
IPSJ SIG Technical Report

One-line hack of Knuth’s algorithm for minimal hitting set
computation with ZDDs

Takeo Imai1,a)

Abstract: We show a “one-line hack” of Knuth’s algorithm for minimal hitting set computation based on Zero-
suppressed binary Decision Diagrams (ZDDs). This modification provides a major performance gain (up to 17.0x in
our experimental evaluation), making the algorithm nearly competitive with state-of-the-art algorithms.

1. Introduction
In this paper we study the minimal hitting set problem (a.k.a.

the hypergraph transversal problem) that requires enumeration
of all minimal hitting sets of a family of finite sets f , denoted
as f #. Formally, the problem is to compute f # = {α | β ∈
f implies α ∩ β , ∅}↓ , where a family of minimal sets f ↓ =
{α ∈ f | β ∈ f and α ⊇ β implies α = β}.

Whilst there have been various algorithms for solving the prob-
lem, Knuth suggested a novel one in his book “The art of com-
puter programming” [1] using ZDDs (Zero-suppressed binary
Decision Diagrams) [2]. A ZDD is, as shown in Fig. 1, a data
structure for representing a family of sets in a space-efficient man-
ner so that it is suitable for many combinatorial problems. Knuth
provided a detailed introduction to ZDD in his book, and pro-
posed a novel algorithm for computing minimal hitting set com-
putation as an answer to an exercise.

The performance of the algorithm had been unknown, until
Toda evaluated it with experiments [3]. The experiments showed
the algorithm performed better than other existing algorithms in
many cases, and Toda’s own algorithm proposed in [3] is basi-
cally better than Knuth’s. (So Toda’s gave the best performance
in many cases.)

In this paper we present a new algorithm. Our algorithm is
a slight modification—actually only one-line replacement (“one-
line hack”)—of Knuth’s algorithm. Despite the small revision,
the new algorithm can produce a significant performance gain
compared to Knuth’s, approaching the performance of Toda’s.

2. Zero-suppressed binary decision diagram
(ZDD)

A zero-suppressed binary decision diagram (ZDD) is a variant
of an ordered binary decision diagram (BDD), a graph represen-
tation of a family of sets.

Fig. 1 shows examples of ZDDs. A node inside has its index v,

1 Graduate School of Information Science and Technology, the University
of Tokyo

a) bono@is.s.u-tokyo.ac.jp

1

22

3

⊤⊥

(a) f = {{1, 2}, {2, 3}}

1

2

3

⊤⊥

(b) f # = {{1, 3}, {2}}
Fig. 1: An example of ZDDs and minimal hitting sets. Each circle represents
a node. HI branches are drawn as solid lines, and LO branches are drawn as
dashed lines. (a) represents a family f and (b) represents f #, a family of the
minimal hitting sets of f .

a a

bc

=⇒

a

bc

Fig. 2: Node-sharing rule on ZDDs.

a

b

⊥ =⇒

b

Fig. 3: Node-elimination rule on ZDDs.

and two branches HI and LO; intuitively, v represents the small-
est element in the family, and the HI and LO branches represent
the residual subfamilies that do and do not contain that root ele-
ment. In addition, there are two terminal nodes ⊥ and ⊤, where
⊥ represents ∅, and ⊤ represents {∅}. Another interpretation of a
ZDD is that a path from the root to ⊤ represents a set contained
in the family, and a path to ⊥ represents a set not contained in the
family.

Every ZDD must be ordered, i.e. if a node v1 points to v2,
there must be an order v1 < v2. Moreover, in the construction of

c⃝ 2015 Information Processing Society of Japan 1

Vol.2015-AL-155 No.15
2015/11/21

IPSJ SIG Technical Report

Algorithm 1 Knuth’s algorithm [1]
1: function MINHIT(f)
2: if f = ⊥ then return ⊤
3: if f = ⊤ then return ⊥
4: r← UNION(fl, fh)
5: rl ←MINHIT(r)
6: r←MINHIT(fl)
7: rh ← NONSUP(r, rl)
8: return ZUNIQUE(fv, rl, rh)
9: end function

ZDD, every node that represents the same family is maintained
to be unique and shared (according to the “node-sharing rule”,
see Fig. 2). Given the triple of an index v and two nodes l, h,
the function ZUNIQUE(v, l, h) returns an existing node associ-
ated with the triple (v, l, h), or otherwise a newly created node
that has the index v, LO branch l, and HI branch h. In addition,
there is “a node elimination rule” (Fig. 3) adopted in the compu-
tation of ZUNIQUE: ZUNIQUE(v, l,⊥)= l. Hence every ZDD
must be reduced, i.e. the two rules cannot be applied any more.

3. Knuth’s algorithm and the hack
Algorithm 1 is Knuth’s algorithm for minimal hitting set com-

putation (from [1], except that statements handling cache are
omitted), where fv is the root node of f , and fl, fh are the LO
and HI branch of f , respectively. For the new LO branch rl, it
puts (fl ∪ fh)#. For the new HI branch rh, it computes f #

l ↘ rl,
where ↘ is the nonsuperset operator: f ↘ g = {α ∈ f | β ∈
g implies α ⊉ β}.

A brief and intuitive interpretation of the code is as follows:
when fv does not hit f (i.e. when the hitting set does not con-
tain fv), the subsequent nodes need to hit both fl and fh, so
rl = (fl ∪ fh)#. On the other hand, when fv hits f (i.e. when
the hitting set contains fv), the subsequent nodes have only to hit
fl. The resulting set, however, cannot be a superset of any element
of rl; hence rh is f #

l ↘ rl.
This nonsuperset computation (line 7 in Algorithm 1) is an

expensive operation. NONSUP is, however, actually redundant
here; we found that f #

l never contains proper supersets of ele-
ments of rl. So the operation can be replaced by difference oper-
ation DIFF(f , g), or f \ g, which can be computed in much less
time. This replacement is what we call “the one-line hack”.

To illustrate our hack has a reliable effect, we show the algo-
rithms of NONSUP and DIFF in Algorithm 2 and Algorithm 3,
respectively (both in simple versions). These two algorithms have
almost the same structures, but the main differences are at as-
signments to rh (where INTSEC(f , g) computes an intersection
f ∩g, which can be implemented in quite a similar way to DIFF).
Although the precise time complexity of NONSUP is unknown,
obviously this operation employs more recursive calls than DIFF.

3.1 Correctness of the hack
Here we show the correctness of the hack. What is to be

proved is f #
l ↘ (fl ∪ fh)# = f #

l \ (fl ∪ fh)#, or more generally,
f #↘(f ∪ g)# = f # \ (f ∪ g)# for any f and g.

The proof is as follows. Hereinafter, we use symbols f and g

Algorithm 2 Nonsuperset operation
1: function NONSUP(f , g)
2: if g = ⊥ then return f
3: if f = ⊥ or g = ⊤ or f = g then return ⊥
4: if fv > gv then return NONSUP(f , gl)
5: if fv < gv then
6: rl ← NONSUP(fl, g), rh ← NONSUP(fh, g)
7: else
8: rl ← NONSUP(fl, gl),
9: rh ← INTSEC(NONSUP(fh, gh), NONSUP(fh, gl))

10: return ZUNIQUE(fv, rl, rh)
11: end function

Algorithm 3 Difference operation
1: function DIFF(f , g)
2: if g = ⊥ then return f
3: if f = ⊥ or g = ⊤ or f = g then return ⊥
4: if fv > gv then return DIFF(f , gl)
5: if fv < gv then
6: rl ← DIFF(fl, g), rh ← fh
7: else
8: rl ← DIFF(fl, gl),
9: rh ← DIFF(fh, gh)

10: return ZUNIQUE(fv, rl, rh)
11: end function

for an arbitrary family of sets.
Lemma 1. For all e ∈ (f ∪ g)#, there exists e′ ∈ f # s.t. e′ ⊆ e.

Proof. e minimally hits f ∪ g, therefore e hits f . This means
there is a subset e′ ⊆ e that minimally hits f , which should be a
member of f #.

Lemma 2. For all e ∈ (f ∪ g)# and e′ ∈ f #, e′ ⊇ e implies e′ = e.

Proof. From Lemma 1, there exists e′′ ∈ f # that satisfies e ⊇ e′′,
i.e. e′ ⊇ e ⊇ e′′.

However, because both e′ and e′′ are members of a family f #

of minimal sets, e′ ⊇ e′′ implies e′ = e′′. So e′ = e follows.

Theorem 1. f # ↘ (f ∪ g)# = f # \ (f ∪ g)#.

Proof. From the definition, f # ↘ (f ∪g)# = f # \(f # ↖ (f ∪g)#)
where ↖ is the supersets operator: f ↖ g = {e ∈ f |
e ⊇ e′ for some e′ ∈ g}.

From Lemma 2,

f # ↖ (f ∪ g)# ⊆ {e ∈ f # | e = e′ for some e′ ∈ (f ∪ g)#}

= f # ∩ (f ∪ g)#

and trivially f # ↖ (f ∪ g)# ⊇ f # ∩ (f ∪ g)#, which implies:

f # ↖ (f ∪ g)# = f # ∩ (f ∪ g)#

Therefore,

f # ↘ (f ∪ g)# = f # \ (f # ∩ (f ∪ g)#) = f # \ (f ∪ g)#

from set operations.

c⃝ 2015 Information Processing Society of Japan 2

Vol.2015-AL-155 No.15
2015/11/21

IPSJ SIG Technical Report

0

5

10

15

20

25

30

2030405060708090100

ac

ours Knuth Toda

0

5

10

15

20

25

30

050100150200

BMS2

ours Knuth Toda

0

20

40

60

80

100

0 5000 10000 15000 20000 25000

win

ours Knuth Toda

0

100

200

300

400

500

600

700

800

0.60.70.80.9

random(1000)

ours Knuth Toda

Fig. 4: Comparisons of running time: square/triangular/circular dots represent our/Knuth’s/Toda’s algorithm, respectively. All horizontal axes show times [s].

4. Experiment
4.1 Setup

For an evaluation of our algorithm, we used an implementation
distributed in [4] that implements Knuth’s and Toda’s algorithms.
We did literally a one-line hack to Knuth’s part in the implemen-
tation, and then we performed experiments on data that can be
obtained from [5].

The instances we used are classified into the following four
types:
(1) accidents (ac): the complement of the set of maximal fre-

quent itemsets with support threshold n × 103, where n ∈
{30, 50, 70, 90, 110, 130, 150, 200}.

(2) BMS-Web-View-2 (BMS2): constructed in the same way as
ac, where n ∈ {20, 30, 50, 100, 200}.

(3) Connect4-win (win): a hypergraph with n hyper-
edges corresponding to the set of minimal win-
ning stages of a board game ”connect-4”, where
n ∈ {100, 200, 400, 800, 1600, 3200, 6400, 12800, 25600}.

(4) Uniform random(random(1000)): random instances; each
element is included in a set in the probability n/10 (n ∈
{6, 7, 8, 9}). The number of sets is 1000.

The entire execution was carried out on Ubuntu Server 14.04
LTS, Intel Xeon E5-2670 v2 CPU with 30GB RAM.

4.2 Result and Discussion
Fig. 4 shows the comparison result. Our hack provided a sig-

nificant speedup in ac (– 3.0x), BMS2 (– 17.0x), and random (–
2.6x) compared with Knuth’s original algorithm. Our algorithm
was still slower than Toda’s, but nearly competitive.

On the other hand, there was only a slight performance gain
in win (–1.2x). We suppose the difference in the results stems
from the fact that win had much smaller sets than the other three
datasets did; all the sets in win had only 8 or 9 elements, whereas
those in BMS2 had more than 1000, for example. The charac-

teristic of win made the input ZDD lopsided to LO–branch side,
in which nearly every fl was almost equal to fl ∪ fh. This may
result in fewer assignments to rh in NONSUP/DIFF in MINHIT,
resulting in little difference between NONSUP and DIFF.

5. Summary
In this paper, we proposed a new algorithm for the minimal hit-

ting set computation. The algorithm is a variant—actually an only
one-line modification (“one line hack”)—of Knuth’s [1]. We have
presented a proof that shows the correctness of the hack. More-
over, in our experimental evaluation, the hack provided huge per-
formance gains (up to 17.0x) so that it became nearly competitive
to Toda’s algorithm [3], one of the fastest in state-of-the-art algo-
rithms.

References
[1] Knuth, D. E.: The Art of Computer Programming vol.4A, Combinato-

rial Algorithms: Part 1, Addison-Wesley Professional (2011).
[2] Minato, S.: Zero-Suppressed BDDs for Set Manipulation in Combina-

torial Problems, Proceedings of the 30th International Design Automa-
tion Conference, pp. 272–277 (1993).

[3] Toda, T.: Hypergraph transversal computation with binary decision di-
agrams, Experimental Algorithms, pp. 91–102 (2013).

[4] Toda, T.: HTC-BDD: Hypergraph Transversal Computation with
Binary Decision Diagrams, http://www.sd.is.uec.ac.jp/toda/
htcbdd.html.

[5] Murakami, K. and Uno, T.: hypergraph dualization repository, http:
//research.nii.ac.jp/˜uno/dualization.html.

c⃝ 2015 Information Processing Society of Japan 3

Vol.2015-AL-155 No.15
2015/11/21

