columns of PSSM are very regularly weighted by all 

Fig. 3.   Weight vectors of 3 neurons in the order of H, E and C.  The weigth vectors have a size of 300 connecting to 15 rows of PSSM values. 20 different 
color are used to mark the corresponding input elements’ column positions in PSSM. It is clear that elements belong too the same PSSM columns are 
simultaneously positively or negtively weight by all three nerons, which indicates that the column arrays can be regarded as independent feature of the 
protein sequence. 
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the three neurons. That is, they are simultaneously positively 
weighted or negatively weighted by the same neurons, which 
indicates some high correlation. While no restrict relationship 
can be observed between elements in different PSSM columns. 
This suggests that the 20 column arrays of PSSM should be 
regarded as 20 different independent features of the protein 
sequence.   

C. Architecture of Maphite 
Fig. 4 demonstrates the overall architecture of Malphite. 

Maphite consists of three sub-models: the 1st CNN, PSI-PRED 
and the 2nd CNN. The reason why we introduce PSI-PRED to 
Malphite is that there exists a significant diversity in the 
prediction distribution of the 1st CNN and PSI-PRED, which 
will be shown in results section. And ensemble learning tends 
to yield better results when there is a significant diversity 
among the models.  The 1st CNN and PSI-PRED are used to 
predict the initial secondary structure from amino acids based 
on the sequence profile generate from PSI-BLAST. The goal of 
the 2nd CNN is to perform ensemble learning by combing the 
prediction result from the 1st CNN and PSI-PRED. Both CNNs 
uses the structure shown in Fig. 1. And the latest version of 
PSI-PRED (Version 3.5) with default parameters is used.   

Both the 1st CNN and PSI-PRED (Version 3.5) use 40-
column version PSSM. It can be generated by running the 
latest version PSI-BLAST against NCBI non-redundant 
database  (Uniref90filt database is used for PSI-PRED) for 3 
iterations.  The profile matrix elements are then scaled to the 
range [0,1] by a standard sigmoid function: 1/(1+ex), where x is 
the value of PSSM elements. 

1) First CN: CNN’s topology is determined by many 
hyper-parameters: the size and number of feature maps in each 
convolutional layers, the length of filters and the number of 
hidden units in classification module. As we have discussed 
before, we use column arrays of PSSM as input feature maps 
for the first CNN. We applied 40-column version of PSSM and 
used 15-residue sliding window. Therefor the 1st CNN has 40 
input feature maps with length 15. There are not too much 
options for the size of filters: 6 would be too large not to lose 
information, while 2 is too small to smooth noise effectively. 
We tried filter size of 3, 4 and 5, and 4 was found to be optimal 
for both the first and second convolutional layer. Upon 
knowing the sizes of filters and input feature map, the feature 
maps in the first and second convolutional layer become a 
fixed size of 12 and 9 (only valid values are picked by each 
convolution operator).  Since the figure map size decrease with 
depth, we put 35 and 60 feature maps on the first and second 
convolutional layer to roughly equalize the computation at each 
layer. Those numbers are not critical as long as there are 
enough features to preserve the information about the input 
[32]. The classification module has 540 input units, 100 hidden 
units and 3 output units representing the three states of 
secondary structure. 

2) PSI-PRED: Since 1999, when David Jones [20] first 
time discovered the effectiveness of using PSSM as neural 
network input, PSI-PRED has kept being the top ranked 
accurate secondary structure predictor. PSI-PRED is a two-

stage standard feed-forward back propagation neural network, 
with the first network to predict structure from sequence and 
the second one to predict structure from structure. A window 
size of 15 residues is used for both neural networks. To use it 
in Malphite, we downloaded the standalone version of PSI-
PRED from (http://bioinf.cs.ucl.ac.uk/psipred/), which can run 
on a PC. 

3) Second CNN:  As we have discussed, the job of the 
second CNNs is to perform ensemble learning on two base 
models: the 1st CNNs and PSI-PRED.  Both the 1st CNNs and 
PSI-PRED output 1 predicted SS vector and 3 probability 
vectors of length 𝑛 where 𝑛 is the length of protein amino acid 
sequence and 3 stands for 3 secondary structure classes. The 
elements in the probability vectors are always in range [0,1], 
representing the probability of the residue being helix, strand or 
coil. Compared with the discrete SS vector, the probability 
vectors are more informative features because they contain real 
value of prediction results. Thus, we use the six probability 
vectors with 15-residue window from the output of PSI-PRED 
and the first CNNs as the input feature maps for the second 
CNN (Since all the elements in the 6 probability vectors are in 
the range [0,1], pre-normalization is not needed). Therefore the 
second CNN has 6 feature maps of length 15. Like the 1st 
CNN, we use 4 for filters’ size and 12 and 9 for features’ size 
in the 2nd CNN. Since the 2nd has less input features, we use a 
reduced 15 and 20 feature maps on the first and second 
convolutional layers. The classification module contains 180 
input units, 40 hidden units and 3 output units representing the 
three states of secondary structure. 

From the definition of the 2nd CNN, it is easy to see that 
Malphite is open to ensembles of more protein secondary 
structure prediction models. As long as the models generate 3 
probability vectors during the prediction processes, Malphite 
can absorb them in by plugging the probability vectors into the 
2nd CNN.  

Fig. 4.   The workflow of Malphite.  
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D. Datasets for Training and Testing 
We obtained a large non-homologous sequence and 

structure dataset of 7538 proteins (after removing proteins with 
less than 40 or more than 500 amino acids and discontinuous 
chains) from the protein sequence culling server PISCES [33] 
with sequence identity less than 25% and resolution better than 
3Å. We divided the 7538 proteins randomly into datasets of 
3600, 3000, 538 and 400 proteins.  

The dataset of 3600 proteins was used only to train the 1st 
CNN (The dataset becomes too biased to train or evaluate the 
2nd CNN after being used to train the 1st CNN).  The dataset 
of 3000 proteins is used to evaluate the performance of the 1st 
CNN and PSI-PRED (Note that the 3000 proteins are not used 
for the training of either the 1st CNN or PSI-PRED, they can 
be used as fair benchmarks for them), and perform ten-fold-
cross validation on the 2nd CNN. During the ten-fold-cross 
validate period. The dataset is randomly separated into ten 
equal parts, nine of which are used for training and the left part 
is used for testing.  The process is repeated ten times for each 
of the ten parts, and each trial uses the identically configured 
CNN.  To combat over-fitting, 10 percent of the training data 
were set aside to evaluate the performance of the model during 
the training process. When the performance of the model on 
the subset starts to drop or fails to improve for many epochs the 
training would be halted. After all 10 trainings, the final cross 
validation score can be obtained by averaging the validation 
score of all ten times. 

 Now, since the dataset of 3600 proteins becomes biased 
after training the 1st CNN, and the dataset of 3000 proteins 
produce different test score on three models (Normal scores for 
PSI-PRED and the 1st CNN, while cross-validation score for 
the 2nd CNN), extra datasets are needed to compare the 
performance of the three models directly.  Here we get the 
datasets of 400 and 538 proteins to do this job. In addition, we 
downloaded 122 targets from CASP10, which allow us to 
compare the accuracy of secondary structures predicted by 
Malphite with those from other structure prediction techniques.  

The three secondary structure label for each residue in the 
above datasets were assigned by DSSP software [34]. The eight 
states (H, I, G, E, B, S, T, −) DSSP assignments are grouped as 
follows: G and I into H, representing helix; B and E into E, 
representing strand; T, S and (−) into C representing coil.  

E. Implementation 
The CNNs are trained in a supervised form by Stochastic 

Gradient Decent (SGD), which estimates the error gradient 
from a batch from the training examples.  We used a batch size 
of 1000 labeled examples. The weight of the CNNs are 
randomly initialized between the two values: 
-6 fanin + fanout  and 6 fanin + fanout , where fanin  is the 
number of inputs and fanout is the number of outputs of the 
layer. Learning rate of 0.008 was found to be effective for both 
the first and second CNNs. Tanh() activation function is used 
for all cases. All the models are implemented using Python’s 
deep learning library: Theano [35, 36]. The trainings are 
parallelized on the Shirokane3 Super Computer of Human 
Genome Center (https://supcom.hgc.jp/english/), which is 
composed of about ten thousands Xeon E5-2670 CPUs. 

III. RESULTS 

A. The Datasets of 400, 538 and 3000 proteins 
TABLE II summarizes the performance given by the three 

components of Malphite against the datasets of 400, 538 and 
3000 proteins.  

The 1st CNN’s Q3 scores consistently exceed PSI-PRED in 
all 3 dataset. Despite that the improvements are small (0.4%, 
0.3% and 0.4%), CNN can outperform PSI-PRED with no 
doubt. Because PSI-PRED use two consecutive neural 
networks while the 1st CNN only uses one. We did another 
experiment which shows that (0.8%~1.2%) improvement over 
PSI-PRED can be achieved by stacking two CNNs straightly. 
On the other hand, as we have expected, there is a significant 
diversity in the prediction distributions of PSI-PRED and the 
1st CNN. That is, PSIPRED makes the most accurate 
prediction for coil residues while the most accurate prediction 
in the 1st CNN is for helical residues. The accuracy of helical 
residues predicted by the 1st CNN is about 6% higher than the 
prediction by PSIPRED for all three datasets while the 
accuracies of strand residues slightly prefer the 1st CNN and 
prediction of coil residues is 5.8%~6.2% more accurate for 
PSI-PRED. 

The combined prediction Q3 accuracies achieved by the 
2nd CNN are consistently 2% higher than PSI-PRED’s and 
1.6% higher than the 1st CNN’s for all three datasets. The 2nd 
CNN surpass both the 1st CNN and PSI-PRED for the 
prediction accuracies of helical and strand residues.  QH is 
improved by about 1% and QE by 2.7% over the 1st CNN for 
all three datasets. However, in coil residues, the 2nd CNN can 
make 1.1~1.8% more accurate predictions than the 1st CNN 
but still lose to PSI-PRED’s 86%. It seems that the 2nd CNN 
can’t “inherit” the high QC performance from PSI-PRED. The 
reason for this will be shown later. Anyway, a significantly 
improved Q3 accuracy of about 2% over PSI-PRED is 
achieved by Malphite for the datasets of 400, 538 and 3000 
proteins.  

TABLE II.  PERFORMANCE OF THE THREE COMPONENTS OF MALPHITE 
FOR 400, 538, AND 3000 SETS 

Models Score  
Dataset 

400 538 3000 

PSI-PRED 
(V 3.5) 

Q3 80.5 80.5 80.6 

QH 80.4 79.2 79.7 

QE 71.3 73.0 72.6 

QC 86.3 86.7 86.5 

1st CNN 

Q3 80.9 80.8 80.9 

QH 86.2 85.5 85.5 

QE 72.6 74.0 74.0 

QC 80.5 80.6 80.3 

2nd CNN 

Q3 82.3 82.6 82.6a 

QH 87.2 86.4 86.6a 

QE 75.3 76.9 76.7a 

QC 81.6 82.4 82.1a 

a. Ten-fold-cross validation accuracy. 
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TABLE III shows the compositions of secondary structure 
types predicted three sub-models of Malphite. All three models 
under predict helical and strand residues, and over predict coil 
residues. The amount of helical, strand and coil residues 
provided by two CNNs are very close to the amount of native 
ones. For the two datasets, both CNNs only under predict 
helical and strand residues by around 1% and 1.5% 
respectively, and over predict coil residues by 2.5~2.9%. The 
overall secondary structure composition predicted by the 2nd 
CNNs is 97.2~97.4% close to the native composition. By 
comparison, PSIPRED under predicts helical residues by 5%, 
strand residues by 3% and over predicts coil residues by about 
8%, getting a total of 92% similarity to the native composition.   

The over prediction of coil residues by both the 1st CNN 
and PSI-PRED can explain why the 2nd CNN can not “inherit” 
PSI-PRED’s high coil prediction performance: PSI-PRED’s 
high prediction accuracies in coil residues are not result from a 
good coil pattern recognizing ability but from high coil over 
prediction (8%), hence the coil probability vector generated by 
PSI-PRED can not provide equivalently beneficial coil 
information for the 2nd CNN, as a result, the 2nd CNN lose to 
PSI-PRED on QC score. For an extreme case, a model can get 
100% QC score by over predicting all amino acids to coil 
residues, but only become meaningless. 

TABLE III.  COMPOSITION OF ACTUAL AND PREDICTED STRUCTURE TYPE 
FOR 538 AND 3000 SETS 

Models 
538 3000 

%H %E %C %H %E %C 
Native 37.7 24.3 38.0 38.6 23.6 37.9 

PSI-PRED 32.5 21.5 46.0 33.6 20.8 45.6 
1st CNN 36.8 22.3 40.9 37.7 21.8 40.5 
2nd CNN 36.5 22.7 40.9 37.5 22.0 40.4 

The data for 400 proteins is removed for cleanness. 
 

B. CASP 10 targets 
We have also investigated the accuracy of secondary 

structure prediction for target proteins in CASP 10 
competition. A total of 122 proteins are included in this set. 

TABLE IV. shows the results given by the three sub-
models of Malphite.  PSI-PRED is widely known as the CASP-
winning protein secondary structure prediction method, and it 
yields a decent 81.6% Q3 accuracy on CASP10. However, our 
1st CNN, which comprises of a single stage neural network, 
nailed it with 82.5%. The 1st CNN makes more accurate 
prediction in helical residues while PSI-PRED is more accurate 
in coil residues consistent with the result from datasets of 400, 
538 and 3000 proteins. On the other hand, the 2nd CNN’ Q3 
accuracy keeps surpassing PSI-PRED by 2%, resulting in a 
remarkable score of 83.6%. The effect of ensemble learning is 
still obvious in helical (+1.4% based on 1st CNN) and strand 
(+2.2% based on 1st CNN) residues, while remains insufficient 
in coil residues (0.5% higher than 1st CNN but 3.1% worse 
than PSI-PRED). 

 

TABLE IV.  PROTEIN SECONDARY STRUCTURE PREDICTION ACCURACY 
FOR CASP10  SET 

Models 
Score 

Q3 QH QE QC 
PSI-PRED 81.6 79.2 76.0 87.0 
1st CNN 82.5 85.1 77.4 83.4 
2nd CNN 83.6 86.5 79.6 83.9 

 
 

IV. DISSCUSSION 
We have developed a new secondary structure predictor 

called Malphite, which achieves 82.6% ten-fold-cross 
validated accuracy for a dataset of 3000 proteins. And this 
method makes accurate predictions of 82.3% and 82.6% on 
independently created testing sets of 400 and 538 proteins 
respectively. The outstanding performance of Malphite is 
further confirmed by testing on 122 targets from CASP10, for 
which a remarkable accuracy of 83.6% is obtained.   Malphite 
consistently makes 2% more accurate prediction than PSI-
PRED for the datasets of 400, 538 and 3000 proteins and 122 
targets from CASP10, which is a significant step toward the 
theoretical limit for the prediction accuracy of secondary 
structure of 90%.  

There are two main keys to the success of Malphite.  
1) Application of convolution neural network to PSSM 

processing.  Each column array of PSSM, which has been 
observed to be weighted as a unit by all three neurons of a 
small secondary structure classifier, can be regarded as an 
independent feature of the protein amino acid sequence. CNN 
can extract deep hierarchical features from the input feature 
maps. The nature of convolution operator, in addition, can 
smooth noise data and highlight useful features in each feature 
map from PSSM. As a result, the 1st CNN, even with only one 
neural network, outperforms the two-stage neural network 
method, PSI-PRED.  

2) Ensemble learning.  We have observed that there is a 
great diversity in the prediction distribution from many existing 
protein secondary structure predictors. For example, SPINEX 
is good at predicting helical residues, while PSI-PRED is the 
expert for predicting coil residues.  The result shows that our 
1st CNN also has distinct prediction distribution with PSI-
PRED.  Instead of using traditional ensemble learning 
algorithms like boosting or bagging, we proposed a new 
ensemble learning method, which makes use of convolutional 
neural network by taking predicted probability vectors from 
base classifiers as input feature maps.  Though no serious 
comparison between the effectiveness of CNN ensembles and 
traditional ones was made, our CNN ensemble seems to be the 
most convenient one. Because, by CNN, ensemble learning is 
done by simply merging the input probability vectors, and the 
automatic supervised learning will teach CNN how to select 
the best prediction results from input probability vectors. 
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Malphite is expandable. Though the current Malphite only 
has 2 base classifiers, new classifiers can be added by plugging 
their prediction probability vectors into the 2nd CNN. In future, 
the performance of Malphite might be further improved by 
introducing other protein secondary structure predictors that 
can bring more diverse prediction.  Beside prediction diversity, 
the overall accuracy of new base models is also important. 
Models that can not bring more diversity end up with adding 
redundant input features for the 2nd CNN, likewise, models 
with very poor accuracy only create noise data. 
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