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Real-time Ray-traced Collision Detection for Deformable Objects 
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Abstract: In real-time physical simulation, penetration based collision detection is a popular method. The study focuses on ray 
tracing based collision detection, which is one of the penetration based collision detection methods. The advantage of the ray 
tracing based collision detection is that it calculates collision rays which can be used for accelerating the physical response 
computation. Our method is based on Lehericey et al.’s work [4], which exploits spatial and temporal coherency, to speedup this 
algorithm. But their method cannot be used for deformable objects. We proposed a pipeline that can be entirely used for deformable 
objects. We also present a new implementation of prediction algorithm that can detect possible and even close collisions whenever 
two objects have potentially colliding vertices. Our implementation can calculate ray-triangle intersection faster than previous 
implementation. In addition, strategies for self-collision is discussed. The proposed method is compared with the state-of-the-art 
conventional algorithm for several scenes containing deformable objects. The results show that our method achieves competitive 
time and quality performance in comparison of the conventional algorithm in the narrow phase, and perform better in the physical 
response phase.  
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1. Introduction     

  Collision detection (CD) is an important task in the 
applications of 3D physical simulation. In general, collision 
detection is divided into two phases: broad phase and narrow 
phase [1]. The broad phase takes all the objects from the scene 
and finds a set of potential pairs of objects that may collide. The 
narrow phase takes these pairs as input and outputs the ones that 
actually collide. 
  Recent narrow phase algorithms use parallel GPU computation 
to achieve a speedup. Ray traced collision detection is one of the 
image-based narrow phase algorithms. It has the merit that the 
information of collision rays can be used immediately to calculate 
the physical response, which are not directly available when 
using conventional collision detection algorithms. This may leads 
to reduction of total time of the physical simulation pipeline. 
  However, naive ray traced collision detection cannot achieve 
ideal speed performance for deformable objects. The major 
problem for handling deformable objects is that the acceleration 
data structures for ray tracing are difficult to update for every time 
step, which is necessary for deformable objects. We propose a 
pipeline able to update the acceleration structure for deformable 
objects.  

Secondly, previous study proposed to use predictive rays for 
their iterative algorithm to improve the quality of collision 
detection by preventing deep penetration. The problem is that 
naive implementation may lead to twice amount of the rays to be 
cast, meaning twice computation time. We propose an optimal 
implementation of predictive rays. 

Thirdly, it is difficult to deal with self-collision in the context 
of ray traced collision detection. The major problem is that when 
we want to detect self-collision, then we need to cast rays from 
almost all the vertices in the object. We discuss how to deal with 
self-collision in the case of open meshes for cloth simulation. 
  In our experimental evaluation, we use several scenes to 
investigate the time performance and the quality of collision 
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detection of our approach, and compare the results with that when 
using traditional algorithms. 
  The remaining part of this paper is organized as follows: 
Section 2 introduces related work. Section 3 explains our 
proposed pipeline of ray traced collision detection. Section 4 
explains our improvement of predictive rays. Section 5 explains 
the algorithm to deal with self-collision of open meshes, such as 
cloth. Section 6 shows our experimental results. Section 7 
concludes this paper and mentions future research issues. 

2. Related work 
  There are several broad phase and narrow phase algorithms 
which have different processes and can be used for different types 
of objects. For the broad phase, BVH is the most popular method 
for acceleration, which is a tree structure on a set of geometric 
objects. By arranging the bounding volumes into a bounding 
volume hierarchy, the time complexity (the number of tests 
performed) can be reduced to logarithmic in the number of 
objects. 
  There are several mainly four types of narrow phase algorithms. 
BVH may be the most popular narrow phase algorithm. Feature 
based narrow phase algorithms work on geometric primitives of 
objects, of which the most famous are Lin-Canny, V-Clip, SWIFT, 
and polygon intersection of Moore and Wilhelms. This type of 
algorithms focus on finding the two closest points between two 
objects, and regard as colliding if each point is inside the other 
object. Simplex based narrow phase algorithms work on the 
convex hull of objects, which cannot be correct for concave 
objects without using more complex algorithms. The most 
famous simplex based narrow phase algorithm is GJK (Gilbert-
Johnson-Keerthi) [2], which works on the Minkowski difference 
instead of the two objects immediately. Image based narrow 
phase algorithms exploit image rendering techniques in GPUs to 
perform collision detection. There are two types of image-based 
approaches, depth-peeling and ray-casting. 
  This study focuses on ray tracing based collision detection for 
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narrow phase [3], whose basic idea is that cast rays from vertices 
of a source object in the direction of the inward normal, and then 
collision can be detected if a ray hits another object inside of the 
source object (shown in Figure 1). This method is one of the type 
of so-called penetration based collision detection. 
 

 
Fig.1 Illustration of the ray tracing based collision detection 

 
  Lehericey et al. [4] proposed a method to accelerate the ray-
triangle intersection computation of naive ray tracing based 
collision detection exploiting the temporal and special coherence. 
However, to avoid the low speed of using ray tracing, Lehericey 
et al. use an acceleration data structure to get a speedup from 
naive ray tracing. However, this method cannot be used for 
deformable objects, because it is difficult to update the 
acceleration data structure at each time step. The study aims to 
make ray tracing based collision detection can be entirely used 
for deformable objects. 

3. Pipeline of real-time ray traced collision 
detection for deformable objects 

  Ray-traced collision detection algorithms proposed in [3], [4] 
can be used on multi-CPUs or multi-GPUs to achieve high 
performance for complex scenes. Usually, only one ray-tracing 
algorithm is used to detect collisions in a simple scene. But in 
complex scenes with objects of different nature we can employ 
several ray-tracing algorithms to optimize each nature of object. 
With rigid objects we can use algorithms with static data 
structures. With deformable objects we need data structures that 
can be updated at each time-step. In the case of topology changes 
we need to reconstruct the ray-tracing data structures occasionally. 
Iterative ray-tracing can be used to accelerate all of these 
algorithms. 
  To make ray tracing based collision detection available for 
deformable objects, we proposed a novel pipeline for real-time 
ray-traced collision detection. The most important feature of this 
pipeline is the capability of updating acceleration data structure 
in every time-step for both broad phase and ray-object 
intersection computation. Several efficient acceleration data 
structures proposed recently for ray tracing rendering can be used 
for accelerating ray traced collision detection. Figure 2 shows the 
whole pipeline of real-time ray-traced collision detection for 
deformable objects. 

 
Fig.2 Pipeline of real-time ray traced collision detection for 

deformable objects 
 
  As shown in Figure 2, four main tasks have to be finished to 
achieve real-time ray traced collision detection for deformable 
objects: A) Building or updating acceleration data structure for 
ray tracing; B) Measuring the displacement on the pair of 
objects to check if the pair can be processed by iterative ray 
tracing algorithm; C) Culling vertices that are not inside the 
intersecting region of bounding volumes of the objects or whose 
temporal data are unavailable; D) Executing ray tracing 
according to the type of the ray list. 
  When applying the displacement measurement, there are the 
case of including deformable objects or not. If there is a 
deformable object in the object pair, then displacement 
measurement should be applied per vertex because of internal 
deformations. For the pair of rigid objects, the displacement 
measurement can be applied globally. Object pairs with small 
displacement will use the iterative ray-tracing algorithm. We need 
a relative displacement measurement and a threshold that 
indicates when the non-iterative algorithm must be used. 
  Vertex culling removes vertices that do not need to be tested 
with ray-tracing because a simple test can discard collision. For 
the object pairs checked with large displacement, we check if the 
vertex is located inside the intersection of the bounding volumes 
of the two objects. For the vertices checked with small 
displacement we test if temporal data is available.  

Ray-tracing is executed for each of the remaining vertices. We 
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use the iterative algorithm when selected; otherwise, we use a 
basic ray tracing algorithm. Further improvements are possible, 
such as applying different types of ray tracing according to nature 
of the target. 

3.1 Acceleration data structure 
  Acceleration structures are important tools for speeding up the 
traversal and intersection queries for ray tracing. Most of 
successful acceleration structures represent a hierarchical 
decomposition of the object or scene geometry. This hierarchy is 
then used to quickly cull space region not intersected by the ray. 
  The most important factor of acceleration data structures for 
ray traced collision detection of deformable objects is the speed 
of construction/update. We choose two acceleration data 
structures with high construction speed. The first one is 
Hierarchical Linear Bounding Volume Hierarchy (HLBVH) [5]. 
The structure is an optimization of Linear BVH (LBVH), which 
can be constructed very quickly on the GPU. The other one is 
Treelet Restructuring BVH (TrBVH) [6]. In fact, TrBVH is not 
an acceleration data structure, but an approach to transform a low-
quality BVH, which can be constructed in a matter of 
milliseconds, into a high-quality one that is close to the gold 
standard in ray tracing performance.  

3.2 Classification of threads for GPU implementation  
Our pipeline has three different kinds of steps for GPU thread 

scheduling in terms of their processing objects. Each kind of step 
is designated by a blue box in Figure 2. 
3.2.1 Per-pair step 
  The per-pair step takes the list of object pairs from the broad 
phase as input. In the step one thread corresponds to one pair of 
objects, and the major work is to apply measurement of 
displacement for the pairs with only rigid objects.  

This step separate the vertices in the pairs with small 
displacement that will use the iterative algorithm, and vertices 
with large displacement that will use a basic ray-tracing algorithm. 
The pairs that contain at least one deformable object cannot be 
checked in this step. In such cases displacement needs to be 
measured locally to take into account internal deformations. 
3.2.2 Per-vertex step 

In the per-vertex step, one thread is executed for each vertex of 
each object of each pair. This step has two types of tasks with 
different input.  

The first type takes the pairs containing deformable objects as 
input, and applies a displacement measurement on the vertices to 
separate the ones with small displacement that will use the 
iterative algorithm and the others that will use a basic algorithm.  

The second type is executed for each vertex of each object of 
each pair. For the vertices with large displacement that will use a 
basic algorithm, we check if the vertex is inside the intersection 
of the bounding volumes of the two objects. If not, we can discard 
this vertex as it cannot collide. For the vertices with small 
displacement that will use the iterative algorithm, we test if 
temporal data is available from the previous time-step. If no 
temporal data is available we can discard the vertex.  

After the vertex culling task, each remaining vertex generates 
a ray that will be cast on the other object of the pair. Parameters 

needed to cast these rays are stored in two buffers as different 
input for iterative and non-iterative ray tracing.  
3.2.3 Per-ray step 
The per-ray step takes the lists of rays as input and performs ray 
tracing. Each thread casts one ray. Each ray-tracing algorithm is 
implemented and executed in a separate kernel to avoid branch 
divergence. The ray-tracing algorithms output contact 
information for computing the physical response.  

4. Implementation of Predictive Ray/Triangle 
Intersection 
  The main demerit of the iterative ray tracing [4] is that it only 
works with previously detected rays. When new vertices collide, 
they will be processed only in the next standard step. This may 
postpone the collision detection of a pair of objects for several 
time steps, which will lead to a deep interpenetration. 
  The first row of Figure 3 shows an example of this situation. 
At 𝑡𝑡 =  0 a non-iterative algorithm is executed and no collision 
is detected. At 𝑡𝑡 =  1 the previous rays are updated, as the two 
objects were not colliding at 𝑡𝑡 =  0 there are no rays to update. 
In this case the iterative algorithm fails to detect the collision. At 
t = 2 a non-iterative algorithm is executed and the collision is 
detected. In this example the detection is postponed for one step, 
but in practical cases it may be more. 
 

   
Fig.3 Predicted iteration from [7] 

 
  Lehericey et al. [7] proposed to solve the problem by 
performing a predictive ray triangle intersection. If a ray report 
no collision, then a predictive ray can be cast from the same 
vertex but in the direction of the normal, opposite to the ray which 
has been cast. If this predictive ray hits a triangle and if the 
distance is short, the corresponding vertex may hit that triangle 
(or the neighboring ones) in a near future. The predictive rays are 
injected in the iterative algorithm as candidates for the next steps. 
  The second row of Figure 3 shows how predictive rays prevent 
postponement of collision detection. At 𝑡𝑡 =  0 a non-iterative 
algorithm is executed and no collision is detected, predictive rays 
are cast in the outward direction of the objects, and several 
predictive rays kept. At 𝑡𝑡 =  1 the predictive rays are updated 
and collision is successfully detected, at 𝑡𝑡 =  2  a physical 
response can be applied to prevent further interpenetration. 
  However, casting a predictive ray in the opposite direction 
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double the cost of the non-iterative ray tracing algorithm 
theoretically. We proposed a method of implementation to reduce 
the cost of performing predictive ray tracing. In practical case we 
do not need to cast a ray twice. This process is executed one 
thread per ray. We can process the predictive ray in the same 
thread of the non-collision ray because they share the same vertex 
and are in the same line. When using parallelization technique, 
the threads processing non-collision rays will terminate rapidly 
and have to wait for other threads. Processing predictive ray in 
these idle threads exploits the idle computation resources that are 
wasted.  

Furthermore, we have cast rays from the vertices that are inside 
the intersection of the bounding volumes, which is an 
optimization to reduce the number of rays. In the context of 
predictive rays this optimization may discard predictive rays and 
delay the collision detection. To avoid this problem we extend the 
intersection of the bounding volumes by a certain distance. This 
ensures that we do not discard predictive rays as long as the 
relative displacement between the two objects in inferior to the 
certain distance. It value must be minimized for better 
performances because higher values increase the number of ray 
cast thus increasing computation. 

5. Strategies for self-collision of open meshes 

5.1 Self-collision problems of ray traced collision detection 
Except of the problem of acceleration data structures to achieve 

ray traced collision detection for deformable objects, previous 
studies [3], [4] also face the problem of self-collision. Any 
primitive can potentially collide with any other primitives of the 
same object. This is the first reason to avoid self-collision 
detection. It tends to be more expensive than inter-object collision, 
because we need to trace rays from every vertex in deformable 
objects. One solution is to select a subset of vertices and not 
tracing rays from all of them, however the final result quality of 
this strategy is uncertain.  

The second reason is that ray tracing for self-collision 
detection needs different processes with the inter-object one, and 
it may lead to more problems. Hermann et al. [3] cast rays in the 
direction of the outward vertex normal, namely the opposite 
direction of usual ray casting. If a ray hit another point of the 
same object and the normal at the point has the same orientation 
as the ray then a self-collision is detected. The reason is that they 
want to quickly discard rays that will not cross any face of the 
object. By tracing outward rays they exploit the fact that an octree 
(Hermann et al. use an octree as acceleration data structure) is 
usually much sparser in the regions outside of an object than those 
inside of the object. A ray that will not cross any other face of the 
same object will quickly reach a large cell that does not contain 
the object, and then be discarded. However, casting rays in the 
direction of vertex normal, i.e. outwards, cannot be directly used 
for physical response as shown in Figure 4. The correct ray to get 
the physical response should be the penetrating path, i.e. the 
inward ray between the origin vertex and the inward intersection 
point. 

 

Fig.4 Inward and outward ray of self-collision 
 

Furthermore, in the case of open meshes, such as cloth, it is 
difficult to judge which direction is inward/outward of a face. For 
this reason, we need a new strategy to work for self-collision of 
open meshes. 

5.2 Strategies for open meshes 

 
Fig.5 Ray traced self-collision for cloth 

  
Instead of casting rays in the direction of vertex normal, we 

proposed to cast short rays in the direction of vertex velocity as 
shown in Figure 5. The maximum length of the ray should be 
smaller than a threshold, such as a maximum displacement in one 
time-step.  

 
Fig.6 “Penetrating” case of self-collision of cloth 

 
However, in practical cases like that shown in Figure 6 may 

happen. A vertex may go through the other part of the cloth during 
a time-step along the direction of velocity. We can cast an 
opposite ray to deal with this “penetrating” case. If the opposite 
ray hits within a threshold, a self-collision is detected. 

Algorithm 1 shows the pseudo code of the process of dealing 
with self-collision of open meshes. 
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6. Experiment and Evaluation 

In order to construct the proposed pipeline of real-time ray 
traced collision detection for deformable objects, we implement 
the system based on the open source physic engine, Bullet 
Physics. The majority of the implementation is about the narrow 
phase algorithm of ray traced collision detection, and several 
acceleration data structure for ray tracing.  

The implemented system can take different types of objects as 
input and visualize the results of physical simulation. We have 
evaluated several combinations of ray traced collision detection 
algorithms on several scenes. Furthermore, we implement the 
physical response phase directly using the rays, which allows to 
improve the time performance of the full physical simulation 
pipeline. 

6.1 Experimental setup 
Our test platform is a quad-core Intel Core i7 4700MQ and 

NVIDIA GeForce GTX 770M. The first experimental scene 
(shown in Figure 7) contains 100 tori falling on a planar ground, 
where each torus is composed of 300 vertices and 600 triangles. 
The second experiment scene (shown as Figure 8) contains 100 
bunnies falling on a planar ground, where each bunny is 
composed of 453 vertices and 902 triangles. At the end of both 
scene, all 100 objects of 60k/90k triangles in total exist in the 
scene.  
 

 
Fig.7 100 tori falling on the ground 

 
Fig.8 100 bunnies falling on the ground 

 
We implement the experimental scenes using Bullet Physics. 

The broad-phase is executed on the CPU. We implement the 
acceleration data structure and ray tracing collision detection 
algorithm using CUDA, which can be executed on GPU. The 
physical response phase is executed on the CPU. This setup leads 
to memory transfer between the CPU and GPU. To improve the 
performance of the full pipeline, in practical cases, the whole 
system should be implemented on GPU or CPU to avoid memory 
transfers. 

6.2 Comparison of different acceleration data structures of 
ray traced collision detection 

Before we implement the ray traced collision detection 
algorithms, we test the time performance of acceleration data 
structures.   

We implemented HLBVH and TrBVH introduced in section 
3.1. The traversal performance of these structures may not be as 
significant as others, but they are suitable for deformable objects 
because of the need of rebuilding the data structure in every time-
step. Table 1 shows the time for updating acceleration data 
structure and the time of ray tracing traversal when using the two 
acceleration data structures for ray traced collision detection in 
Scene 1 (100 tori). HLBVH updates faster than TrBVH, but 
TrBVH performs better in ray tracing traversal of the narrow 
phase, which results in that TrBVH spends less total time than 
HLBVH during collision detection. In the rest of experiments, we 
use TrBVH as the acceleration data structure for ray traced 
collision detection. 

 
Table 1 Time performance of using TrBVH and HLBVH for ray 
traced CD in scene 1 (100 tori) 

 
 

6.3 Iterative ray tracing performance 
We implement the iterative ray traced algorithm and make it 

work for deformable objects. Table 2 shows simulation time of 
the narrow phase with/without iterative ray tracing for the two 
scenes. 
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The Iterative algorithm can work faster during time-steps 
exploiting the temporal and spatial coherency. The results show 
that different scenes/objects may lead to different rates of 
performance improvements with the iterative algorithm.  
 
Table 2 Iterative ray tracing performance 

 

6.4 Predictive Ray performance 
As introduced in section 4, native implementation of predictive 

ray for iterative ray-traced algorithm requires twice the amount 
of rays. We proposed to process the predictive ray in the same 
thread of the non-collision ray, which may usually be in an idling 
state because it waits for the termination of the threads of 
collision rays. The results of the experiment are shown in Table 
3. Our implementation of predictive ray spent almost the same 
time as the ray-traced algorithm without predictive ray. 
 
Table 3 Predictive ray performance 

 
 

We also compare the average penetration depth for Scene 1 
(100 tori) with/without predictive rays. Figure 9 shows that 
during the simulation time, the average penetration depth when 
using predictive rays is always smaller than that without 
predictive rays. It means that predictive ray can effectively 
prevent deep penetration, which can lead to improvement of the 
quality of collision detection.  

 

 
Fig.9 Average penetration depth with/without predictive ray for 

Scene 1 (100 tori) 

6.5 Comparison with the traditional method 
The traditional narrow phase collision detection algorithm 

compared with the proposed algorithm is the well-known GJK 
algorithm introduced in section 2. We also compares the time of 
calculating physical response in ray traced collision detection to 

a traditional one, i.e., the expanding polytope algorithm (EPA) for 
penetrating depth.  
 
Table 4 time performance of traditional and ray traced CD in 
Scene 1 (100 tori) 

  

 
Table 4 shows the time performance of ray traced algorithms 

against GJK + EPA algorithm in Scene 1 (100 tori). The results 
show that the proposed collision detection algorithm achieves 
competitive narrow phase performance in comparison of the 
traditional algorithm. And as a benefit of ray traced collision 
detection is that it can use the information of contact rays 
immediately for physical response, the ray-traced method 
achieves better time performance of physical response against 
traditional EPA algorithm. 

As an algorithm of penetration type of collision detection, our 
ray traced collision detection method may discard some collision 
in some time steps. To evaluate the quality of the ray traced 
collision detection, we compare the number of collision pairs in 
each frame against traditional GJK algorithm.  
 

 
Fig.10 Number of collision pairs in each frame in the scene of 

30 bunnies 
 

 
Fig.11 Average penetration depth of ray traced CD vs. GJK-EPA 

in the scene of 30 bunnies 
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Figure 10 and 12 show the number of colliding pairs in each 
frame. In both scenes two curves has a high concordance. After 
770th frame in Figure 10, there exists a difference between two 
CD, but it makes no big difference in the result because those 
frames are actually quiet scene so that no bunnies are moving. It 
means that the quality of ray traced collision detection is 
competitive with GJK algorithm in the view of collision number. 
 

 
Fig.12 Number of collision pairs in each frame in the scene of 

100 tori 
 

 
Fig.13 Average penetration depth of ray traced CD vs. GJK-EPA 

in the scene of 100 tori 
 

We also compare the average penetration depth during the 
simulation in the case of our method against that in the case of 
using traditional algorithms (GJK + EPA). Figure 11 and 13 show 
that when using our method, the average penetration depth is just 
a little larger than that when using traditional algorithms (GJK + 
EPA) during the whole simulation. We can conclude that in the 
view of average penetration depth, our ray traced collision 
detection achieves a competitive quality against the traditional 
method.   

 
Fig.14 Average penetration depth for different time-step 

 
As penetration depth is mainly decided by the velocity and the 

simulation time-step, collision detection with high quality should 
report near linear relationship between the penetration depth and 
the simulation time-step. We change the simulation time-step 
from 2/120s, 3/120s, 4/120s, 5/120s, 6/120s, 7/120s, 8/120s, and 
watch how the penetration depth changes. Figure 14 shows the 
average penetration depth during the simulation (from the time 3 
seconds after starting to the time 10 seconds when the last torus 
hits the ground). Three lines represent the mean of the penetration 
depth, the mean of the maximum of penetration depth, and the 
mean of the standard deviation. All three lines show a near linear 
change with the time-step. 

6.6 Evaluating self-collision of open meshes 
In order to evaluate the quality of self-collision of open meshes 

such as cloth, we use a scene (as shown in Figure 15) to measure 
the maximum penetration depth for every frame. The experiment 
scene is that a cloth falls onto a capsule, and then the self-
collision happens.  

 

  

 
Fig.15 Self-collision of cloth when it falls onto a capsule 

 
If the maximum penetration depth always keeps small enough, 

then our method introduced in section 5 is effective. Figure 16 
shows the results. The maximum of penetration depth during the 
simulation is about 5.8651e-4, which is about 1/680 of the unit 
node distance 0.4 (distance of the 20*20 nodes which the cloth 
consists of). It is a value that small enough to show that our 
method can effectively detect self-collision of open meshes. 

 
Fig.16 Max penetration depth of self-collision of a cloth 
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7. Conclusion 

  In this study, we present our idea on the pipeline of real-time 
ray traced collision detection for deformable objects. This 
method is based on building acceleration data structure of ray 
tracing for deformable objects in every time-step. Predictive rays 
are used to prevent deep penetrations. We propose a method to 
keep the time performance when using predictive rays by 
exploiting the characteristic of parallel computation. We also 
propose strategies to achieve self-collision for ray traced collision 
detection in the case of open meshes, such as cloth. 

We implement the pipeline using the physic engine Bullet 
Physics. Traditional and ray traced algorithms are compared for 
several scenes containing deformable objects. The results show 
that ray traced collision detection for deformable objects achieve 
competitive performance in comparison of the traditional 
algorithm in the narrow phase, and perform better in the physical 
response phase because the information of contact rays can be 
used immediately. Moreover, in the view of the number of 
collision pairs and average penetration depth, our method 
achieves a competitive quality of collision detection against the 
traditional method of collision detection. 

Our future works may include proposing and evaluating self-
collision strategies for closed meshes. We may compare our 
method against some traditional self-collision algorithms to 
check if our method get a near number of self-collision objects as 
traditional algorithms.  
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