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Heuristic principal component analysis-based

unsupervised feature extraction applied to gene expression

analysis of amyotrophic lateral sclerosis data sets

Y-h. Taguchi1,a) Mitsuo Iwadate2,b) Hideaki Umeyama2,c)

Abstract: We applied principal component analysis (PCA)-based unsupervised feature extraction (FE) to amyotrophic

lateral sclerosis (ALS) gene expression profiles. ALS is a debilitating neurodegenerative disorder with no effective

therapy. The relevant gene expression profiles contained a small number of samples (from a few to tens) with a large

number of features (several tens of thousands). Although it is important to recognize critical genes from gene expres-

sion profiles, a small-sample-large-feature situation makes FE difficult. In PCA-based unsupervised FE, features rather

than samples are embedded into a low dimensional space, and critical genes are identified as outliers that are supposed

to obey group-oriented behavior. The 29 candidate genes identified as critical for ALS by this methodology turned out

to be biologically feasible based on comparisons with numerous previous studies. Together, they formed a collected

gene regulation/protein binding network within which the known, but not explicitly identified in this study, three ALS-

causing genes, SOD1, TDP-43, and SETX, could be naturally placed/embedded. Among the 29 genes, the translated

chemokine receptor CCR6 protein was considered to be a potential therapy target and its antagonists/agonists were

identified using the in silico drug discovery software ChooseLD. The ten top-ranked antagonists/agonists shared struc-

tures with many compounds that were previously known to bind to various proteins [This paper is the digest version

of a conference paper [1]. For more details, see the conference paper version].

1. Introduction

The small-sample-large-feature situation is very common in

bioinformatics. For example, in gene expression analysis it is rel-

atively easy to measure the gene expression of tens of thousands

of genes at once; however, getting many samples is much more

costly, and thus more difficult. Although it is important to specify

which genes contribute to the outcomes derived from given exper-

imental treatments, it is well known that feature extraction (FE) is

a difficult task under the small-sample-large-feature situation. To

resolve this difficulty, principal component analysis (PCA)-based

unsupervised FE was proposed and successfully applied to vari-

ous bioinformatics problems [2–12]. Features, rather than sam-

ples, are embedded into a low dimensional space by PCA-based

unsupervised FE, and critical genes are identified as outliers that

are supposed to obey group-oriented behavior. We can identify

features that obey group behavior because the gene expressions

attributed to each sample are combined to generate the principal

components (PCs) when features are embedded into low dimen-

sional spaces. If many features share the same gene expression

profiles attributed to each sample, then the combination of these
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features has more of a tendency to be employed as primary PCs,

while gene expression profiles attributed to each sample that are

not associated with many genes have less opportunity to be em-

ployed as primary PCs. To demonstrate the small-sample-large-

feature situation we first ran the analysis using simulated data.

2. PCA-based unsupervised FE applied to a

simulated data set

N features were embedded into low dimensional space. Be-

cause there were no orders other than those generated by a given

group behavior, the first PC (PC1) is expected to reflect the group

behavior. To confirm this exception, we selected 10 top out-

liers along PC1 (i.e., the features with large absolute PC1 scores,

PCS 1
i
, were extracted). Fig. 1(A) shows a typical example of

PCA-based unsupervised FE applied to this data set. Using 100

ensembles with N = 100,M = 20, and N0 = 10, when µ = 1(2)

we found that 52.6% (89.5%) of N0 extracted features were out-

liers correctly identified from features associated with group be-

havior (1 ≤ i ≤ N0). Although this result suggests that PCA-

based unsupervised FE can extract features that obey group be-

havior, because performance is clearly parameter dependent (in

this example, it depends on µ) it is important to apply the method-

ology to a real data set to see whether PCA-based unsupervised

FE works well with actual data.
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Fig. 1 (A) Typical example of PCA-based unsupervised FE applied to sim-

ulated data (µ = 2,N = 100, M = 20,N0 = 10). Two-dimensional

embeddings of 100 features by PCA are represented. The 10 red tri-

angles correspond to features associated with group behavior, and the

90 black circles are the others. Blue crosses indicate the 10 features

identified by PCA-based unsupervised FE as outliers. In this par-

ticular example nine features associated with group behaviors were

recognized correctly by choosing the outliers. (B) Contribution of

ALS patient and control samples to the first, second, third, and fourth

PCs (PC1, PC2, PC3, and PC4, respectively). Black bars with cir-

cles correspond to the patients; red bars with triangles correspond to

the healthy controls. Horizontal broken lines indicate the baseline

(zero).

3. PCA-based unsupervised FE applied to

amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is a debilitating neurode-

generative disorder without any effective therapy. A critical rea-

son that no effective therapies exist is that the genetic mechanisms

that cause ALS are unknown. Identifying critical genes relevant

to ALS will accelerate our understanding of the disease and expe-

dite the development of effective therapies. A potential difficulty

of this task is the sparseness of available samples. ALS itself is

a rare disease (one in 10,000 in a population), and obtaining the

neurons required for experimental study is difficult without injur-

ing the patients’ nerves.

3.1 Data set from two ALS patients and two controls

Recently, Fogel et al. [13] generated fibroblast (i.e., skin) cell

lines from two healthy controls and two patients (thus, M = 4),

and measured gene expression using microarray technology. Be-

cause 24,525 genes were mapped onto each microarray plate

(thus, N = 24, 525), this is a typical small-sample-large-feature

situation. To demonstrate the difficulty of the problem, we ap-

plied FE based on categorical regression analysis to this data set.

We found no significant regression for any is, almost certainly be-

cause of the sparseness of samples. Next, we applied PCA-based

unsupervised FE to this data set. Fig. 1(B) shows the contri-

butions of each of the samples to the PCs, PCk j. In contrast to

the previous example with simulated data, because this is a real

biological example PC1 may no longer reflect what we are inter-

ested in. Indeed, PC1 contributed more than 99% to the PCs but

did not exhibit any sample dependence (Fig. 1(B)); thus, gene

expression showed very little sample dependence. (This could be

another reason why the previous regression analysis failed.) Al-

though PC2, PC3, and PC4 contributed as little as 0.4%, 0.2%,

and 0.1%, respectively, and thus exhibited clearer sample depen-

dence, the sample dependence was not coincident with the dis-

tinction between ALS patients and healthy controls. However, if

the sample dependence does indeed reflect some hidden group be-

havior attributed to a limited number of features, then the extrac-

tion of outliers along these PCs may have biological meaning. FE

was performed as follows. First, the Z score was summed from

the PC score for each i as, Z2
i
=
∑4

k=2 Z2
ik

, Zik =
PCS k

i
−〈PCS k

i
〉k

δPCS k ,

〈PCS k
i
〉k = 1

N

∑

i PCS k
i
, δPCS k =

√

1
N

∑

i

(

PCS k
i
− 〈PCS k

i
〉k
)2

where Zik is the Z score derived from the PCk score of the ith fea-

ture. Then assuming Z2
i

obeys the χ2 distribution, P-values are

attributed to each i. After adjusting the P-values with the BH cri-

terion, features associated with adjusted P-values less than 0.01

were extracted. In this way, a total of 708 features were selected.

To validate this selection biologically, we uploaded the list of

708 genes to the DAVID server [14, 15] and performed enrich-

ment analyses to obtain enriched biological terms and pathways

for these genes. DAVID compares a specified set of genes against

a background that consists of all genes in a particular organism.

The relevant metabolic pathways in the KEGG pathway enrich-

ment analysis [16] are listed in Table 1.

Although the adjusted P-values attributed to some KEGG path-

ways were not always significant, it is remarkable that the most

significant pathways included other neurodegenerative diseases,

including Alzheimer’s, Parkinson’s, and Huntington’s diseases

(AD, PD, and HD). This result suggests that PCA-based unsu-

pervised FE successfully selected biologically meaningful genes.

Furthermore, using the alternative pathway analysis tool, Target-

Mine [17], we confirmed that AD and PD were significantly en-

riched KEGG pathways for the selected genes. DAVID also re-

ported several other plausible upregulated features and/or tissues

associated with the selected genes, including fetal brain cortex

(despite the fact that the cell line was made from fibroblasts),

Bethlem myopathy (a congenital, autosomal dominant form of

muscular dystrophy), Ullrich congenital muscular dystrophy and

other neuron-related features among the biological process gene

ontology terms assigned by DAVID. We also uploaded the se-

lected gene list to the g:Profiler web server [18], which is another

toolset that reports enriched biological terms and/or concepts in a

set of genes. g:Profiler reported the enrichment of genes targeted

by several transcription factors, notably Sp1, LRF, VDR, and E2F,

all of which have been reported to be related to neuron devel-

opment and neural diseases. Transcription factors trigger gene

expression by binding to the promoter regions (genomic regions

that control expression) of their associated genes. The finding

that the target genes of neuron-related transcription factors were

enriched in our gene set demonstrates the ability of PCA-based

unsupervised FE to detect genes with group behavior.

We also checked whether our selected genes overlapped with

the ALS genes reported by the Gendoo server [19], which at-

tributes P-values to the simultaneous appearances in published

literature of genes and diseases. We downloaded 211 genes asso-

ciated with ALS with P-values less than 0.05. We found 13 com-

mon genes that were common between this ALS-related gene list

and the 708 genes that we identified with PCA-based unsuper-

vised FE. This overlap was associated with P-values of 4 × 10−3;
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Table 1 KEGG pathway enrichment analysis using DAVID

(A) (B)

KEGG pathway Count % P-value Count % P-value

hsa03010: Ribosome 42 7.25 7.68 E-29 34 5.67 7.68 E-20

hsa04510: Focal adhesion 30 5.18 2.65 E-06 30 5.00 2.47 E-06

hsa04512: ECM-receptor interaction 15 2.59 2.47 E-04 13 2.16 2.63 E-03

hsa05130: Pathogenic Escherichia coli infection 12 2.07 3.09 E-04 14 2.33 1.30 E-05

hsa00190: Oxidative phosphorylation 19 3.28 3.78 E-04 20 3.33 1.20 E-04

hsa05110: Vibrio cholerae infection — — — 11 1.83 1.07 E-03

hsa05010: Alzheimer’s disease 20 3.45 2.21 E-03 18 3.00 1.09 E-02

hsa05012: Parkinson’s disease 17 2.93 2.38 E-03 15 2.50 1.36 E-02

hsa03050: Proteasome — — — 8 1.33 1.61 E-02

hsa00010: Glycolysis / Gluconeogenesis 10 1.72 6.51 E-03 8 1.33 5.29 E-02

hsa05016: Huntington’s disease 18 3.10 2.75 E-02 21 3.50 2.91 E-03

hsa00030: Pentose phosphate pathway — — — 6 1.00 1.21 E-02

hsa00620: Pyruvate metabolism — — — 7 1.16 2.43 E-02

hsa04350: TGF-beta signaling pathway — — — 11 1.86 2.53 E-02

hsa04670: Leukocyte transendothelial migration — — — 13 2.17 3.55 E-02

hsa04722: Neurotrophin signaling pathway — — — 13 2.17 4.91 E-02

hsa00630: Glyoxylate and dicarboxylate metabolism — — — 4 o.67 5.01 E-02

hsa04540: Gap junction — — — 10 1.67 6.56 E-02

hsa04142: Lysosome 13 2.24 3.43 E-02 — — —

hsa00480: Glutathione metabolism 7 1.20 6.38 E-02 7 1.17 6.30 E-02

hsa04810: Regulation of actin cytoskeleton 19 3.28 6.51 E-02 19 3.17 6.35 E-02

hsa05412: Arrhythmogenic right ventricular cardiomyopathy (ARVC) 9 1.55 6.73 E-02 — — – -

hsa04260: Cardiac muscle contraction 9 1.55 7.60 E-02 9 1.50 7.48 E-02

hsa04530: Tight junction — — — 13 2.17 7.89 E-02

(A) 708 genes identified in the data set from two ALS patients and two controls. P-values are not adjusted.

(B) 715 genes identified in the data set from transfected cell lines by PCA-based unsupervised FE. P-values are not adjusted.

thus, we concluded that the two lists were significantly over-

lapped. These enrichment and association analyses all supported

the ability of PCA-based unsupervised FE to select biologically

feasible genes.

3.2 Data set from transfected cell lines

Fogel et al. [13] performed another experiment with the fibrob-

last (i.e. skin) cell lines from two healthy controls and two ALS

patients by transfecting of artificially mutated genes into the cell

lines. They generated three mutations, reported to be related to

ALS [13], and transfected them, as well as control non-mutated

versions of the same genes, into the cell lines. Because four cell

lines were used, four times the three mutated genes, plus the non-

mutated control, resulted in sixteen samples (M = 16). This

is another small-sample-large-feature situation because there are

N = 24, 525 features and 16 samples. To demonstrate the dif-

ficulty of the task, we again performed regression analysis, and

showed that, as with the previous data set, no significant associ-

ated adjusted P-values were found. Next, we applied PCA-based

unsupervised FE and found that, once more, PC1 contributed 97.6

%, and did not exhibit any sample dependency (data not shown).

Fig. 2 shows the contributions of PC2 and PC3, which corre-

spond to the differences between the mutated and non-mutated

gene transfections (PC2 and PC3 contributed only 0.7 % and 0.4

%, respectively). This result indicates that the contributions of

samples transfected with the non-mutated genes to the PCs were

extracted from the contributions of samples transfected with mu-

tated genes, as in ∆PCk j = PCk j − PCkc0 where PCkc0 is the

contribution of a sample when a non-mutated gene instead of a

mutated gene is transfected to the cth cell line, and the jth sam-

ple belongs to the cth cell line. No contributions consistent with

the difference between the mutated and non-mutated transfections

were apparent because both up- and down-regulation were ob-

served for PC2 and PC3 independent of the transfected mutated

gene. However, when we tried the following alternative regres-

sion analysis, we found significant regression for k = 2 and 3,

∆PCk j =
∑4

c=1 akcψ jc + gk, where ∆PCk j represents the differen-

tial contributions of the jth sample ( j = 1, · · · 12) to the kth PC

(or loading) defined above, and ψ jc is only assigned 1 when the

jth sample is taken from the cth cell line (c = 1, · · · , 4), as shown

in Fig. 1(B), and is otherwise assigned 0. This situation is equiv-

alent to ignorance of transfected gene dependence, which meant

that no matter which mutated gene was transfected, the cell lines

exhibited the same gene expression profile as the cell lines trans-

fected with the non-mutated gene. Thus, there is still a possibility
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Fig. 2 Contributions of samples to the differential second and third PCs

(PC2 and PC3) corresponding to mutated and non-mutated gene

transfection. Black, red, and green bars with a circle, triangle, and

cross respectively, correspond to the transfection of three distinct mu-

tated genes. Horizontal broken lines are the baseline (zero).

that PCA-based unsupervised FE can extract biologically feasible

features. Next we performed the following analysis by assuming

that the PC scores, PCS k
i
, obey a normal distribution for k = 2,

and 3. P-values were computed and attributed to the ith feature as

Pik, then, geometric mean values were computed with k = 2 and

3, Pi =
√

Pi2 · Pi3. The Pi obtained was then adjusted by the BH

criterion, and features with adjusted P-values less than 0.01 were

extracted. We obtained 715 features as a result of this procedure.
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Interestingly, although the simple comparison between healthy

controls and ALS patients described in the previous section is a

distinct measurement, the results of the biological investigations

using the 708 gene set described previously were nearly identical

to the results we obtained with this new set of 715 selected genes.

As before, we uploaded the list of 715 genes to DAVID. The re-

sult of the KEGG pathway enrichment analysis is shown in Table

1. Although some of the adjusted P-values attributed to particular

KEGG pathways were not always significant, again the most sig-

nificant pathways included the AD, PD, and HD neurodegener-

ative diseases, suggesting that PCA-based unsupervised FE suc-

cessfully selected biologically meaningful genes. Furthermore,

using TargetMine, we confirmed that AD (P = 2.13 × 10−2),

PD (P = 1.98 × 10−2), and HD (P = 1.09 × 10−2) were sig-

nificantly enriched KEGG pathways for our selected genes (BH

adjusted P-values). Additionally, DAVID reported that fetal brain

cortex (despite the fact that the cell lines were from fibroblasts,

P = 3.22 × 10−23) was an upregulated tissue (BH adjusted P-

value). g:Profiler also reported the enrichment of genes targeted

by several transcription factors that were identified previously,

e.g., SP1, LRF, VDR, E2F-1, and E2F (P-values ranged from

6.29 × 10−11 to 3.19 × 10−2; only significant P-values are pre-

sented because of the implementation of g:Profiler).

We identified 14 genes that were common between the Gen-

doo ALS-related gene list and the 715 genes we identified with

the PCA-based unsupervised FE method. This overlap was asso-

ciated with P-values of 2 × 10−3; thus, we considered that these

two lists were significantly overlapped.

Despite the coincidence of biological terms and concepts be-

tween the two sets of selected genes, the two lists of are not

identical; indeed, the overlap between the two sets was only 393

genes, which is only slightly more than half of all of the selected

genes (708 versus 715 genes). This result further suggests the ro-

bustness of PCA-based unsupervised FE in selecting biologically

feasible sets of genes.

3.3 Identification of genes especially critical for ALS

We identified a large number of genes that were possibly criti-

cal for ALS in the two in vitro data sets. To better identify these

genes, we selected the 100 top-most significant genes with low P-

values from among the 708 genes (identified by the comparison

between controls and ALS patients) and the 715 genes (identified

by the mutated genes transfection). Then, we selected the com-

mon genes between the 100 top-ranked genes in the two sets and

found 29 genes that were included in both data sets. We consid-

ered that this amount of overlap was highly significant; therefore,

we supposed that the 29 selected genes (Table 2) were especially

critical genes for ALS.

Table 2 Common genes between the 100 top-most significant genes in two

in vitro data sets

ACTA2 ADM ANXA1 CCR6 CFL1 COL8A1 CRYAB CTGF FBLN1

HIST1H4C ID1 ID3 IGFBP7 M6PRBP1 MGC16703 MRCL3 PSG4

PODXL RPS4Y1 S100A10 SNHG5 TAGLN TGFBI THBS1 TMEM119

TNFRSF11B TPM1 UBC

The two data sets were the two ALS patients and two controls set and the

mutated genes transfection set. The genes in bold have been associated with

ALS in at least one previous study (data not shown).

Using STRING [20], we found that PPIs were enriched among

the genes in Table 2 (31 PPIs were detected, while the expected

PPIs were 14; P = 5.45 × 10−5). However, none of three neu-

rodegenerative diseases (AD, HD, or PD) reported in the KEGG

pathway enrichment analysis (Table 1) were associated with the

29 selected genes (data not shown). This result apparently in-

dicated that our identification of critical ALS genes was unsuc-

cessful. However, after performing an extensive literature search,

summarized in the pathway map in Fig. 3, we found that the ini-

tial assumption was incorrect. For example, although no reports

directly related ACTA2 to ALS, ACTA2 was reported to bind to

LRRTM2 (Fig. 3(a)), which was targeted by TDP43 (Fig. 3(b)),

one of the major ALS-causing proteins [21]. Most of the relations

between the 29 selected genes and ALS that we determined based

on the literature search were indirect, and this may explain why

the relations between neurodegenerative diseases and these genes

were not identified in the KEGG pathway enrichment analysis.

In addition, many genes in Table 2 were associated with at least

one previous report that suggested a relation with ALS (data not

shown). Constructing a biologically informative pathway of this

kind is difficult without successful identifications; therefore, we

believe that we have shown that our methodology can success-

fully screen for ALS critical genes.
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Fig. 3 Pathway map summarizing the results of an extensive literature

search. Genes in Table 2 are shown in red. Arrows and T-shaped seg-

ments represent up/downregulation, respectively. Solid black bold

lines represent protein binding interactions. The segment that in-

cluded UBC (ubiquitin C) is represented by thin black lines because

the connections are too ubiquitous. Dotted black lines represent con-

nections between proteins in the same superfamily/isoforms that may

be expected to bind to common protein partners. The underlined

genes also were detected in a proteomic analysis (data not shown).

TDP43, SOD1, and SETX are major ALS drivers genes [22]. As-

trogliosis was reported to play critical roles in ALS [23]. Some of the

proteins have been identified as paracrine neuroprotective candidate

proteins [24] that may play critical roles in neurogenesis. Finally,

the map includes genes related to the TGFβ pathway that was recog-

nized recently as an important contributor to the causes of ALS [25].

References used to generate the pathway map are: (a) [26], (b) [27],

(c) [28], (d) [29], (e) [30], (f) [31], (g) [32], (h) [33], (i) [34], (j) [35],

(k) [36], (l) [37], (m) [38], (n) [39], (o) [40], (p) [41], (q) [42],

(r) [43], (s) [44], (t) [45], (u) [46], (v) [47], (w) [48], (x) [49], (y) [50],

(z) [51], (aa) [52].
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3.4 CCR6 as a therapy target of ALS and in silico drug dis-

covery

Although we successfully screened ALS critical genes, it is im-

portant to identify the gene that would make the most promising

therapy target. We identify CCR6 as the most promising gene

for the following reasons. Although pathological details of ALS

are still unknown, the infiltration of T lymphocytes and dendritic

cells into the spinal cord has been observed in the initial phases of

ALS [53] and was regarded as a potential causing factor of ALS

through inflammation. However, Saresella et al. [54] confirmed

that T helper type 17 (Th17) cells, which are thought to induce

inflammation, were increased in ALS peripheral blood mononu-

clear cells (PBMC) while regulatory T cells, which are thought to

suppress inflammation, were reduced in ALS PBMC. This find-

ing suggested that populations of these two cell types largely af-

fected the progression of ALS. Yamasaki et al. [55] recently con-

firmed that experimental autoimmune encephalomyelitis (EAE)

was induced by CCL20-associated CCR6-mediated Th17 cell

migration, while EAE was suppressed by CCL20-unassociated

CCR6-mediated regulatory T cell migration. CCL20-associated

CCR6-mediated Th17 cell migration to the affected diseased part

(in this case, inflamed joints) also has been observed in other

diseases [56] where an anti-CCR6 monoclonal antibody substan-

tially inhibited the symptoms of ALS.

And as discussed above, CCR6 binds to CCL20 (Fig. 3(t)),

which is enhanced by SOD1 in ALS (Fig. 3(u)). Thus, CCR6,

which was identified in this study, was considered to be a poten-

tial ALS therapy target.

3.4.1 Inference of tertiary structure of CCR6

The tertiary structure of CCR6 is required for in silico drug dis-

covery. Because the tertiary structure of CCR6 was not available

in the PDB, we predicted its structure by homology modeling.

We identified the homology modeling candidate structures of β2

adrenergic receptors (ADRB2s) with an agonist as well as three

antagonists bound to the ligand binding sites in the PDB.

3.4.2 in silico drug discovery to identify agonist candidates

The ten top-ranked compounds that were selected as candidate

ligands for CCR6 are shown in Table 3. In the list of “Related

Compounds with Annotation” in PubChem, six of the ten top-

ranked compounds were associated with at least one known active

ligand for some proteins. This suggested that our list of candidate

agonist compounds was promising, because the lack of associ-

ated known active ligands may simply have reflected the lack of

trials/experiments.

3.4.3 in silico drug discovery to identify antagonist candi-

dates

The 10 top-ranked compounds that were selected as candidate

ligands are shown in Table 3. In the list of “Related Compounds

with Annotation” in PubChem, five of the 10 top-ranked com-

pounds (for CXCR4 and OPRM1) and eight of 10 top-ranked

compounds (for OPRK1) were associated with at least one known

active ligand for some proteins. Although the top three com-

pounds were not associated with known protein binding ligands,

they were associated with inhibitors of microbial proliferation.

Because compounds are likely to affect microbial proliferation

by binding to proteins, we supposed that these three compounds

also probably bind to some proteins. In particular, all three of the

first ranked compounds were associated with at least one known

active ligand of some proteins when microbial proliferation in-

hibitors were included. This finding suggested that our list of

candidate antagonist compounds was promising, because the lack

of associated known active ligands may simply reflect the lack of

trials/experiments.

Table 3 Ten top ranked agonists/antagonists for CCR6 inferred by

chooseLD.

Agonist candidates based on 3SN6 A (3P0G A) and ADRB2 (4LDE A)

1. 008072156, 2. 008206651, 3. 007915138, 4. 006405195, 5. 006898371,

6. 007416814, 7. 006898272, 8. 007360992, 9. 007318671, 10. 007920051

Antagonist candidates based on CXCR4 (3ODU A)

1. 005222305, 2. 002168831, 3. 002168773, 4. 002168537, 5. 005227329,

6. 002168546, 7. 005227330, 8. 007649892, 9. 016880807, 10. 005227219

Antagonist candidates based on OPRM1 (4DKL B)

1. 015910967, 2. 006616964, 3. 015911601, 4. 006409130, 5. 006913742,

6. 015994619, 7. 006889306, 8. 007804964, 9. 007333860, 10. 007429734

Antagonist candidates based on OPRK1 (4DJH B)

1. 007816975, 2. 007802415, 3. 007802145, 4. 005427196, 5. 006913516,

6. 007150068, 7. 007818089, 8. 007801751, 9. 007045063, 10. 007044891

Numbers indicate rank order. Bold compound IDs are listed in “Related

Compounds with Annotation” and suggested to be protein binding ligands.

All compound IDs should be prefixed by ”AKOS”, for example

”AKOS012345678”.
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