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Abstract: In this paper, we demonstrate a food recognition method by monitoring power leakage from a domestic
microwave oven. Universal Software Radio Peripheral (USRP) is applied as a low-cost spectrum analyzer to measure
the microwave oven leakage as received signal strength indication (RSSI). We aim to recognize 18 categories of food
that are commonly cooked in a microwave oven. By analyzing 180 features that contain the information of heating-
time difference, we attain an average recognition accuracy of 82.3%. Using 138 features excluding the heating-time
difference information, the average recognition accuracy is 56.2%. The recognition accuracy under different conditions
is also investigated, for instance, utilizing different microwave ovens, different distances between the microwave oven
and the USRP as well as different data down-sampling rates. Finally, a food recognition application is implemented to
demonstrate our method.
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1. Introduction

Food recognition has been an important topic that researchers
in related fields focus on. According to the statistic published
by the World Health Organization (WHO), in 2008, more than
1.4 billion adults, in their 20 s and older, were overweight. Over
200 million men and nearly 300 million women were obese [1].
Thus food recognition plays a part in dietary monitoring and log-
ging, helping to control the obesity problem. Methods have been
proposed for food recognition by other researchers, such as rec-
ognizing food images and monitoring the chewing sound. These
methods call for users to submit a picture of the foods or wear
a device when having meals. The extra efforts asked from users
might introduce usage burden or complexity though we should
admit the ubiquity of previous methods. We propose to exploit
the features of food-cooking facilities to recognize the foods au-
tomatically as a complementary method co-operating with previ-
ous methods. The solution we propose is to monitor the feature
changing of the power leakage from the microwave oven when
different categories of food are cooked within.

The conceptual block diagram is indicated in Fig. 1. As we can
see from Fig. 1, the source of food recognition in the proposed
system is the microwave oven leakage. There are advantages
in recognizing foods via the power leakage from the microwave
oven. First, most households have a microwave oven, which is
usually used to cook foods [2]. We illustrate the usage frequency
of different cooking facilities in Fig. 2. Second, there is small
amount of power leaks from a microwave oven at the frequency
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Fig. 1 Conceptual block diagram of proposed food recognition system.

Fig. 2 Usage frequentness of different cooking facilities published by Tokyo
Electric Power Company (Tepco).

of about 2.45 GHz when heating foods. The center frequency of
leaking power shifts slightly when heating different categories of
food [3]. Third, the power leakage is different when different cat-
egories of food are being heated inside the microwave oven. We
show the absorbed power by food in Eq. (1) [4], showing that ma-
terial dielectric property determines power absorption efficiency.
We denote the frequency with f and the electric field intensity
with E. εr is the relative permittivity and tanδ is the loss tangent,
two of which change depending on the food materials and cook-
ing stage. To sum up, based on the three advantages that we list,
foods can be recognized via detecting the power leakage from
the microwave oven as RSSI that varies according to the material
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Table 1 Comparison between food recognition methods. © stands for good and × stands for not as good
as others.

METHOD Usage Ubiquity Information Automatic Accuracy Deployment Cost
Image Processing © © × © ©
Wearable Device © × × © ×

Microwave Oven Leakage × × © © ×

dielectric features of different categories of food.

P = 0.556 × 10−12 × εr × tanδ × f × E2 (1)

We clarify the contribution of this paper as follows: In this
paper we demonstrate a food recognition system that recognizes
foods via monitoring the power leakage from the microwave oven
using USRP. This method is a complementary method to the
existing food recognition methods using image processing and
acoustic sound monitoring. Nevertheless, our system requires
less user effort than the former two methods. We make use of the
fact that for different kinds of food with different material char-
acteristics (such as moisture content, configuration, and so forth),
the food states are different during the heating, which causes the
power leakage of the microwave oven to vary. We extract fea-
tures from measured RSSI to distinguish the power leakage of
the microwave oven when heating different kinds of food. In ad-
dition, we also illustrate the validity of the proposed system by
investigating the recognition accuracy under different recognition
conditions, such as different recognition distances, different data
down sampling frequencies, using different ovens and foods that
are made by different manufacturers.

2. Related Works

The food recognition for dietary logging and monitoring has
been focused on by researchers and two main categories of recog-
nition methods based on two different schemes have been pro-
posed. Solving recognition problems as image categorization or
classification problems is the most popular method. The “Food-
log” system based on cell phone camera function was proposed
by Kitamura, et al., and according to Refs. [6], [7], [8], the system
extracts the features of food color, circle edge and SIFT features
from food images taken by a user via a cell phone and uploaded
to an online system, attaining an accuracy of 91.8% for food-non-
food recognition and an accuracy of 38.2% of food balance esti-
mator of 5 food categories. In Refs. [9], [10], the authors selected
color, texture, gradient, and SIFT features to do training with a
separate classifier for each feature. Finally, all the classifiers are
weighted combined with the multiple kernel learning method, and
the recognition accuracy of 61.3% and 62.5% is achieved for 50
and 85 categories of Japanese foods using 9 and 17 features. And
in Ref. [11], the authors utilized the pairwise statistics between
local features computed over pixel-level segmentations into eight
ingredient types and acquired the recognition accuracy of 28.2%
with 61 food categories and 78.0% with 7 food categories. Other
food recognition methods using wearable devices to recognize
and record the food intake have also been proposed. P. Sebastian
et al. proposed a food intake recognition method via investigating
acoustics of chewing different kinds of food [12]. Actually, the
research on the power leakage of the microwave oven has been
conducted on energy harvesting [3] and WLAN network commu-

nication quality [13]. In this paper, we explore the usage of mi-
crowave oven leakage for food recognition.

We intend to compare our proposed method with the two pri-
mary categories of methods above, so as to elucidate the contri-
bution of our proposal. We conduct the comparison through the
following parameters:
• Usage Ubiquity. “Usage Ubiquity” means whether the usage

of the method is pervasive in daily life or not. Compared to
the food recognition methods using image processing and a
wearable device, our proposed method can only be utilized
in the household environment with a microwave oven and a
commodity 2.4 GHz band RF Receiver such as a Wi-Fi ac-
cess point (router).

• Information. “Information” means that the recognition
scheme (image, acoustic sound and microwave oven leak-
age) contains more or less information corresponding to the
food itself. Among three categories of methods, the image
processing scheme contains the most information of the food
itself.

• Automatic. “Automatic” means that the method can recog-
nize and record food categories automatically, or the method
needs much or less user effort. Among all the three meth-
ods, the methods using image processing and a wearable
device both demand the users to do extra work in order to
conduct recognition. Our proposed method can measure the
power leakage and conduct the recognition automatically.
The users do not need to take pictures or wear extra devices.

• Accuracy. “Accuracy” stands for the recognition accuracy.
For all the three categories, different methods proposed by
researchers can achieve different accuracy. However, all
methods could achieve an accuracy level of about 35% for a
large food category number and about 80% for a small food
category number.

• Deployment Cost. “Deployment Cost” means the expense or
cost of the recognition system or device. Due to the fact that
most people have a cell phone equipped with a camera cur-
rently, the recognition method using image processing will
not impose extra system deployment cost to the users. The
recognition method using a wearable device and our pro-
posed method both demand the users to equip themselves
with extra devices. However, our proposed method demands
the usage of a microwave oven and a Wi-Fi access point
(router), which are also commonly used by normal house-
holds now.

We summarize the comparison of the results among all the
three categories of methods in Table 1. We should note that the
proposed food recognition method based on the microwave oven
leakage is appealing in the aspect of auto-log (low users effort de-
mand) compared to the other two methods. However, due to the
limitation of other comparison parameters, we place our proposed
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method as a complementary method co-working with the image
processing and wearable device based food recognition methods.

3. Recognition Scheme

In this section, we illustrate the recognition scheme of the pro-
posed method. We first describe the system configuration. Then
we list the detailed information of the food categories in our
recognition experiment. Finally we will go into data measure-
ment and down sampling before feature extraction. The workflow
block diagram of the proposed recognition system is illustrated in
Fig. 3. In this section, we mainly concentrate on the first three of
all five steps.

3.1 System Configuration
In order to investigate how the distance between the microwave

oven and the USRP (which we call “recognition distance”) affects
the recognition result, we take the recognition distance into con-
sideration as one of the parameters. We investigate three recogni-
tion distances that are 0.3 m, 5 m and 10 m respectively. We con-
duct recognition with the distance of 0.3 m because with this dis-
tance there is almost no interference introduced by people mov-
ing or other electrical devices on the path between the microwave
oven and the USRP. For the recognition distances of 5 m and
10 m, we reckon that the recognition device is usually deployed
indoors while the normal size of a room is about 5 m and the nor-
mal size of a house is about 10 m.

We set up three measurement points at all the three recognition
distances simultaneously as shown in Fig. 4. And Fig. 5 shows
that one USRP (set 1 in Fig. 4) is deployed 0.3 m from the front
door of the microwave oven. In each measurement set, the USRP
is connected to the laptop via an ethernet cable. Together they
perform data measuring & down sampling, feature extraction and

Fig. 3 The workflow block diagram of the proposed recognition system.

Fig. 4 System deployment of the three measurement sets at different recog-
nition distances.

Fig. 5 USRP deployed 0.3 m away from the front door of microwave oven.

recognition, as exhibited in Fig. 6.
In our recognizing system, the microwave oven we utilize is the

NE-EZ2 manufactured by National, a turning-plate microwave
oven that is ordinarily available on the market. When the NE-
EZ2 microwave oven is heating the food, a leakage signal around
the frequency of 2.45 GHz can be observed by a spectrum an-
alyzer. For different kinds of food, the center frequency of the
leakage signal will slightly shift. We show the spectrogram of
the microwave oven leakage signal measured with the spectrum
analyzer RSA3308B-R3 by Tektronix when heating water and
French fries in Fig. 7.

As for the USRP utilized in our system, we adopt the USRP2
manufactured by Ettus Research with the antenna VERT2450 by
the same manufacturer [14]. The software defined radio (SDR)
tool GNU Radio is utilized to control the USRP [15]. We briefly
describe the working scheme of USRP. After the RF signal is
received by the antenna, raw signal (data) is first sampled by the
internal A/D converter with a sampling frequency of 100 MHz.
Then the signal (data) goes through processing such as down-
sampling with FPGA and filtering. The processed data finally is
transmitted to the PC via an ethernet cable as I/Q signal. In our
system, the downsampling rate of the FPGA is set up to 312 kHz.

3.2 Food Category
We select 18 categories of food that is usually sold at grocery

stores. The detail information about the 18 categories of food
is listed in Table 2. The “Time” column in Table 2 stands for
the heating-time of each kind of food. We should note that all
food categories we select are off-the-shelf products from food

Fig. 6 USRP and laptop connected via an ethernet cable in each measure-
ment set.

Fig. 7 Spectrogram of the microwave oven leakage when heating (a) water
and (b) French fries.

c© 2015 Information Processing Society of Japan 837



Journal of Information Processing Vol.23 No.6 835–844 (Nov. 2015)

Table 2 Detail information of 18 categories of food.

Food Brand Weight (g) Time (s)
Corn dog LAWSON 60 40

Cream stew LAWSON 250 100
Curry sauce LAWSON 250 100
Dumpling LAWSON 80 80

French fries OreIda 100 90
Fried rice LAWSON 230 200

Gratin Meji 200 270
Fried chicken AjiNoMoto 100 80
Okonomiyaki TableMark 294 240

Spaghetti Nissin 300 310
Pizza AQLI 100 90

Porridge Home-made 250 80
Rice LAWSON 250 170

Rice ball Nissui 80 110
Siumai Nissui 85 90
Taiyaki LAWSON 92 90

Octopus dumplings TableMark 100 140
Water Home-made 100 120

manufacturers, which are normally heated in their packet as they
are. Because different kinds of food are packed with different
net weights, the weights of different food are different in Table 2.
For each category of food, we heat ten packages with the same
weight and manufacturer. In other words, raw data measurement
is repeated 10 times for each kind of food. Thus we utilize 180
data sets to conduct recognition.

3.3 Data Down Sampling
As we show in Fig. 3, after measuring raw data (signal) via the

USRP, we proceed data down sampling before we extract features
from raw data and conduct recognition.

The measured RSSI data has been down sampled within the
USRP with the sampling frequency of 312 kHz before being
transmitted to the PC. However, for the RSSI data that is mea-
sured for the time length within the range of 40–310 s (according
to Table 2), although the raw data have already been down sam-
pled to the frequency of 312 kHz with the USRP, it is still too
large for a normal PC to process and recognize. Thus, the signal
is down sampled to 312 kHz on USRP and further to the following
four frequencies on PC, 500 Hz, 1 kHz, 2 kHz and 5 kHz respec-
tively. We selected these four frequencies in order to investigate
how down sampling frequency affects recognition accuracy.

We show the raw data with the recognition distance of 0.3 m
and the down sampling frequency of 2 kHz in Fig. 8. Three main
feature aspects are marked with a number in Fig. 8, which we il-
lustrate in the following list.
( 1 ) Average RSSI level. The average RSSI level of French fries

is higher than that of pizza according to Fig. 8. There is a
similar average level gap between other different categories
of food. We can extract features such as mean, max, min,
median, etc. to evaluate such differences between food cate-
gories.

( 2 ) Fluctuation. The fluctuation feature such as the amplitude of
French fries is higher than that of pizza according to Fig. 8.
We can extract other features such as range, standard devia-
tion, etc. to evaluate the difference between food categories.

( 3 ) Turning cycle. We note that the raw data for all 18 cate-
gories of food is varied with a time cycle of approximately
12 s. Besides, the 12-second time cycle is the turning cycle

Fig. 8 Raw data measured with the recognition distance of 0.3 m and the
down sampling frequency of 2 kHz. Red: pizza. Green: French fries.

of the turning-plate inside the microwave oven.
To sum up, these three aspects are the main root from which

we can draw out more specific features for recognition.

4. Feature Extraction and Optimization

In this section, we introduce the features we extract to con-
duct recognition. We have summarized three main aspects of fea-
tures from the raw data of different kinds of food in the previous
section. We first extract specific features from the three aspects
above. Then we conduct feature optimization via evaluating the
importance of each feature and the relationship between recogni-
tion accuracy and the amount of adopted features. The content of
this section includes the last two steps in Fig. 3.

4.1 Feature Extraction
In order to make use of the first two feature aspects, which are

average RSSI level and fluctuation, we select 46 features as we
demonstrate in Table 3. The x1, x2...xn stands for the value of
raw data at each sampling point. And the y2, y3...yn stands for the
step difference of the x array. For instance, y2 equals to x2 − x1.
Furthermore, we exploit the third feature aspect, which is a 12-
second cycle of raw data. As we can see from Fig. 7, the spectro-
gram of microwave leakage varies for different foods along with
the heating time. In Fig. 7, we show the spectrogram of water and
French fries during different heating-time slots. Considering the
12-second turning cycle (for all 18 kinds of food) of the turning
plate in the microwave oven, we make use of this common turn-
ing cycle of all kinds of food (12 s) to divide the time-varying raw
data into data frames with the time length of 12 s. Considering
the heating-time length in Table 2 (the heating-time of corn dog
is the shortest, which is 40 s), we utilize the first three data frames
(time: 1–12 s, 13–24 s, 25–36 s) for all 18 kinds of food as shown
in Fig. 9. We extract features in Table 3 from the all-time-length
data, the first frame raw data (1–12 s), the second frame raw data
(13–24 s) and the third frame raw data (25–36 s) (thus we extract
totally 184 features = 46 features × 4) and conduct recognition.

We utilize all features in Table 3 to the raw data under all
recognition conditions (recognition distances and down sampling
frequencies). Machine learning software WEKA (Waikato Envi-
ronment for Knowledge Analysis) is applied to conduct recogni-
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Table 3 46 features for recognition.

no. Feature Name Detail no. Feature Name Detail

1 average
x1 + x2 + x3 + ... + xn

n
2

max most
frequent value

max value among
the most frequent values

3 range Max(x1...xn)-Min(x1...xn) 4
min most

frequent value
min value among

the most frequent values
5 skewness skewness of x1, x2...xn 6 kurtosis kurtosis of x1, x2...xn

7 mean deviation mean deviation of x1, x2...xn 8 standard deviation standard deviation of x1, x2...xn

9 maximum Max value among x1, x2...xn 10 minimum Min value among x1, x2...xn

11 median Median value among x1, x2...xn 12 root mean square

√∑
x2

n
(x: x1, x2...xn)

13 coefficient of variation
coefficient of variation

of x1, x2...xn
14–18 auto-covariance

0.05 s, 0.1 s, 0.5 s, 1.0 s, 2.0 s
shift auto-covariance

19–23 auto-correlation
0.05 s, 0.1 s, 0.5 s, 1.0 s, 2.0 s

shift auto-correlation
24–46

all 1–23 features
for step difference

change xn to yn (= xn − xn−1)
in all calculation

Fig. 9 First three frames of raw data with the recognition distance of 0.3 m
and the down sampling frequency of 2 kHz. Red: pizza. Green:
French fries.

tion [16], [17]. We select Attribute Selected Classifier combined
with Simple Logistic to conduct recognition. We also utilize
Rank Search as the search method to acquire the importance rank-
ing of all features. 10-fold cross-validation is used to evaluate
the feature data. The recognition accuracy is specified as the per-
cent of correctly classified sample numbers out of all 180 samples
(data sets) utilized for recognition. We present the recognition ac-
curacy result using the feature extraction above (184 features) in
Table 4. We show the confusion matrix with 5-meter recogni-
tion distance and 2-kHz down sampling frequency (recognition
accuracy of 84.4%) in Table 5. We should mention the following
findings from Table 4:
• The recognition accuracy shows an increasing trend with the

same recognition distance as we increase the data down sam-
pling frequency.

• With the same down sampling frequency, the recognition ac-
curacy does not decrease while the recognition distance in-
creases, but maintains at the same level.

• The average recognition accuracy under all recognition con-
ditions (recognition distance & down sampling frequency)
is 82.3%, which is comparable with other related work. We
show the comparison results between our proposed method
and other existing works in Table 6.

For the findings above, we clarify the facts that: first, with

Table 4 Recognition accuracy of 18 categories of food using the all-time-
length data and the first three frames of raw data (totally 184 fea-
tures) with different recognition distances and down sampling fre-
quencies.

Distance vs Frequency 500 Hz 1 kHz 2 kHz 5 kHz
0.3 m 80.6% 81.7% 80.0% 83.9%
5 m 80.6% 80.6% 84.4% 84.4%

10 m 79.4% 81.7% 85.6% 84.4%

lower down sampling frequency, more information is lost from
the original raw data during down sampling. Thus the recog-
nition accuracy is lower than that of high down sampling fre-
quency. Second, for some features extracted from all-time-length
raw data, the heating time length information is contained within
such features. We take Feature 24 in Table 3 for example, which
is the average of step difference. For all-time-length raw data, the
Feature 24 is calculated as shown in Eq. (2).

(x2 − x1) + (x3 − x2) + ...(xn − xn−1)
n

=
xn − x1

n
(2)

As we can see from Eq. (2), the heating-time length (propor-
tional to n with certain down sampling frequency) determines the
Feature 24 because the difference of the xn−x1 among all 18 kinds
of food is negligible compared to the difference of n among differ-
ent varieties of food. Because of the features such as the average
of step difference which are evoked from all-time-length raw data
(the heating-time duration of different foods is mostly different
according to Table 2), the recognition accuracy remains while we
increase the recognition distance. Such features enhance the ro-
bustness of the proposed recognition scheme against the effect of
recognition distance.

However, heating-time length information might not be suit-
able to be used as features in some other application scenar-
ios. For instance, users do not care about the detail of heating
time length recommended by the manufacturer of the frozen food
product, or users heat home-made foods instead of the off-the-
shelf products by food manufacturers. In such cases, the heating-
time length is not fixed for certain kinds of food. As well, using
the analog turning-button to set up heating-time instead of the us-
ing digital press-button also makes the heating-time for the same
food vary. We should note that even for different kinds of food,
the heating-time can still be the same not only because of the
user’s personal intention but also the manufacturers’ recommen-
dation. In all the cases we have listed above, heating-time length
information is not suitable to be used as recognition feature. It
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Table 5 Confusion matrix with all 184 features, 5-meter recognition distance and 2-kHz down sampling
frequency.

All values in % a b c d e f g h i j k l m n o p q r
a: Corn dog 100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

b: Cream stew 0 60 30 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0
c: Curry sauce 0 30 60 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0
d: Dumpling 0 0 0 80 10 0 0 10 0 0 0 0 0 0 0 0 0 0

e: French fries 0 0 0 0 80 0 0 0 0 0 0 0 0 0 10 10 0 0
f: Fried rice 0 0 0 0 0 90 0 0 0 0 0 0 10 0 0 0 0 0

g: Gratin 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0
h: Fried chicken 0 0 0 10 0 0 0 50 0 0 0 30 0 0 0 10 0 0
i: Okonomiyaki 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0 0

j: Spaghetti 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0 0
k: Pizza 0 0 0 0 0 0 0 0 0 0 100 0 0 0 0 0 0 0

l: Porridge 0 0 0 0 0 0 0 20 0 0 0 80 0 0 0 0 0 0
m: Rice 0 0 0 0 0 10 0 0 0 0 0 0 90 0 0 0 0 0

n: Rice ball 0 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 10 0
o: Siumai 0 0 0 0 10 0 0 10 0 0 0 0 0 0 80 0 0 0
p: Taiyaki 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 90 0 0

q: Octopus dumplings 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 90 0
r: Water 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 10 80

Table 6 Recognition accuracies of different methods.

Methods Food Category Accuracy
Proposed 18 82.3%

[9] 50 61.3%
[10] 85 62.5%
[11] 7 78.0%

Table 7 Recognition accuracy of 18 categories of food using the first three
frames of raw data (totally 138 features) with different recognition
distances and down sampling frequencies.

Distance vs Frequency 500 Hz 1 kHz 2 kHz 5 kHz
0.3 m 62.2% 57.8% 52.2% 58.3%
5 m 52.8% 51.1% 60.0% 54.4%

10 m 52.8% 55.6% 55.6% 61.1%

has been shown in Table 5 that cream stew and curry sauce is par-
tially mixed because they are heated with the same heating-time
length (100 s) according to Table 2.

In order to exclude the impact of the different heating-time du-
ration of different kinds of food, we conduct recognition using
46 features in Table 3 extracted from only the first three frames
as pictured in Fig. 9. For each of the three frames of any food
category in Table 2, the heating time length is the same, which is
12 s. Therefore we utilize in total 138 features extracted from the
three frames of raw data. The recognition accuracy with different
recognition distances and down sampling frequencies is shown in
Table 7. The average recognition accuracy with different recog-
nition distances and down sampling frequencies is about 56.2%.
As we have excluded the effect of different heating-time length
during feature selection, the results in Table 7 also show that the
distance increasing from 0.3 m to 10 m does not impose a negative
impact on the recognition accuracy of the proposed scheme. We
read the confusion matrix with 5-meter recognition distance and
2-kHz down sampling frequency (recognition accuracy of 60.0%)
in Table 8.

4.2 Feature Optimization
Utilizing the features that include (when using 184 features) or

exclude (when using 138 features) the difference of the heating-
time duration of different kinds of food, we acquire the recogni-
tion accuracy as presented in Table 4 and Table 7. We now con-

centrate on the importance of each feature and the relationship
between the feature amount and recognition accuracy.

As for the case utilizing 184 features, we show the five most
important features with different recognition distances and down
sampling frequencies in Table 9. The feature number corre-
sponds to the number in Table 3. The feature number with the
suffix [0-12] stands for the feature extracted from the first raw
data frame while the suffix [12-24] and [24-36] stand for the fea-
tures of the second and third frames respectively. The feature
number with no suffix stands for the feature of all-time-length
raw data. The importance rank is according to the Rank Search
method of WEKA.

As shown in Table 9, we can observe that all top 5 features for
different recognition distances and down sampling frequencies
are 1) the features extracted from all-time-length raw data and 2)
step difference features that include heating-time length informa-
tion. We can deduce that the features related to the heating-time
length difference of different kinds of food are the most robust
features for recognition while all 184 features are utilized. The
more directly the feature is determined by heating-time length
difference, the more important the feature is for recognition.

We select the recognition condition of 5-meter recognition dis-
tance and 2-kHz down sampling frequency to investigate the re-
lationship between the feature amount and recognition accuracy
as demonstrated in Fig. 10. The reason why we select 5-meter
distance is that this distance is the most similar to the real size
of a normal room of people’s homes among all three recognition
distances (0.3 m, 5 m and 10 m). And with the 2-kHz down sam-
pling frequency we acquired the highest recognition accuracy at
5-meter distance with a smaller amount of data, compared to 5-
kHz down sampling frequency according to Table 4. As shown
in Fig. 10, with the top ten features, which contains the informa-
tion of the heating-time length difference among different foods,
the recognition accuracy increases from 84.44% to 88.30%. This
result shows that the total heating-time difference among differ-
ent kinds of food is decisive if we can use this difference as the
feature for recognition.

We also investigate the top 5 features while 138 features are
utilized for recognition with different recognition distances and
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Table 8 Confusion matrix with all 138 features, 5-meter recognition distance and 2-kHz down sampling
frequency.

All values in % a b c d e f g h i j k l m n o p q r
a: Corn dog 80 0 0 0 0 0 0 0 0 0 0 0 0 10 0 10 0 0

b: Cream stew 0 0 30 0 0 0 10 0 0 0 0 40 0 0 0 0 10 10
c: Curry sauce 0 0 30 0 0 10 0 0 10 0 10 10 10 0 10 0 0 10
d: Dumpling 0 0 0 80 10 0 0 0 0 0 0 0 0 0 0 0 10 0

e: French fries 0 10 0 0 70 0 0 0 0 0 0 0 10 0 0 0 0 10
f: Fried rice 0 0 0 0 10 60 10 0 0 10 10 0 0 0 0 0 0 0

g: Gratin 0 0 0 0 0 0 90 0 0 0 0 10 0 0 0 0 0 0
h: Fried chicken 10 0 0 0 0 0 0 50 0 0 0 10 10 0 10 0 0 10
i: Okonomiyaki 0 0 0 0 0 0 0 0 80 20 0 0 0 0 0 0 0 0

j: Spaghetti 0 0 10 0 0 10 10 0 20 50 0 0 0 0 0 0 0 0
k: Pizza 0 0 0 0 0 0 0 0 0 20 70 10 0 0 0 0 0 0

l: Porridge 0 30 0 0 0 10 0 0 0 0 0 40 20 0 0 0 0 0
m: Rice 0 0 0 0 10 0 0 20 0 0 0 30 30 0 10 0 0 0

n: Rice ball 10 0 0 0 0 0 0 0 0 0 0 0 0 90 0 0 0 0
o: Siumai 0 10 0 0 0 0 10 20 0 0 0 10 0 0 50 0 0 0
p: Taiyaki 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 80 10 0

q: Octopus dumplings 0 0 10 0 10 0 0 0 0 0 0 10 10 0 0 0 50 10
r: Water 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0 10 80

Table 9 Top 5 features among 184 features with different recognition dis-
tances and down sampling frequencies.

D vs F 500 Hz 1 kHz 2 kHz 5 kHz

0.3 m
24, 30, 34

39, 36
24, 30, 34

36, 11
24, 30, 34

29, 28
24, 30, 34

29, 28

5 m
24, 30, 36

34, 29
24, 30, 36

34, 29
24, 30, 28

29, 36
24, 30, 29

28, 36

10 m
24, 30, 36

35, 31
24, 30, 29

28, 36
24, 30, 28

29, 36
24, 30, 29

28, 36

Fig. 10 The relationship between the top feature amount and recognition
accuracy for the case of 184 features with 5 m recognition distance
and 2 kHz down sampling frequency.

Table 10 Top 5 features among 138 features with different recognition dis-
tances and down sampling frequencies.

D vs F 500 Hz 1 kHz 2 kHz 5 kHz

0.3 m

1 [0-12]
11 [0-12]
12 [0-12]
12 [24-36]
11 [24-36]

9 [24-36]
11 [24-36]
1 [0-12]
12 [0-12]
11 [0-12]

9 [24-36]
3 [24-36]
11 [24-36]
1 [0-12]

24 [24-36]

1 [0-12]
11 [24-36]
12 [0-12]
4 [0-12]
11 [0-12]

5 m

1 [24-36]
12 [24-36]
11 [0-12]
17 [0-12]
12 [0-12]

34 [24-36]
11 [0-12]
1 [24-36]
34 [0-12]

12 [24-36]

34 [24-36]
18 [24-36]
11 [24-36]
34 [0-12]
1 [24-36]

18 [24-36]
11 [24-36]
1 [24-36]
34 [0-12]

34 [24-36]

10 m

1 [24-36]
19 [0-12]
30 [0-12]
34 [12-24]
12 [12-24]

1 [24-36]
34 [12-24]
12 [12-24]
1 [12-24]
8 [24-36]

1 [24-36]
7 [12-24]
17 [12-24]
11 [12-24]
18 [24-36]

1 [24-36]
18 [24-36]
17 [12-24]
12 [12-24]
16 [24-36]

down sampling frequencies as indicated in Table 10. The feature
number is the same with Table 3 and the suffix is also the same
as we illustrated. As we can see from Table 10, most of the top

Fig. 11 The relationship between the top feature amount and recognition
accuracy for the case of 138 features with 5-m recognition distance
and 2-kHz down sampling frequency.

5 important features are among Features 1–23, which is different
with the results in Table 9. This result shows that without the
all-time-length raw data, Features 24–46 do not contain the dif-
ference of the heating-time length among different kinds of food
anymore, which makes them not as important as in Table 9. The
features as average (Feature 1), median (Feature 11), etc. become
the most important features according to Table 10.

Again we look into the relationship between the top feature
amount and recognition accuracy for the condition with in total
138 features, 5-meter recognition distance and 2-kHz down sam-
pling frequency. The solution is depicted in Fig. 11.

5. Discussion

In this section, we discuss the ubiquity of the proposed food
recognition scheme. We expand our previous experiment to the
situation that we utilize other microwave ovens or foods that are
produced by other manufacturers. In addition, we also conduct
discussion on recognizing foods with different weights and re-
placing USRP in our scheme with Wi-Fi access point so as to
expand the utility range of our system to daily household usage.

5.1 Using Other Microwave Oven
As we mentioned, we utilized the microwave oven, National

NE-EZ2, to conduct previous data measurement and food recog-
nition. We also utilized another microwave oven (Panasonic NE-
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Fig. 12 Spectrum of two microwave ovens. (a) National NE-EZ2. (b) Panasonic NE-EH225.

EH225) to conduct data measurement, processing and recogni-
tion with a recognition distance of 5 m and down sampling fre-
quency of 5 kHz. As for the difference between National NE-
EZ2 and Panasonic NE-EH225, we show the spectrogram of two
microwave ovens working in Fig. 12, which is measured by the
spectrum-analyzing function of USRP at a distance of 30 cm from
the door of the microwave oven. As we can see from Fig. 12, the
spectrum range of the leakage from the NE-EH225 is wider than
that of the NE-EZ2 while the microwave oven is working.

We select five kinds of food from Table 2 (curry sauce,
dumpling, pizza, rice and water) and use NE-EH225 to heat
them with 5 m recognition distance and 2 kHz down sampling fre-
quency. For each food, we collect five sets of new raw data (by
NE-EH225) and replace five sets of original raw data (by NE-
EZ2) out of the total ten sets. We conduct recognition with the
same classifier of WEKA and 184 features, acquiring the recogni-
tion accuracy of 83.3%. With 138 features we achieve a recogni-
tion accuracy of 60.6%. As for utilizing the proposed recognition
scheme with other microwave ovens, we suggest users provide
the learning data after using the new oven for a certain period
of time (a few months or so). With the new learning data, the
proposed scheme can work with the new oven.

5.2 Using Foods by Other Manufacturers
As well as microwave ovens of another pattern, we also rec-

ognize food that is produced by other manufacturers. We chose
5 categories of food within the original 18 categories and make
the substitution. We list the five categories of food in Table 11.
Similar to recognition with another microwave oven, we replace
five sets of original raw data of these five kinds of food (by man-
ufacturers in Table 2) with the new data (by manufacturers in
Table 11). The recognition distance is 5 m and down sampling
frequency is 2 kHz. We first utilize 184 features that contain dif-
ferent heating-time length information of different kinds of food
and acquire a recognition accuracy of 72.8%. When we use 138
features that exclude the difference of heating-time length, we ac-
quire a recognition accuracy of 56.7%.

5.3 Using Foods of Different Weights
For a certain category of food, people may heat it with differ-

ent weights or quantities. We can expect two main differences

Table 11 Five categories of food that are produced by other manufacturers.

no. Food Brand
1 French fries LAWSON
2 Fried rice LAWSON
3 Siumai AjiNoMoto
4 Octopus dumpling LAWSON
5 Fried chicken LAWSON

from our previous experiment. First, the heating-time length will
change for a certain kind of food. Second, the general RSSI level
will vary because the power absorbed by the food is proportional
to the food quantity. At this time, the heating-time difference
should not be utilized as a feature to recognize food categories
but to recognize the food quantity with the food category already
known. Also the features containing the information of the gen-
eral RSSI level should be utilized in the same way. Thus we can
recognize the food weight in two steps, which will be one of the
main focuses in our future work.
( 1 ) Utilize the features that do not contain the information of the

heating-time difference or the general RSSI level to recog-
nize the food category.

( 2 ) Utilize the features that contain the information of the
heating-time difference or the general RSSI level to recog-
nize the food weight.

Although our system cannot recognize the nutrition intake cur-
rently, we should note that our system can help analyzing the
users’ dietary habit or tendency (favorite foods and meal time),
which not only can aid people to defeat the obesity problem as
an auto food logging or monitoring system but also can provide
customers’ preference information for the food manufacturers.

5.4 Replacing USRP with Wi-Fi Access Point
In our current food recognition scheme, USRP is utilized as

a low-cost spectrum analyzer to monitor the time-varying power
leakage from the microwave oven. According to the RSSI mea-
surement result, we can conclude that the leakage strength level
differs between different kinds of food. In addition, the power
leakage from the microwave oven @ 2.45 GHz interferes with
the WLAN communication at the same frequency, taking Wi-Fi
as an example. Thus we can infer that different leakage strength
by heating different kinds of food causes varying degrees of in-
terference to the Wi-Fi communication, which can be detected
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by a Wi-Fi access point. As a result, the USRP in the recogni-
tion system can be replaced by a normal Wi-Fi access point. The
interference features detected by the Wi-Fi access point can be
utilized to recognize food categories. This will reduce the de-
ployment cost of our system because almost all households have
a Wi-Fi access point such as a Wi-Fi router at the present time.
And this replacement will also be one of the focuses in our future
work.

6. Implementation

We now illustrate the implemented demo of our proposed
recognition scheme. We have taken the video of the demo (up-
loaded as a supporting document) showing how the demo works
and successfully recognizes three kinds of food in Table 2 as ex-
amples, which are water, French fries and pizza. In the demo
system, the USRP is deployed 5 m away from the microwave
oven. When the user switches on the recognition system, the sys-
tem starts working and keeps monitoring the RSSI @ 2.45 GHz.
When the microwave oven starts to heat the food, the system de-
tects the RSSI increase caused by the power leakage of the mi-

Fig. 13 Working flow block diagram of the food recognition demo system.

Fig. 14 User interface of demo recognition system. (a) switching on/off the
system. (b) recognition result that shows the user just heated pizza
including the food name and time.

crowave oven and records the time-varying RSSI data until the
RSSI level returns to normal value (after the heating stops). Then
the system extracts 184 features from recorded RSSI data and
utilizes the features as test data for recognition. The training data
that we use are the features of 18 categories of food (ten sets data
for each food), which has been stored in the laptop beforehand.
We show the working flow block diagram in Fig. 13. We have
also designed the application UI for users to control the recog-
nition system and showing the recognition results as shown in
Fig. 14.

7. Conclusion

In this paper, we proposed a food recognizing system via mon-
itoring the power leakage from the microwave oven using the uni-
versal software radio peripheral. This system exploits the differ-
ence of the power leakage from the microwave oven caused by
heating different kinds of food to conduct recognition. 18 cate-
gories of food have been recognized with an average recognition
accuracy of 82.3% using 184 features that contain the information
of heating-time difference of different kinds of food, while the av-
erage recognition accuracy is 56.2% using 138 features excluding
the information of the heating-time difference among food cate-
gories. The parameters such as recognition distance (between
the USRP and the microwave oven) and data down sampling fre-
quency have also been investigated by conducting recognition
with the combination of three recognition distances (0.3 m, 5 m,
10 m) and four down sampling frequencies (500 Hz, 1 kHz, 2 kHz
and 5 kHz). In order to expand the ubiquity of the proposed sys-
tem, we also illustrated the performance of the system using dif-
ferent patterns of microwave oven and the foods within the 18
categories but produced by other manufacturers. Finally, we im-
plemented a demo system, including a control program and user
interface to demonstrate our work.
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