
IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 1

Real-time Ray-traced Collision Detection for Deformable Objects

SUIYAN LI†1 YASUSI YAMAGUCHI†2

Abstract: In real-time physical simulation, penetration based collision detection is a popular method. The study focuses on ray
tracing based collision detection, which is one of the penetration based collision detection methods. The advantage of the ray
tracing based collision detection is that it calculates collision rays which can be used for accelerating the physical response
computation. Our method is based on Lehericey et al.’s work [4], which exploits spatial and temporal coherency, to speedup this
algorithm. But their method cannot be used for deformable objects. We proposed a pipeline that can be entirely used for deformable
objects. We also present a new implementation of prediction algorithm that can detect possible and even close collisions whenever
two objects have potentially colliding vertices. Our implementation can calculate ray-triangle intersection faster than previous
implementation. In addition, strategies for self-collision is discussed. The proposed method is compared with the state-of-the-art
conventional algorithm for several scenes containing deformable objects. The results show that our method achieves competitive
time and quality performance in comparison of the conventional algorithm in the narrow phase, and perform better in the physical
response phase.

Keywords: Collision Detection, Ray Tracing, Deformable Objects, Real-Time Physics-based Simulation

1. Introduction

 Collision detection (CD) is an important task in the
applications of 3D physical simulation. In general, collision
detection is divided into two phases: broad phase and narrow
phase [1]. The broad phase takes all the objects from the scene
and finds a set of potential pairs of objects that may collide. The
narrow phase takes these pairs as input and outputs the ones that
actually collide.
 Recent narrow phase algorithms use parallel GPU computation
to achieve a speedup. Ray traced collision detection is one of the
image-based narrow phase algorithms. It has the merit that the
information of collision rays can be used immediately to calculate
the physical response, which are not directly available when
using conventional collision detection algorithms. This may leads
to reduction of total time of the physical simulation pipeline.
 However, naive ray traced collision detection cannot achieve
ideal speed performance for deformable objects. The major
problem for handling deformable objects is that the acceleration
data structures for ray tracing are difficult to update for every time
step, which is necessary for deformable objects. We propose a
pipeline able to update the acceleration structure for deformable
objects.

Secondly, previous study proposed to use predictive rays for
their iterative algorithm to improve the quality of collision
detection by preventing deep penetration. The problem is that
naive implementation may lead to twice amount of the rays to be
cast, meaning twice computation time. We propose an optimal
implementation of predictive rays.

Thirdly, it is difficult to deal with self-collision in the context
of ray traced collision detection. The major problem is that when
we want to detect self-collision, then we need to cast rays from
almost all the vertices in the object. We discuss how to deal with
self-collision in the case of open meshes for cloth simulation.
 In our experimental evaluation, we use several scenes to
investigate the time performance and the quality of collision

 †1 The University of Tokyo
 †2 The University of Tokyo / JST CREST

detection of our approach, and compare the results with that when
using traditional algorithms.
 The remaining part of this paper is organized as follows:
Section 2 introduces related work. Section 3 explains our
proposed pipeline of ray traced collision detection. Section 4
explains our improvement of predictive rays. Section 5 explains
the algorithm to deal with self-collision of open meshes, such as
cloth. Section 6 shows our experimental results. Section 7
concludes this paper and mentions future research issues.

2. Related work
 There are several broad phase and narrow phase algorithms
which have different processes and can be used for different types
of objects. For the broad phase, BVH is the most popular method
for acceleration, which is a tree structure on a set of geometric
objects. By arranging the bounding volumes into a bounding
volume hierarchy, the time complexity (the number of tests
performed) can be reduced to logarithmic in the number of
objects.
 There are several mainly four types of narrow phase algorithms.
BVH may be the most popular narrow phase algorithm. Feature
based narrow phase algorithms work on geometric primitives of
objects, of which the most famous are Lin-Canny, V-Clip, SWIFT,
and polygon intersection of Moore and Wilhelms. This type of
algorithms focus on finding the two closest points between two
objects, and regard as colliding if each point is inside the other
object. Simplex based narrow phase algorithms work on the
convex hull of objects, which cannot be correct for concave
objects without using more complex algorithms. The most
famous simplex based narrow phase algorithm is GJK (Gilbert-
Johnson-Keerthi) [2], which works on the Minkowski difference
instead of the two objects immediately. Image based narrow
phase algorithms exploit image rendering techniques in GPUs to
perform collision detection. There are two types of image-based
approaches, depth-peeling and ray-casting.
 This study focuses on ray tracing based collision detection for

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 2

narrow phase [3], whose basic idea is that cast rays from vertices
of a source object in the direction of the inward normal, and then
collision can be detected if a ray hits another object inside of the
source object (shown in Figure 1). This method is one of the type
of so-called penetration based collision detection.

Fig.1 Illustration of the ray tracing based collision detection

 Lehericey et al. [4] proposed a method to accelerate the ray-
triangle intersection computation of naive ray tracing based
collision detection exploiting the temporal and special coherence.
However, to avoid the low speed of using ray tracing, Lehericey
et al. use an acceleration data structure to get a speedup from
naive ray tracing. However, this method cannot be used for
deformable objects, because it is difficult to update the
acceleration data structure at each time step. The study aims to
make ray tracing based collision detection can be entirely used
for deformable objects.

3. Pipeline of real-time ray traced collision
detection for deformable objects

 Ray-traced collision detection algorithms proposed in [3], [4]
can be used on multi-CPUs or multi-GPUs to achieve high
performance for complex scenes. Usually, only one ray-tracing
algorithm is used to detect collisions in a simple scene. But in
complex scenes with objects of different nature we can employ
several ray-tracing algorithms to optimize each nature of object.
With rigid objects we can use algorithms with static data
structures. With deformable objects we need data structures that
can be updated at each time-step. In the case of topology changes
we need to reconstruct the ray-tracing data structures occasionally.
Iterative ray-tracing can be used to accelerate all of these
algorithms.
 To make ray tracing based collision detection available for
deformable objects, we proposed a novel pipeline for real-time
ray-traced collision detection. The most important feature of this
pipeline is the capability of updating acceleration data structure
in every time-step for both broad phase and ray-object
intersection computation. Several efficient acceleration data
structures proposed recently for ray tracing rendering can be used
for accelerating ray traced collision detection. Figure 2 shows the
whole pipeline of real-time ray-traced collision detection for
deformable objects.

Fig.2 Pipeline of real-time ray traced collision detection for

deformable objects

 As shown in Figure 2, four main tasks have to be finished to
achieve real-time ray traced collision detection for deformable
objects: A) Building or updating acceleration data structure for
ray tracing; B) Measuring the displacement on the pair of
objects to check if the pair can be processed by iterative ray
tracing algorithm; C) Culling vertices that are not inside the
intersecting region of bounding volumes of the objects or whose
temporal data are unavailable; D) Executing ray tracing
according to the type of the ray list.
 When applying the displacement measurement, there are the
case of including deformable objects or not. If there is a
deformable object in the object pair, then displacement
measurement should be applied per vertex because of internal
deformations. For the pair of rigid objects, the displacement
measurement can be applied globally. Object pairs with small
displacement will use the iterative ray-tracing algorithm. We need
a relative displacement measurement and a threshold that
indicates when the non-iterative algorithm must be used.
 Vertex culling removes vertices that do not need to be tested
with ray-tracing because a simple test can discard collision. For
the object pairs checked with large displacement, we check if the
vertex is located inside the intersection of the bounding volumes
of the two objects. For the vertices checked with small
displacement we test if temporal data is available.

Ray-tracing is executed for each of the remaining vertices. We

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 3

use the iterative algorithm when selected; otherwise, we use a
basic ray tracing algorithm. Further improvements are possible,
such as applying different types of ray tracing according to nature
of the target.

3.1 Acceleration data structure
 Acceleration structures are important tools for speeding up the
traversal and intersection queries for ray tracing. Most of
successful acceleration structures represent a hierarchical
decomposition of the object or scene geometry. This hierarchy is
then used to quickly cull space region not intersected by the ray.
 The most important factor of acceleration data structures for
ray traced collision detection of deformable objects is the speed
of construction/update. We choose two acceleration data
structures with high construction speed. The first one is
Hierarchical Linear Bounding Volume Hierarchy (HLBVH) [5].
The structure is an optimization of Linear BVH (LBVH), which
can be constructed very quickly on the GPU. The other one is
Treelet Restructuring BVH (TrBVH) [6]. In fact, TrBVH is not
an acceleration data structure, but an approach to transform a low-
quality BVH, which can be constructed in a matter of
milliseconds, into a high-quality one that is close to the gold
standard in ray tracing performance.

3.2 Classification of threads for GPU implementation
Our pipeline has three different kinds of steps for GPU thread

scheduling in terms of their processing objects. Each kind of step
is designated by a blue box in Figure 2.
3.2.1 Per-pair step
 The per-pair step takes the list of object pairs from the broad
phase as input. In the step one thread corresponds to one pair of
objects, and the major work is to apply measurement of
displacement for the pairs with only rigid objects.

This step separate the vertices in the pairs with small
displacement that will use the iterative algorithm, and vertices
with large displacement that will use a basic ray-tracing algorithm.
The pairs that contain at least one deformable object cannot be
checked in this step. In such cases displacement needs to be
measured locally to take into account internal deformations.
3.2.2 Per-vertex step

In the per-vertex step, one thread is executed for each vertex of
each object of each pair. This step has two types of tasks with
different input.

The first type takes the pairs containing deformable objects as
input, and applies a displacement measurement on the vertices to
separate the ones with small displacement that will use the
iterative algorithm and the others that will use a basic algorithm.

The second type is executed for each vertex of each object of
each pair. For the vertices with large displacement that will use a
basic algorithm, we check if the vertex is inside the intersection
of the bounding volumes of the two objects. If not, we can discard
this vertex as it cannot collide. For the vertices with small
displacement that will use the iterative algorithm, we test if
temporal data is available from the previous time-step. If no
temporal data is available we can discard the vertex.

After the vertex culling task, each remaining vertex generates
a ray that will be cast on the other object of the pair. Parameters

needed to cast these rays are stored in two buffers as different
input for iterative and non-iterative ray tracing.
3.2.3 Per-ray step
The per-ray step takes the lists of rays as input and performs ray
tracing. Each thread casts one ray. Each ray-tracing algorithm is
implemented and executed in a separate kernel to avoid branch
divergence. The ray-tracing algorithms output contact
information for computing the physical response.

4. Implementation of Predictive Ray/Triangle
Intersection
 The main demerit of the iterative ray tracing [4] is that it only
works with previously detected rays. When new vertices collide,
they will be processed only in the next standard step. This may
postpone the collision detection of a pair of objects for several
time steps, which will lead to a deep interpenetration.
 The first row of Figure 3 shows an example of this situation.
At 𝑡𝑡 = 0 a non-iterative algorithm is executed and no collision
is detected. At 𝑡𝑡 = 1 the previous rays are updated, as the two
objects were not colliding at 𝑡𝑡 = 0 there are no rays to update.
In this case the iterative algorithm fails to detect the collision. At
t = 2 a non-iterative algorithm is executed and the collision is
detected. In this example the detection is postponed for one step,
but in practical cases it may be more.

Fig.3 Predicted iteration from [7]

 Lehericey et al. [7] proposed to solve the problem by
performing a predictive ray triangle intersection. If a ray report
no collision, then a predictive ray can be cast from the same
vertex but in the direction of the normal, opposite to the ray which
has been cast. If this predictive ray hits a triangle and if the
distance is short, the corresponding vertex may hit that triangle
(or the neighboring ones) in a near future. The predictive rays are
injected in the iterative algorithm as candidates for the next steps.
 The second row of Figure 3 shows how predictive rays prevent
postponement of collision detection. At 𝑡𝑡 = 0 a non-iterative
algorithm is executed and no collision is detected, predictive rays
are cast in the outward direction of the objects, and several
predictive rays kept. At 𝑡𝑡 = 1 the predictive rays are updated
and collision is successfully detected, at 𝑡𝑡 = 2 a physical
response can be applied to prevent further interpenetration.
 However, casting a predictive ray in the opposite direction

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 4

double the cost of the non-iterative ray tracing algorithm
theoretically. We proposed a method of implementation to reduce
the cost of performing predictive ray tracing. In practical case we
do not need to cast a ray twice. This process is executed one
thread per ray. We can process the predictive ray in the same
thread of the non-collision ray because they share the same vertex
and are in the same line. When using parallelization technique,
the threads processing non-collision rays will terminate rapidly
and have to wait for other threads. Processing predictive ray in
these idle threads exploits the idle computation resources that are
wasted.

Furthermore, we have cast rays from the vertices that are inside
the intersection of the bounding volumes, which is an
optimization to reduce the number of rays. In the context of
predictive rays this optimization may discard predictive rays and
delay the collision detection. To avoid this problem we extend the
intersection of the bounding volumes by a certain distance. This
ensures that we do not discard predictive rays as long as the
relative displacement between the two objects in inferior to the
certain distance. It value must be minimized for better
performances because higher values increase the number of ray
cast thus increasing computation.

5. Strategies for self-collision of open meshes

5.1 Self-collision problems of ray traced collision detection
Except of the problem of acceleration data structures to achieve

ray traced collision detection for deformable objects, previous
studies [3], [4] also face the problem of self-collision. Any
primitive can potentially collide with any other primitives of the
same object. This is the first reason to avoid self-collision
detection. It tends to be more expensive than inter-object collision,
because we need to trace rays from every vertex in deformable
objects. One solution is to select a subset of vertices and not
tracing rays from all of them, however the final result quality of
this strategy is uncertain.

The second reason is that ray tracing for self-collision
detection needs different processes with the inter-object one, and
it may lead to more problems. Hermann et al. [3] cast rays in the
direction of the outward vertex normal, namely the opposite
direction of usual ray casting. If a ray hit another point of the
same object and the normal at the point has the same orientation
as the ray then a self-collision is detected. The reason is that they
want to quickly discard rays that will not cross any face of the
object. By tracing outward rays they exploit the fact that an octree
(Hermann et al. use an octree as acceleration data structure) is
usually much sparser in the regions outside of an object than those
inside of the object. A ray that will not cross any other face of the
same object will quickly reach a large cell that does not contain
the object, and then be discarded. However, casting rays in the
direction of vertex normal, i.e. outwards, cannot be directly used
for physical response as shown in Figure 4. The correct ray to get
the physical response should be the penetrating path, i.e. the
inward ray between the origin vertex and the inward intersection
point.

Fig.4 Inward and outward ray of self-collision

Furthermore, in the case of open meshes, such as cloth, it is
difficult to judge which direction is inward/outward of a face. For
this reason, we need a new strategy to work for self-collision of
open meshes.

5.2 Strategies for open meshes

Fig.5 Ray traced self-collision for cloth

Instead of casting rays in the direction of vertex normal, we

proposed to cast short rays in the direction of vertex velocity as
shown in Figure 5. The maximum length of the ray should be
smaller than a threshold, such as a maximum displacement in one
time-step.

Fig.6 “Penetrating” case of self-collision of cloth

However, in practical cases like that shown in Figure 6 may

happen. A vertex may go through the other part of the cloth during
a time-step along the direction of velocity. We can cast an
opposite ray to deal with this “penetrating” case. If the opposite
ray hits within a threshold, a self-collision is detected.

Algorithm 1 shows the pseudo code of the process of dealing
with self-collision of open meshes.

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 5

6. Experiment and Evaluation

In order to construct the proposed pipeline of real-time ray
traced collision detection for deformable objects, we implement
the system based on the open source physic engine, Bullet
Physics. The majority of the implementation is about the narrow
phase algorithm of ray traced collision detection, and several
acceleration data structure for ray tracing.

The implemented system can take different types of objects as
input and visualize the results of physical simulation. We have
evaluated several combinations of ray traced collision detection
algorithms on several scenes. Furthermore, we implement the
physical response phase directly using the rays, which allows to
improve the time performance of the full physical simulation
pipeline.

6.1 Experimental setup
Our test platform is a quad-core Intel Core i7 4700MQ and

NVIDIA GeForce GTX 770M. The first experimental scene
(shown in Figure 7) contains 100 tori falling on a planar ground,
where each torus is composed of 300 vertices and 600 triangles.
The second experiment scene (shown as Figure 8) contains 100
bunnies falling on a planar ground, where each bunny is
composed of 453 vertices and 902 triangles. At the end of both
scene, all 100 objects of 60k/90k triangles in total exist in the
scene.

Fig.7 100 tori falling on the ground

Fig.8 100 bunnies falling on the ground

We implement the experimental scenes using Bullet Physics.

The broad-phase is executed on the CPU. We implement the
acceleration data structure and ray tracing collision detection
algorithm using CUDA, which can be executed on GPU. The
physical response phase is executed on the CPU. This setup leads
to memory transfer between the CPU and GPU. To improve the
performance of the full pipeline, in practical cases, the whole
system should be implemented on GPU or CPU to avoid memory
transfers.

6.2 Comparison of different acceleration data structures of
ray traced collision detection

Before we implement the ray traced collision detection
algorithms, we test the time performance of acceleration data
structures.

We implemented HLBVH and TrBVH introduced in section
3.1. The traversal performance of these structures may not be as
significant as others, but they are suitable for deformable objects
because of the need of rebuilding the data structure in every time-
step. Table 1 shows the time for updating acceleration data
structure and the time of ray tracing traversal when using the two
acceleration data structures for ray traced collision detection in
Scene 1 (100 tori). HLBVH updates faster than TrBVH, but
TrBVH performs better in ray tracing traversal of the narrow
phase, which results in that TrBVH spends less total time than
HLBVH during collision detection. In the rest of experiments, we
use TrBVH as the acceleration data structure for ray traced
collision detection.

Table 1 Time performance of using TrBVH and HLBVH for ray
traced CD in scene 1 (100 tori)

6.3 Iterative ray tracing performance
We implement the iterative ray traced algorithm and make it

work for deformable objects. Table 2 shows simulation time of
the narrow phase with/without iterative ray tracing for the two
scenes.

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 6

The Iterative algorithm can work faster during time-steps
exploiting the temporal and spatial coherency. The results show
that different scenes/objects may lead to different rates of
performance improvements with the iterative algorithm.

Table 2 Iterative ray tracing performance

6.4 Predictive Ray performance
As introduced in section 4, native implementation of predictive

ray for iterative ray-traced algorithm requires twice the amount
of rays. We proposed to process the predictive ray in the same
thread of the non-collision ray, which may usually be in an idling
state because it waits for the termination of the threads of
collision rays. The results of the experiment are shown in Table
3. Our implementation of predictive ray spent almost the same
time as the ray-traced algorithm without predictive ray.

Table 3 Predictive ray performance

We also compare the average penetration depth for Scene 1
(100 tori) with/without predictive rays. Figure 9 shows that
during the simulation time, the average penetration depth when
using predictive rays is always smaller than that without
predictive rays. It means that predictive ray can effectively
prevent deep penetration, which can lead to improvement of the
quality of collision detection.

Fig.9 Average penetration depth with/without predictive ray for

Scene 1 (100 tori)

6.5 Comparison with the traditional method
The traditional narrow phase collision detection algorithm

compared with the proposed algorithm is the well-known GJK
algorithm introduced in section 2. We also compares the time of
calculating physical response in ray traced collision detection to

a traditional one, i.e., the expanding polytope algorithm (EPA) for
penetrating depth.

Table 4 time performance of traditional and ray traced CD in
Scene 1 (100 tori)

Table 4 shows the time performance of ray traced algorithms

against GJK + EPA algorithm in Scene 1 (100 tori). The results
show that the proposed collision detection algorithm achieves
competitive narrow phase performance in comparison of the
traditional algorithm. And as a benefit of ray traced collision
detection is that it can use the information of contact rays
immediately for physical response, the ray-traced method
achieves better time performance of physical response against
traditional EPA algorithm.

As an algorithm of penetration type of collision detection, our
ray traced collision detection method may discard some collision
in some time steps. To evaluate the quality of the ray traced
collision detection, we compare the number of collision pairs in
each frame against traditional GJK algorithm.

Fig.10 Number of collision pairs in each frame in the scene of

30 bunnies

Fig.11 Average penetration depth of ray traced CD vs. GJK-EPA

in the scene of 30 bunnies

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 7

Figure 10 and 12 show the number of colliding pairs in each
frame. In both scenes two curves has a high concordance. After
770th frame in Figure 10, there exists a difference between two
CD, but it makes no big difference in the result because those
frames are actually quiet scene so that no bunnies are moving. It
means that the quality of ray traced collision detection is
competitive with GJK algorithm in the view of collision number.

Fig.12 Number of collision pairs in each frame in the scene of

100 tori

Fig.13 Average penetration depth of ray traced CD vs. GJK-EPA

in the scene of 100 tori

We also compare the average penetration depth during the
simulation in the case of our method against that in the case of
using traditional algorithms (GJK + EPA). Figure 11 and 13 show
that when using our method, the average penetration depth is just
a little larger than that when using traditional algorithms (GJK +
EPA) during the whole simulation. We can conclude that in the
view of average penetration depth, our ray traced collision
detection achieves a competitive quality against the traditional
method.

Fig.14 Average penetration depth for different time-step

As penetration depth is mainly decided by the velocity and the

simulation time-step, collision detection with high quality should
report near linear relationship between the penetration depth and
the simulation time-step. We change the simulation time-step
from 2/120s, 3/120s, 4/120s, 5/120s, 6/120s, 7/120s, 8/120s, and
watch how the penetration depth changes. Figure 14 shows the
average penetration depth during the simulation (from the time 3
seconds after starting to the time 10 seconds when the last torus
hits the ground). Three lines represent the mean of the penetration
depth, the mean of the maximum of penetration depth, and the
mean of the standard deviation. All three lines show a near linear
change with the time-step.

6.6 Evaluating self-collision of open meshes
In order to evaluate the quality of self-collision of open meshes

such as cloth, we use a scene (as shown in Figure 15) to measure
the maximum penetration depth for every frame. The experiment
scene is that a cloth falls onto a capsule, and then the self-
collision happens.

Fig.15 Self-collision of cloth when it falls onto a capsule

If the maximum penetration depth always keeps small enough,

then our method introduced in section 5 is effective. Figure 16
shows the results. The maximum of penetration depth during the
simulation is about 5.8651e-4, which is about 1/680 of the unit
node distance 0.4 (distance of the 20*20 nodes which the cloth
consists of). It is a value that small enough to show that our
method can effectively detect self-collision of open meshes.

Fig.16 Max penetration depth of self-collision of a cloth

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

IPSJ SIG Technical Report

ⓒ2015 Information Processing Society of Japan 8

7. Conclusion

 In this study, we present our idea on the pipeline of real-time
ray traced collision detection for deformable objects. This
method is based on building acceleration data structure of ray
tracing for deformable objects in every time-step. Predictive rays
are used to prevent deep penetrations. We propose a method to
keep the time performance when using predictive rays by
exploiting the characteristic of parallel computation. We also
propose strategies to achieve self-collision for ray traced collision
detection in the case of open meshes, such as cloth.

We implement the pipeline using the physic engine Bullet
Physics. Traditional and ray traced algorithms are compared for
several scenes containing deformable objects. The results show
that ray traced collision detection for deformable objects achieve
competitive performance in comparison of the traditional
algorithm in the narrow phase, and perform better in the physical
response phase because the information of contact rays can be
used immediately. Moreover, in the view of the number of
collision pairs and average penetration depth, our method
achieves a competitive quality of collision detection against the
traditional method of collision detection.

Our future works may include proposing and evaluating self-
collision strategies for closed meshes. We may compare our
method against some traditional self-collision algorithms to
check if our method get a near number of self-collision objects as
traditional algorithms.

Reference
[1] Hubbard P M. Interactive collision detection[C]//Virtual

Reality, 1993. Proceedings. IEEE 1993 Symposium on
Research Frontiers in. IEEE, 1993: 24-31.

[2] Gilbert E G, Johnson D W, Keerthi S S. A fast procedure
for computing the distance between complex objects in
three-dimensional space [J]. Robotics and Automation,
IEEE Journal of, 1988, 4(2): 193-203.

[3] Hermann E, Faure F, Raffin B. Ray-traced collision
detection for deformable bodies[C]//GRAPP 2008-3rd
International Conference on Computer Graphics Theory
and Applications. INSTICC, 2008: 293-299.

[4] Lehericey F, Gouranton V, Arnaldi B. New iterative ray-
traced collision detection algorithm for gpu
architectures[C]//Proceedings of the 19th ACM
Symposium on Virtual Reality Software and Technology.
ACM, 2013: 215-218.

[5] Pantaleoni J, Luebke D. HLBVH: hierarchical LBVH
construction for real-time ray tracing of dynamic
geometry[C]//Proceedings of the Conference on High
Performance Graphics. Eurographics Association, 2010:
87-95.

[6] Karras T, Aila T. Fast parallel construction of high-quality
bounding volume hierarchies[C]//Proceedings of the 5th
High-Performance Graphics Conference. ACM, 2013: 89-
99.

[7] Lehericey F, Gouranton V, Arnaldi B. Ray-traced collision

detection: interpenetration control and multi-gpu
performance[C]//Proceedings of the 5th Joint Virtual
Reality Conference. Eurographics Association, 2013: 33-40.

Vol.2015-CG-161 No.19
Vol.2015-CVIM-199 No.19

2015/11/7

