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Abstract: We propose a per-frame upper body pose estimation method for sports players captured in low-resolution
team sports videos. Using the head-center-aligned upper body region appearance in each frame from the head tracker,
our framework estimates (1) 2D spine pose, composed of the head center and the pelvis center locations, and (2) the
orientation of the upper body in each frame. Our framework is composed of three steps. In the first step, the head region
of the subject player is tracked with a standard tracking-by-detection technique for upper body appearance alignment.
In the second step, the relative pelvis center location from the head center is estimated by our newly proposed poselet-
regressor in each frame to obtain spine angle priors. In the last step, the body orientation is estimated by the upper
body orientation classifier selected by the spine angle range. Owing to the alignment of the body appearance and the
usage of multiple body orientation classifiers conditioned by the spine angle prior, our method can robustly estimate
the body orientation of a player with a large variation of visual appearances during a game, even during side-poses or
self-occluded poses. We tested the performance of our method in both American football and soccer videos.
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1. Introduction

In team sport video analysis, tracking players with computer
vision-based methods is widely studied because the trajectories
of players are the most basic and important kinds of informa-
tion. There have been many applications that track players us-
ing a monocular view [1] or multiple views [2]. However, these
player-tracking methods can only achieve location-based activity
recognition of players, for example [3], [4]. Conversely, there are
a few studies on group activity recognition for sports videos using
per-player actions as features [5], [6]. While these methods can
infer the semantic actions of each player (e.g., “running”, “jump-
ing”), they cannot recognize the fine-grained activity differences
between activity classes because they just perform (discretized)
classification between those semantic actions.

If sport-specific upper body pose patterns can be estimated
from a vision-based recognition technique, there will be a new
opportunity to realize the more detailed pose-based activity
recognition of team sports players. The extraction of the up-
per body pose will achieve a deeper understanding of player ac-
tions by recognizing changes in the upper body pose, such as the
gradual spine angle change during running from the starting po-
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sition, defensive bending poses, and blocking poses. Moreover,
gaze and direction-based attention prediction [7] and group activ-
ity recognition from orientations and relative locations of peo-
ple [5], [6], [8] can also be achieved even for the team sports
videos in the future. However, estimating the upper body orienta-
tion or body tilt from team sports videos has rarely been explored.

Realistic upper body pose appearances of team sports play-
ers have a wider variety of articulated pose patterns (Fig. 2) than
pedestrian cases [9], [10], [11] with the following variations:
• Many types of spine angle (body tilt) (Fig. 2 (a)).
• Running while looking backward. (Fig. 2 (b))
• While moving back (Fig. 2 (c)).

These postural patterns, unseen in surveillance videos for pedes-
trian tracking, make it more difficult to realize the upper body
pose estimation method for team sports videos. Specifically,
sports players in team sports videos have more body tilt vari-

ations than pedestrians poses because they tend to bend their
(upper) body while in defensive actions or some specific actions
(e.g., passing action in soccer). Larger body tilt variations make
the body orientation problem more difficult because the previous
body orientation estimators during pedestrian tracking or detec-
tion [11], [12] depend on the alignment of the input window by
the pedestrian detector for only standing walking poses.

To cope with those postural variations in team sports, we pro-
pose a framework for estimating the upper body orientation of
a player with the head-center-aligned upper body region using
the selected classifier conditioned by spine angle (Fig. 1). Our
framework, which depends on the alignment of the upper body
appearance, not only estimates the body orientation of the track-
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Fig. 1 Example result from our framework. Images in the upper row show
the tracked player images in each frame of the input video with the
estimated horizontal body orientation (orange arrow), and 2D spine
pose (2D purple line). The lower image is a summary image from a
test video, which shows the location of the head region and the pelvis
center of the subject player in each frame. Our method can track and
estimate the upper body pose even when lower body occlusion oc-
curs because it only utilizes the upper body region appearance of the
tracked player.

Fig. 2 Variation of human poses in team sports videos. These poses rarely
appear in pedestrian surveillance videos and produce visual patterns
for classifying body orientation.

ing player (orange arrow in Fig. 3 (a)) as in previous work on
surveillance [11], [12], but also estimates the 2D spine pose of the
players (purple line in Fig. 3 (a)), which consists of the head cen-
ter location and the pelvis center location even during the bending

poses.
Our framework is composed of three steps. In the first step,

the head position of the moving player is tracked by the head
tracker of Ref. [13]. In the second step, we estimate the relative
pelvis center location from the head center position using our pro-
posed poselet-regressor with head-center-aligned Histogram-of-
Oriented Gradients (HOG) [14] features within the upper body
window. This results in estimating the 2D spine pose in each

Fig. 3 System output in image and 3D space. (a) Example results shown in
image. The smaller blue rectangle is the head region tracked by the
head tracker. The larger blue rectangle is the upper body region for
the poselet-regressor and the body orientation classifiers. (b) Visual-
ized result in 3D space. The orange arrows show the eight horizontal
orientation classes. The purple line is the spine, which includes the
head center position (cyan) and the pelvis center position (green).
The number showing at the right-bottom corner of the upper body
means the selected spine-class s. (c) Class numbers for each body
orientation class.

frame. Our poselet-regressor has continuous output space, while
the original poselets [15] are trained as a pose exemplar detector.
In the third step, we use the estimated 2D spine angle from the
second step as a conditional prior for selecting a corresponding
upper body orientation classifier, and then the upper body orien-
tation is estimated by the head-center aligned (or pelvis-center
aligned) upper body region HOG features within a corresponding
spine angle range, which we call a spine class.

This framework is the extension of our previous body orienta-
tion and spine pose estimation work [16] with two major contri-
butions: (1) relative spine pose estimation with the head tracker
and the poselet-regressor with head-centered-aligned upper body
appearance; and (2) classifier selection scheme using spine-angle
prior and aligned appearance window, which was inspired by
Refs. [17], [18], but with the difference that our conditional prior
is the 2D spine angle class. Note that this paper only focuses on
the body orientation estimation problem while the previous ver-
sion [16] also proposed the head orientation estimator.

The first contribution of this paper is the proposed poselet-
regressor (in step 2) that estimates the 2D spine pose without us-
ing pictorial-structures-based pose detectors such as Refs. [19],
[20], [21] and the poselet detectors [15], [22], which has been a
popular strategy for human pose estimation in computer vision.
Our poselet-regressor predicts the relative pelvis position from
the head center using the head-center-aligned upper body appear-
ance determined from regression forests [23]. Compared with
the multi-view pose estimation method using poselets [24], our
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framework tries to estimate the 2D spine pose (the line between
the head center and the pelvis center) using the poselet-regressor
and the head-center-aligned window from the head tracker. In
other words, our poselet-regressor is a relative joint location pre-
dictor that depends on the local origin (head center) estimated by
the head tracker in each frame of the video.

The second contribution of this paper is the switching scheme
between multiple upper body orientation classifiers (in step 3) us-
ing the spine angle value as a conditional prior. This enables each
body orientation classifier (random decision forests) to focus on
selecting the important (HOG) features from the conditioned sub-
set of the whole training dataset that includes similar and spine-
pose-aligned upper body appearances with the same spine an-
gle range. Previous body orientation estimation approaches for
surveillance videos [10], [11] do not deal with bending poses
but only pedestrians walking or standing upwright. Our con-
ditioned prior scheme is inspired by the conditional regression
forests [17], [18], but our conditional prior is the spine angle,
which has never been explored before as a prior.

In addition to these major two contributions, another key con-
tribution of this framework is that our method estimates the upper
body pose of the player even when partially occluded, because it
depends on the head tracker and the upper body orientation clas-
sification using only the selected features within the upper body
region during training time with Regression Forests [23]. Since
our previous work [16] depends on tracking the whole body, it
can only track and estimate the pose of isolated players. Our new
design, which tracks the head and uses the head-center-aligned
upper body appearance, which is inspired by our another lower
body pose estimation framework [25], opens up more chances to
track and estimate the pose of players even in congested situa-
tions in team sports by only tracking the head region and using
only the tracked upper body region for spine pose and body ori-
entation estimation.

Since the variation of the arm pose is very large in uncon-
strained team sport player appearances, it is also important to
depend aligned global appearance of the person. Because parts
exemplars such as poselets [15], [22] and pictorial structures [20],
[21] have to deal with the all of the arm parts for pose prediction,
they are not always scalable to the unconstrained huge patterns of
articulated poses. Instead of training parts detectors, we introduce
the alignment of the whole body appearances from the tracker,
which is the standard approach of body orientation classification
methods during tracking-by-detection [11], [12], [16], and uti-
lizes only discriminative HOG features within the upper body
region selected by random decision forests training. Moreover,
our poselet-regressor also uses the same aligned-global appear-
ance approach to predict the relative pelvis center location from
the (tracked) head center.

In summary, our alignment via head tracking and the feature
selection with conditional spine pose prior are aimed at dealing
with pose appearance patterns of sports players rather than pedes-
trians (for estimating their body orientation). By acquiring head
and pelvis-center aligned upper body images, each body orienta-
tion classifier needs to deal with only the smaller appearance dis-
tribution within the corresponding spine angle class. To achieve

this, even for an unconstrained setting, we propose the regression
forests-based skeletal spine pose estimation.

The rest of the paper is organized as follows: Section 2 inves-
tigates related work. Section 3 introduces the overview of our
framework. Section 4 introduces the spin pose estimation proce-
dure using the head tracker and the poselet-regressor. Section 5
introduces the multiple body orientation classifiers conditioned
by spine angle prior. Section 6 is the evaluation of our method
with American football and soccer scenes. Section 7 is the con-
clusion of this paper.

2. Related Work

The estimation of head and body orientation from low resolu-
tion videos has been studied for the purposes of video surveil-
lance [10], [11], [26], [27], [28]. The body orientation of the sub-
ject, which our framework predicts, has also been used for group
activity recognition [29], [30], [31] as context features between
interacting people.

There are two main approaches for body pose estimation from
a fixed camera view: 1) human pose/orientation estimation from
a single image; and 2) human body pose or orientation estimation
from videos based on the position of the person/head tracker. In-
ferring the skeletal body pose or body orientation is quite useful
for many applications, such as searching for semantic key poses
from TV shows [32], recognizing pose and clothing attributes
of a person [33], recognizing the interaction between two peo-
ple [34], [35], and recognizing the interaction between an object
and a person [36], [37]. We will review human pose estimation
methods from a single image in Section 2.1, and human pose es-
timation methods from videos in Section 2.2.

Another categorization of related work is the human pose es-
timation for (1) the skeletal pose and (2) the head/body orienta-

tion. Our proposed poselet-regressor is the skeletal pose estima-
tor of the (simplified) 2D spine line while the proposed spine-
conditioned body orientation estimators are the body orientation
estimators. The single image methods in Section 2.1 are related to
the poselet-regressor, while the tracker-based orientation estima-
tion methods in Section 2.2 are related to our spine-conditioned
body orientation estimators.

While skeletal pose estimations are mostly performed using a
part-detector strategy, our strategy is to also use the global aligned
window appearance to estimate the skeletal spine pose. Our
tracker-based joint location estimation of the poselet-regressor
is inspired by our previous work [25], which also uses the body
tracker for the window alignment and used random classification
forests to estimate the lower body joint locations.

2.1 Human Pose Estimation from a Single Image
There are many papers that try to estimate the skeletal body

pose from a single image [15], [19], [24], [32], [33], [34], [35],
[36], [37]. These approaches mainly estimate the frontal 2D
skeletal bone of the subject and the regions of each part of the
body.

The most popular approach to skeletal human pose estimation
uses pictorial structures [38], [39], where the body parts config-
uration of the person in the image is represented as a graphical
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tree model of body part region appearances. After the success of
the Deformable Part Models (DPM) [40], the pictorial structure
framework for people detection is extended with DPM to jointly
detect the part locations with structured prediction, such as a flex-
ible mixture-of-parts model (FMP) [20].

FMP [20] is robust for the frontal pose images because it em-
ploys a tree-structured graphical model of part detectors, which
are trained as the mixtures of the part appearances from the train-
ing dataset using k-means. While FMP [20] gives very good
results for frontal human poses, it cannot infer the partially-
occluded side poses accurately because the tree-structure of the
graphical model does not appear when the arms and legs partially
occlude each other. In team sports videos, there are many side-
view pose appearances in which it is difficult to estimate the parts
locations using part-based models.

Part-model approaches find it difficult to estimate the pose: (1)
when multiple parts are occluded; (2) when the image is low-
resolution and the parts have similar appearances, making it hard
to discriminate each part correctly; and (3) when the person is in
non-frontal side poses, which are hard to model with tree part-
models of pictorial structure.

There are also per-frame classification or regression meth-
ods for estimating each part location from a single depth im-
age [18], [41]. Additionally, there are part-model approaches us-
ing multi-view images [42], [43]. In contrast, our approach does
not use depth image or multi-view inputs, but only monocular
RGB images.
Poselets: Detection of One Specific Pose

Reference [15] proposed human (partial) pose detectors, pose-
lets, which can be also regarded as a human (partial) pose sil-
houette detector. The poselets have been also used for the
middle-level parts for human pose estimation methods with part-
based models [19]. Reference [21] proposed the poselet-
conditioned pictorial structures approach, which uses the poselets
as a mid-level representation of multiple body parts. While pic-
torial structures using poselets [19], [21] can cover the pictorial
structures with only local part detectors [20], classification still
depends on the pictorial structures and cannot cover many types
of articulation (with only a few specific poselets). Particularly
when the arms or legs are partially occluded or hidden behind
other parts, we need more poselets (exemplars) to represent those
person apperances. This makes it more difficult to represent a
huge number of part configurations, even when occlusion or part-
disappearance occurs.

The poselets can be also used for key-frame extraction such
as in Ref. [44] for activity recognition via key-frame responses.
However, poselets cannot detect detailed or in-between poses be-
cause poselets are discretized key-pose exemplar detectors (but
they can detect key-poses as attributes or actions, see Refs. [24],
[33]). Maji et al. [24] proposed multi-view poselets for the pur-
pose of single image action recognition from the detected pose
with action-specific poselets.
Pose Regression

Recently, appearance-based regression of some kinds of human
poses has been studied [45], [46].

Classic approaches for estimating skeletal poses, such as

Refs. [45], [46], [47], try to train regression models (with low di-
mensional latent variables) of typical human movements for in-
dividual activities (e.g., walking, jumping). References [47], [48]
estimated the joint locations of a target walking person using a
fixed side-camera view in each single frame of a video. In these
papers, cameras are set to capture the person from side views on
the road or street so that people can be captured in only side-
view poses. This side-view camera setting is often used in gait
recognition [49]. In contrast, our proposed method can estimate
the body orientation and the spine pose from any camera view,
because our poselet-regressor learns the various types of human
upper body pose appearances from all camera views using only
one model.

Conditional regression forests [17], [18], which divides the vi-
sual feature space into each-view spaces or some other subcate-
gories, is the closest approach to our proposal. For facial images,
when the view of the face is restricted, visual patterns of fidu-
cial points become smaller because the facial parts cannot move
so much. However, the whole-body appearance has a wide vari-
ety of patterns (body orientation or spine angle, in our case) even
when the camera view is restricted. Also gaze direction estima-
tion from the eye-region appearance is explored with conditional
regression forests conditioned on the head pose [50]. For non-
articulated objects, regression-based pose estimation [51] can be
done. However, articulated-pose estimation from RGB images
has not yet been explored, while some depth-based methods have
proposed the regression of part locations [18], [41].

2.2 Human Orientation Estimation from Low-Resolution
Videos

Head and body orientation estimation approaches during
people tracking have been proposed, mostly for surveillance
videos [10], [11], [13], [26], [52], [53]. Another popular scene
setting is the frontal video of automobiles [27], [28]. These meth-
ods train scene-specific or clothing-specific head or body orien-
tation classifiers, which typically classify the horizontal eight di-
rections into eight classes, by combining those classifiers with the
head or body trackers to jointly estimate the orientations and the
location with filtering techniques. They mainly estimate the head
and body orientations of pedestrians and cannot deal with poses
where the subjects are bending their upper bodies. While we
would like to review only body orientation estimation methods,
since our proposed method estimates the body orientation in each
frame, we will also review head orientation estimation methods.
The latter are closely related and adopt very similar approaches
to classifying the direction, and our method uses the same head
tracker as used in this work [13], [26], [52], [53]. Those head
orientation methods are also combined with body orientation es-
timation [9], [10], [54].

Benfold and Reid [52] proposed the first approach that adopts
feature-selection for learning a per-frame head orientation clas-
sifier using randomized trees with a color feature. Benfold
and Reid extended [52] in Ref. [13] by introducing a HOG fea-
tures [14] with a color feature to create a robust head pose clas-
sifier and proposed a multi-target tracking scheme using a HOG-
based head detector and an optical-flow tracker for surveillance
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videos. This per-frame classification with tracking-by-detection
proposed in Ref. [13] has been a standard approach for recent
head or body orientation estimation methods [10], [11], [16].

For team sports videos with low-resolution settings, Hayashi et
al. [16], our previous version of this work, proposed a head and
body orientation estimation and spine pose estimation of Amer-
ican football players in videos. This work performs head and
body orientation classification independently with tracking-by-
detection with a player tracker, as well as head detection within
each frame. In sports videos, it is easier to train a robust head
orientation classifier than training it for surveillance videos, be-
cause the visual appearance of the head region is similar between
different players wearing similar uniforms, especially helmeted
players in our experimental American football videos. However,
since head appearance is versatile in other team sports (e.g., bas-
ketball or soccer) and in surveillance videos such as Ref. [13], the
head orientation classifier needs higher dimensional or discrimi-
native features than for sports players. Conversely, body features
in sport videos have more pose variations than in pedestrians.
In this sense, tackling various types of postural appearances of
sports players is the main focus and contribution of this work.

Schulz et al. [27] proposed a joint head pose estimator and head
localizer for pedestrians for the risk assessment of car drivers.
Later, Schulz et al. [28] proposed a sequential Bayesian tracking
extension of Ref. [27] with a particle filter. In Ref. [28], they use
a head pose classifier result as the per-frame likelihood of a par-
ticle filter, and jointly predict and update the head location and
head pose by tracking a pedestrian on video. Benfold et al. [26]
used conditional random fields to train the head pose estimator
of pedestrians in an unsupervised manner in a new video scene.
These papers make use of the temporal transition constraints on
head location and also the temporal continuity of the head orien-
tations of pedestrians via filtering. While the head locations can
exist only in the upper region of the detection window because
pedestrians are always standing and walking upright [27], [28],
the head locations of sports players have larger variation because
they often bend their bodies and sometimes dive into opposing
players.

Compared with the Town Dataset setting of Benfold et al. [13],
[26], players in team sports videos have much more random tran-
sitions of the head/body orientation between frames and it is
harder to assume the smoothness of the head/body orientations
between consecutive multiple frames. For this reason, we will
investigate per-frame classification of body orientation in this pa-
per without using a temporal connection while the head tracker is
performed with a Kalman filter, which assumes temporal smooth-
ness of (only) head locations.

Cheng et al. [9] proposed a temporal framework for joint esti-
mation of body orientation and location of the subject pedestrian
using a particle filter with sparse codes of multi-level HOG fea-
tures. Baltieri et al. [11] proposed body orientation estimation for
pedestrians using the mixture representation of Extremely Ran-
domized Trees classifiers. These methods have only been tested
for standing pedestrians, while our method covers even non-
standing bending poses owing to the flexibility of our poselet-
regressor. In addition, this work and our previous work [16] es-

timate the upper body orientation using only upper body HOG
features, while previous papers estimate the (whole) body orien-
tation using the appearance of the whole body.
2.2.1 Joint Estimation of Head and Upper Body Orientation

from Videos
Chen et al. [54] proposed joint tracking of head and body pose

in surveillance videos. They used a particle filter to jointly es-
timate the head and body orientation combined with the move-
ment direction. Later, in Ref. [10], they extended their work to
the semi-supervised learning setting with their own kernel learn-
ing scheme by learning the relationship between the parameters
governing head orientation, body orientation, and movement di-
rection.

Different from Refs. [10] and [54], which leverage the assump-
tion of the lower velocity of pedestrians and combine the velocity
with the body orientation, our method tries to deal with the up-
per body appearances of sports players at higher speeds, which
are already aligned by the head tracker without needing to make
a connection between movement direction and body orientation.
For this reason, good alignment by the head tracker is key in our
proposed method, because we do not depend on the relationship
or a prior from the movement direction and perform only per-
frame body orientation classification.
Poselets: detector of one specific pose

Reference [15] proposed human (partial) pose detectors, pose-
lets, which can be also regarded as a human (partial) pose sil-
houette detector. Poselets have been also used for the middle-
level parts for human pose estimation methods with part-based
models [19]. The poselet framework has an advantage in creat-
ing detectors for side-view poses, which are hard to deal with for
part-based whole-person models [20].

Poselets can be also applied for key-frame extractor such as
Ref. [44] for activity recognition via key-frame responses. How-
ever, poselets cannot detect detailed or in-between poses because
they are discretized detectors. Poselets can only detect discretized
rough poses (See Fig. 2 in Ref. [44] for poselets examples), while
poselets can detect side-view poses that occur often in activity
recognition videos.

3. Overview of Proposed Framework

In this section, we will show the overview of our framework
for estimating the upper body pose of the player: the spine pose

and the body orientation. Figure 4 shows the flowchart of our
proposed framework. Our framework is composed of the follow-
ing three steps:
( 1 ) Tracks the head region in each frame with the head

tracker [13] to estimate the head center location in each
frame.

( 2 ) Estimates the relative pelvis position against the head center
in each frame with the poselet-regressor, using the HOG fea-
tures of the upper body region aligned to the head center as
input. This step results in estimating the spine pose.

( 3 ) Estimates the body orientation with a classifier selected by
the spine angle value of the player. (Optionally: estimates
the head orientation with a head orientation classifier in the
same way as in our previous work [16].)
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Fig. 4 Proposed framework.

Steps (1) and (2) estimate the spine pose st = (ht, pt) where
ht = (xh

t , y
h
t ) is the head location and pt = (xp

t , y
p
t ) is the pelvis

location in each frame t. Step (3) estimates the body orientation
ob

t ∈ {0, 1, . . . , 7} of the player in each frame (Fig. 3 (c)). The
spine angle calculated from the spine pose is used to select one
corresponding upper body orientation classifier f b

s from multiple
body orientation classifiers for each spine angle range (Fig. 8). In
other words, the spine pose acts as a mediator between the steps
(1) and (2) and step (3). We will define the procedures of steps
(1) and (2) in Section 4, then define the procedure of step (3) in
Section 5.

4. Head Tracking and Spine Pose Estimation
with Poselet-regressor

To estimate the relative pelvis position pt = (xp
t , y

p
t ) from the

head center location ht = (xh
t , y

h
t ) estimated by the head tracker at

each frame t, we propose a body spine pose regressor, which we
call the poselet-regressor. Using the head tracker and our poselet-
regressor, our framework can estimate the 2D spine pose of the
player st = (ht, pt) at each frame t of the video by regression (see
Fig. 5).

With the global coordinate head center location ht = (xh
t , y

h
t ) in

a video frame (Fig. 6 (a)), our poselet-regressor first calculates the
multi-level HOG feature xb

t within the upper body region around
the head center location ht (Fig. 6 (b)). Then it estimates the rela-
tive pelvis position p′i = (x′pi , y

′p
i ) from the local coordinate head

center h′t = (0, 0) (Fig. 6 (c)) using xb
t for the random regression

forests input vector. In other words, we use the selected visual
features from the upper body region for this regression.

4.1 Head Tracking
To estimate the head center locations in each frame, we first

perform head tracking for one subject player in a team sports
video. We employed the head tracking approach proposed by
Benfold et al. [13] to track the head region. This method tracks
the head region of a person using tracking-by-detection with a
Kalman filter. It uses a SVM (support vector machines) head rect-
angle detector with HOG features as the likelihood of Kalman fil-

Fig. 5 Local coordinate system for the poselet-regressor and the global co-
ordinate system for the head tracker. The black axes x and y are
the global coordinates and the red axes x′ and y′ in the magnified
player image are the local coordinates. Pelvis position estimation is
performed in these local relative coordinates.

Fig. 6 Estimating procedure of spine pose with head tracker and poselet-
regressor.

ter and uses local feature tracking results to predict the next state.
In our experiments, we trained scene-specific 24 × 24 head de-
tectors for each scene. We regard the center of the tracked head
regions in each frame t as the head location ht used in the later
steps.
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4.2 Poselet-Regressor of Spine Pose
After the head region is estimated in each frame of the video in

the first step, we employ the poselet-regressor to estimate the 2D
spine pose, which consists of the 2D head position h′t = (x′ht , y′ht )
and the 2D pelvis center position p′t = (x′pt , y

′p
t ) in a local coordi-

nate system whose origin h′t = (0, 0) is the global head location
ht = (xh

t , y
h
t ) in each image (Fig. 5). The upper body region for

the poselet-regressor is located 20 pixels to the left and 12 pixels
above the head center location ht (Fig. 3 (a)).

The proposed poselet-regressor does not try to detect segments
of the subject person like the poselets detector [15], [22] or FMP
detector [20]. Instead, our poselet-regressor estimates the con-
tinuous change of the relative joint position (pelvis center) from
the center position (head center) using the selected discriminative
features within the head-center-aligned upper body region HOG
appearances. Adopting this design of relative joint location es-

timation by discarding the detection and segmentation ability of
the original poselets [15], [22], our poselet-regressor can obtain
the relative movement of one joint location from the center joint
of the poselets window in the upper body visual feature space.
Our poselet-regressor can also be regarded as the regressive ver-
sion of the label-grid classifier [25], a visual grid classifier of the
lower body joint location from the pelvis center with HOG-grid
resolution. The center of alignment of the HOG features window
in the label-grid classifier [25] is the pelvis center, while the align-
ment center of the poselet-regressor is the head center position in
this paper.

Given this head-center-aligned upper body region at frame t,
the poselet-regressor estimates the (regressed) 2D pelvis center
location p′t = (x′pt , y

′p
t ) from the head center location h′t = (0, 0).

p′t = (x′pt , y
′p
t ) can be also regarded as an offset vector from the

local origin h′t . We train the poselet-regressor f s(xb
t ) as regres-

sion forests [23] to estimate p′t with the selected features from the
whole HOG feature vector xb

t in the upper body region:

p̂′t = f s(xb
t ) (1)

Figure 7 shows some example results. Here, we assume that the
head center locations in each frame were already tracked by the
head tracker in Section 4.1. We then use the poselet-regressor to
estimate p′t in each frame.

We adopt the same feature vector as Ref. [11], a three-level
pyramid of HOG features within the upper body region as a D

dimensional feature vector xb
t ∈ RD from the W ×H window. The

block size of the HOG is 2 × 2 at every level. In the same way as

Fig. 7 Example results of the relative pelvis position estimation using
poselet-regressor.

in Ref. [11], a dimensionality reduced image (by PCA) is used as
an input for HOG features calculation.

We name our relative pelvis location regressor as the poselet-
regressor because it can be regarded as a regressive version of the
poselets framework [15]. While the original poselets are detec-

tors, our poselet-regressor trains a regressor of the relative pelvis
offset using the upper body visual features, whose head positions
are aligned. Note that one poselet detector is typically trained
from people with many types of clothing and hair styles, while
our poselet-regressor (in this paper *1) is trained from the upper
body regions of different players and poses wearing only one spe-
cific American football or soccer uniform type (see our experi-
mental setting in Section 6).
Training the Poselet-regressor

The poselet-regressor is trained from the dataset Dpose =

{(xb
i , p
′
i ), i = 1 . . . , nb}, where nb denotes the number of samples

in the dataset Dpose, xb
i denotes the feature vector from the up-

per body region aligned with the head center, and p′i denotes the
pelvis center offset from the head center location in local coordi-
nates. As already mentioned, we use regression forests [23] as the
poselet-regressor to train the local pelvis center location p′i in a
continuous 2D image space using the datasetDpose. Each sample
(xb

i , p
′
i ) inDpose is collected and labeled from the videos from the

same match and the players from the same team.
Optionally, the original training dataset Dpose is augmented to

the Daug
pose with some slides of the head center position to make

the poselet-regressor (and the body orientation classifiers in Sec.
5) recognize a slanted upper body appearance. The slide vec-
tor vs = (xs, ys) where xs denotes the x-axis slide value of the
head center position and ys denotes the y-axis slide value of the
head center position. By using slide vectors, head center positions
are augmented while the images in the original Dpose remain the
same. Since our body pose estimators depend on the head-center-
aligned upper body appearance, the drift of the head tracker of-
ten provides a little slanted upper body appearance. Although
HOG [14] has local deformation invariance through block his-
togram quantization, our data augmentation procedure will pro-
vide additional robustness to the not-well-aligned head tracking
results (we test this setting on women’s soccer scenes in Sec-
tion 6.
Potential Advantage of the Poselet-regressor

Figure 7 shows some example results from our poselet-
regressor in our experiment (Section 6). These results show us
two advantages of the design of the poselet-regressor. The first
advantage is that the poselet-regressor realizes spine pose esti-
mation for all types and views of sports player poses, even when
some part-occlusions happen (Fig. 7), because it achieves regres-
sion using only randomly-selected features within a holistic up-
per body region. As discussed in Section 2, part-detector based
methods can estimate poses when the pictorial structure of all

parts can be found. Conversely, our poselet-regressor uses only
head-center-aligned upper body region appearance so that every
upper-body visual features (including part-occluded poses and
side poses) can be trained from the training images. This is a

*1 While poselet-regressor can be learned from people with various types
of clothing, we only use it for one specific clothing type for the team.
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necessary trait for the human pose estimation methods for team
sports videos, because players run right or left with side-view
poses and their arms often disappear from images because of part-
occlusions.

The second advantage of the poselet-regressor is a separate and
sequential estimation of joint locations via relative joint location
estimation (in local coordinates). While FMP [20] and other part-
based detectors need to decide the locations of all local parts si-
multaneously, our poselet-regressor enables part-location estima-
tion one by one with global appearance. This flexibility evades
the necessity of part localization for bone estimation (in our case,
spinal bone) and also achieves the spine pose estimation that most
previous work does not primarily focus on (or which is often ig-
nored). Moreover, by integrating it with head tracking (in this
paper), a better alignment of the body appearance is produced,
which makes the pose estimation problem simpler *2, and can be
done even while tracking the person. The head region has good
rigidity for tracking and achieving good alignment for the pose
estimators, while the previous body orientation estimation work
depends on the pedestrian detection window as alignment.

5. Multiple Body Orientation Classifiers with
Spine Angle Prior

The third and final step in our framework is to estimate the
body orientation using the body orientation classifier with a cor-
responding spine angle range. We train each ns upper body ori-
entation estimator as eight-class random decision forests F b =

{ f b
s , s = 1, . . . , ns} with a training dataset from one team in a

specific scene. Each body orientation classifier f b
s is responsible

for estimating the body orientation ob
t ∈ {0, 1, . . . , 7} (Fig. 3 (c))

within the corresponding spine angle range class using the input
feature vector xb

t at frame t:

ôb
t = f b

s (xb
t ) (2)

After tracking the head region and estimating the spine pose in
the two previous steps (Section 4), we select a s-th class f b

s from

Fig. 8 Spine angle classes. The blue circle is the head center h and the
green circle is the pelvis center p of the subject player. The spine
angle range of the training dataset is divided into five spine angle
classes.

*2 Note that we insist on simplicity for (only) the pose estimation problem
during tracking from low-resolution surveillance videos.

F b to estimate the body orientation according to the spine angle
θt of the player at frame t (Fig. 8).

We use random decision forests [55] to train each upper body
direction classifier using the subdatasets divided by the spine an-
gle value (see Fig. 9). We use the same feature window size of
the poselet-regressor calculated from W × D upper body region
(Section 5.1) for the two-level HOG features of the multiple body
orientation classifiers.

5.1 Learning Multiple Upper Body Orientation Classifiers
by Dividing the Dataset According to the Spine Angle

To estimate the body orientation of the player, we use one clas-
sifier f b

s selected from ns classifiers F b = { f b
s , s = 1, . . . , ns},

where f b
s is a body orientation classifier for each spine angle class

s (Fig. 8).
To train each f b

s , we first prepare the dataset D =

{(xb
i , o

b
i , si), i = 1 . . . , nb} as in Section 4.2, where xb

i is the upper
body region feature vector, ob

i ∈ {0, 1, . . . , 7} is the body orien-
tation label, and si = (hi, pi) is the spine pose label of the i-th
sample in the dataset, respectively. After the learning procedure,
each f b

s uses different features selected from the same upper re-
gion feature xb

i ∈ RD. We also define the spine angle θi on the
image plane as the angle against the x-axis direction. This spine
angle θi can be calculated from the spine pose estimated with the
2D spine pose si (see Fig. 8).

Next, we divide D into ns−subdatasets {Ds, s = 1, . . . , ns} ac-
cording to the angle value θi of each i-th instance in D (Fig. 8).
Spine angle θi space is separated into ns regions, which we call
spine angle classes, according to the spine angle value θi calcu-
lated from hi, pi. With each Ds, we learn f b

s as random decision
forests. This dataset preparation procedure is shown in Fig. 9.

We use ns = 5 by default as showed in Fig. 8. After the prelim-
inary tests with our experimental datasets, we decided to divide
the spine angle θi space into the following five classes:

Fig. 9 Learning multiple body orientation classifiers (random decision
forests) by grouping datasets into the subsets having the same spine
angle range. This conditional classifiers learning makes the random
decision forests easier to select discriminative features for body ori-
entation classification from only the spine pose aligned HOG fea-
tures in each Ds.
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s =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 (60 > θi)

2 (80 ≥ θi > 60)

3 (100 ≥ θi > 80)

4 (120 ≥ θi > 100)

5 (θi > 120)

(3)

At test time, after the value of s was selected using Eq. (3), the
corresponding classifier f b

s was used to estimate the body orien-
tation.

This spine-driven dataset grouping both at training time and
test time makes it easier for each random decision forest to select
more discriminative split functions at each node rather than using
the whole dataset. The reason is that images in one grouped sub-
dataset Ds are more similar and thus it is easier to automatically
select the informative (different) feature dimensions for random
forest learning (see the average images in each subdatasetDs for
each spine angle class in Fig. 9).

Our idea of using spine angle value as a conditional prior for
selecting body orientation classifier was inspired by the condi-
tional regression forests in Ref. [17], but there is a difference.
While Ref. [17] models the conditional prior of the head orien-
tation by selecting the T trees from one holistic random decision
forest for all the head orientations (conditions), our method trains
multiple independent random decision forests for each spine an-
gle range separately and do not use any trees from the differ-
ent conditions. The reason for adopting this different approach
is that the upper body appearance does not have continuous
(manifold-like) feature space along the spine angle because arm
and head appearances are sometimes inconsistent with the spine
angle changes.

6. Experiments

We evaluated our framework with videos from an American
football game and a women’s soccer game. We performed exper-
iments for each pose estimation step, namely (1) head and pelvis
center estimation with head tracker and the pelvis center (Sec-
tion 6.2), and (2) the body orientation estimation (Section 6.3).
All videos were captured at a high place in the stadium with fixed
cameras at 29 fps. In the American football videos, horizontally
moving players are mainly shown. However, in the women’s soc-
cer videos, players often move diagonally (to the goal or the op-
ponents). Hence, we can expect different body orientation statis-
tics for each scene.

In each scene, we prepared our experimental data by dividing
videos into a test dataset and a training dataset. The datasets were
prepared with images and manually annotated labels of the spine
pose and the body orientation. The American football videos
were captured from one match of Panasonic IMPULSE *3, which
is a Japanese professional American football team. The women’s
soccer videos were captured from the match “Waseda-Keio

Game” of the Keio University womens soccer team *4.
We evaluate each of the three steps of our method in the follow-

ing three subsections (Sections 6.1, 6.2, 6.3). We will focus only

*3 http://panasonic.co.jp/es/go-go-impulse/
*4 http://keio-soccer.net/

on the poses of the black-uniformed players in the American foot-
ball videos and focus only on the poses of the brown-uniformed
players in the women’s soccer videos (see the figures for those
uniform colors).

We prepared a test video dataset Dtest with 12 test videos for
the American football game and prepared Dtest with 10 videos
for the women’s soccer game, with 22 test video sequences in
total. Each test video sequence in both games is composed of
80 frames, and we track one player in each video to evaluate our
framework. To evaluate the advantage of using only the upper
body region appearances for human pose estimation, some of the
tests include frames with some lower body occlusions between
players. In addition, to demonstrate the advantages of our body
orientation classifiers conditioned by spine angle class, some of
the tests include bending or twisting poses (where the upper body
orientation and the lower body orientation (movement direction)
are different). Later in Section 6.4, we discuss the effectiveness
of our method for occlusion cases and bending poses by showing
the visualized result images.

For each scene, we independently trained a head detector
(which we will not evaluate), the poselet-regressor of the pelvis
center and the body orientation classifiers from the training
dataset Dtrain with manually labeled poses, which only includes
team players from one specific team. In addition, to overcome
the head-center drift of the head tracker in the soccer scene, we
augmented theDtrain of the soccer scene toDaug

train to train pose es-
timators that also understand shifted examples. We made Daug

train

with slide vectors (−8, 0), (8, 0), (0, 8), (0,−8).
To train the body orientation classifiers with the symmetric im-

ages and labels of the originally labeled samples, we resampled
the symmetric samples using the following procedure. First, we
made the datasetDtrain in specific scenes (e.g., American football
or women’s soccer, in our experiments) by manually labeling the
images from the training videos. Second, we made a flipped copy
of Dtrain as D′train, which is composed of the flipped images and
flipped labels fromDtrain. Finally, we acquired the whole training
datasetD = {Dtrain,D′train}with symmetrically resampled images
and labels. In the American football scenes, about 40 percent of
the images were used in the test videos (tests 2,3,4,10 and 12) *5.
In the soccer scene, we completely separated the test dataset and
the training dataset. Note that again our goal was training scene-
specific (or sport-specific) body orientation estimators that can
deal with bending poses. Hence, we tried a supervised-learning
approach as a first step toward unconstrained sport pose estima-
tors.

We trained and tested our method for one specific team (with
the same clothing but with different body shapes). Dtrain in the
American football scenes includes 16334 (after reflection, origi-
nal dataset includes 8167 samples) feature vectors xb

i calculated
from images and their labels (ob

i , si). Dtrain in the women’s soccer
scene includes 1053 examples, which is small for random deci-
sion forests training. For this reason, we augmented the original

*5 Even though some test sequences were overlapped with the training
dataset, most of the test images in each frame were different from the
ones in the training dataset because tracking provides a shifted upper
body window appearance based on the drift of the head tracker
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with reflections and four slide vectors. After data augmentation,
we obtained 2822 × 5slides = 5265 examples in total). We used
a 48 × 48 upper body region for the American football scenes
and a 64 × 64 upper body region for the women’s soccer scenes,
from which we calculated the feature vectors for both the poselet-
regressor and the body orientation classifiers. For the body ori-
entation classifiers of the women’s soccer scene, we change the
center of the upper body region to the pelvis center estimated by
the poselet-regressor while the center of the upper body region for
the classifiers of American Football scene is the head center esti-
mated by the head tracker (larger window shows the regions for
body orientation classifiers in each figure in this paper). And we
also make the upper body region size for the soccer scene body
orientation classifiers to 64 × 64 in order to include arm regions
of all training samples.

To train five body orientation classifiers in each spine angle
range, we divided the training datasetDtrain (orDaug

train in the soc-
cer scene) into five subdatasets {Ds, s = 1, . . . , 5} and trained each
spine angle class classifier f b

s with Ds independently as in Sec-
tion 5.1. In the American football scenes, eachDs had 934, 4005,
6456, 4005, and 934 examples (16334 in total) respectively. In
the women’s soccer scenes, eachDs had 336, 437, 1216, 437, and
336 images (5265 in total), respectively. For training the Ameri-
can football scene poselet-regressor, Dtrain with 16334 examples
was used. For training the women soccer scene poselet-regressor,
Daug

train with 5265 was used.
We performed the evaluations for players on the lower side of

the field in each scene so that the image scale of the players be-
came almost the same. For the same reason, we also collected
training examples from the players who played on the lower side
of the field. As a result, we could only consider a small range
of scales of the players in the experiments (and also the camera
views and distance).

6.1 Head Tracking
To apply the head tracking algorithm from Ref. [13], we trained

head detectors for each scene as linear SVMs using HOG fea-
tures [14] with 4 × 4 cells within a 24 × 24 pixels window so that
the head region was included in the 50 − −70 percent of the win-
dow size. The first column in Table 1 is the result of the error in
the head tracker for our test dataset. The error in the spine angle
class will be evaluated in the next subsection.

6.2 Spine Pose and Spine Angle Class Precision
We evaluated the precision of the poselet-regressor using the

test dataset from two perspectives: (1) precision of the poselet-
regressor itself; and (2) precision of the assignment of the spine
angle class. As a baseline of (1), we also evaluated the perfor-
mance of the Flexible-Mixtures-of-Parts (FMP) [20] as the head

Table 1 Average estimation error (Euclidean distance in pixels) of the head
center and the pelvis center in each test dataset.

American football women’s soccer

head center (ours) 3.99 (12 tests) 7.68 (11 tests)
head center([20] ) 10.44 (10 tests) 7.40 (9 tests)
pelvis center (ours) 4.03 (12 tests) 6.25 (11 tests)
pelvis center([20] ) 9.75 (10 tests) 7.69 (9 tests)

center and the pelvis center estimator. Since FMP is a person de-
tector, we used the 200× 200 image centered at the head position
from the head tracker to (re-)detect the FMP for this evaluation.
We used software and the default model of FMP provided by the
authors of [20]. We resized the 200×200 image to 400×400 size
so that the FMP model could detect the person with the trained
size.

The first row in Table 1 shows the average error of the head
center locations estimated by the head tracker with our estima-
tors and FMP [20]. The second row in Table 1 is the result of the
pelvis center location estimated by the poselet-regressor from the
tracked head locations in each frame and the results of FMP [20].
Note that in both scenes, some tests are omitted for calculating
the results of FMP (test 2,3,4 in American football and test 5
in women’s soccer). The reason is that the subject player was
not detected by the FMP because of inter-player occlusion. Fig-
ure 10 shows some example results of FMP detection on our test
sequences.

While our approach for estimating the pelvis center location is
two-step estimation (steps (1) and (2)), the average error of the

Fig. 10 Example results of skeletal pose estimation with FMP [20]. The
purple line is the spine pose between the head center and the pelvis
center.
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pelvis locations remains almost half the size of the cell size 8 × 8
of HOG features for the body orientation classifiers input vec-
tor. This makes HOG features pooling effective for estimating
the same output body orientation class as long as the translation
of the upper body window is small. In the American football
scenes, our method predicted accurate spine pose even when the
spine angle is acute or even when the pose is side-view. At the
same time, FMP [20] also shows accurate results for spine pose
estimation (Fig. 10). While the results for the two joints are good
(for our body orientation classification in step 3), all parts of the
FMP do not fit well for the subject person. While torso parts (yel-
low rectangles) and head parts (green rectangles) are well fitted to
the players, arm parts and leg parts are not well fitted because of
the hard occlusions or disappearance of those parts. Hence, FMP
is not valid for our purposes, even though the head center and the
pelvis center seem well fitted.

Next, we evaluated the precisions of the spine-angle classi-
fication of the whole test dataset Dtest. Figure 11 shows the
confusion matrix of the results of the spine angle classification
performed with the whole test dataset Dtest in each scene type.
American football videos include mainly standing poses (spine
class 2,3,4) and few bending poses (spine class 1,5). There are
some samples whose true class 3 is wrongly classified as one of
the neighboring classes 2 and 4. The results for the women’s soc-
cer videos shows the accuracy of the spine angle classification:
78.1 percent, which is higher than the results for the American
football scene (54.7 percent).

Fig. 11 Confusion matrices of the spine angle class estimation.

While our spine angle range strategy reduces the effects of
the spine pose estimation error by discretizing the spine angle,
higher accuracy of the assignment of the spine angle class s also
strengthens the accuracy of the spine angle class prior for select-
ing the appropriate body orientation classifier f b

s . In this sense,
we would prefer the more precise poselet-regressor, while this
might be difficult for our problem setting with very low-resolution
videos.

6.3 Body Orientation Precision
We evaluated the precision of the body orientation classifiers

(Section 5) using the test dataset. We compared the result of pro-
posed body orientation classifiers to the result of our body orien-
tation classifier in our previous work [16], which uses only one
body orientation classifier for the whole training dataset. To test
a fair comparison in terms of alignment, we trained body ori-
entation classifiers for the women’s soccer scenes with a pelvis-
aligned window, where the pelvis is located at (32, 48) from the
top left corner of the 64 × 64 window (see Fig. 15).

To compare with the body orientation classifier of [16], we
also trained one body orientation classifier with random decision
forests using the overall training datasetDtrain for American foot-
ball scenes,Daug

train for the women’s soccer scenes. As described in
Section 4.2, we used the input feature vector for random forests
with the 3-level pyramid HOG with a PCA-reduced one-channel
image for our proposed method. For Ref. [16], we used a one-
level pyramid HOG as in Ref. [16].

For the American football scenes, we used the spine angle class
boundaries [60, 80, 100, 120] between two neighboring classes
of Eq. (3). For the soccer scenes, we used different boundaries
[70, 80, 100, 110] because the spine angles of the soccer players
are not so acute as those of the American football players.

We compared the results of the proposed body orientation clas-
sifiers with the spine angle prior and the body orientation classi-
fier of [16] from two perspectives with the same tracked results
of spine poses: a multi-class classification perspective and a body
orientation angle estimation perspective.
Multi-Class Classification

We first evaluated our body orientation classifiers as a multi-
class classifier. Figure 12 shows the body orientation class distri-
bution, where 0 degrees is equivalent to class 4 and 180 degrees
is equivalent to class 0 (see Fig. 3 (c) for the class index assign-
ment). Since most of the subject players (who are mainly run-
ning back and wide receivers) run horizontally in the American

Fig. 12 Body orientation class distribution (histogram) in each type of
scene.
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football scenes (Fig. 12 (a)), most of the body orientations are in
horizontal directions (class 0 (left) or class 4 (right)) and there
are only few diagonal orientations. In the women’s soccer scenes
(Fig. 12 (b)), the target brown clothing team is attacking to the
right direction in the field. Most of the frames are in the right
direction, with some diagonal orientations.

Figure 13 shows the confusion matrices of the classification
results using the body pose classifier in Ref. [16] (Fig. 13 (a) and
(c)), and the body orientation classifiers proposed in this paper
(Fig. 13 (b) and (d)) in each scene. The confusion matrices for the
proposed method show slightly more precise results than those of
Ref. [16], while the class prediction accuracy is almost the same.
However, Fig. 13 (c) shows a little more misclassification (i.e.,
predicted class 1 vs. true class 5 is salient in Fig. 13 (c)) while
Fig. 13 (d) shows the more misclassification to the neighborhood
classes.
Orientation Angle Error

As also evaluated in the other papers for head or body orienta-
tion estimation reviewed in Section 2, we evaluated the average
angle error of the estimated body orientation angle from the same
test results.

Table 2 shows the average estimation error of the body orien-
tation angle in degrees for the test dataset Dtest by our proposed
method and our previous method [16] in each type of scene. Al-
though the average errors of the proposed method shows that it
performs the better than Ref. [16] in Table 2 in both scene types,
this does not give us a good understanding of the overall results
because the precision and accuracy are almost the same between
the two methods. Hence, we will visualize many example re-
sults in specific tests and situations in the next Section 6.4 with

Fig. 13 Confusion matrices of body orientation estimation results.

Table 2 Average estimation error (in degree) of the body orientation in each
scene dataset. The baseline is our previous work [16].

Proposed Ref. [16]

American football scenes 20.90 23.57
Women’s soccer scenes 39.99 47.02

further detailed discussion to provide evidence for each specific
challenge.

6.4 Discussions
Running Poses

Since running is the most frequent action in team sports videos,
the robustness of estimating running poses is the most important
for evaluating the human pose estimation method for team sports.
Figure 14 shows some results from the proposed method and
Ref. [16] in seven consecutive frames in the test dataset while the
player is running (tests 1,2,3,4 in the American football scenes).
Figure 14 (a) (test 1) is a typical example of a standard straight
running case, which occurs very often in team sports videos. Fig-
ure 14 (b) (test 3) shows the results when the movement direction
of the player is different from the body orientation (the player is
moving to the left while the body orientation is in the upward di-
rection). This capability of our framework is very important for
team sports videos, where players often look at different direc-
tions from their movement direction. Figure 14 (c) (test 4) shows
the results of twisting behavior (body rotation against the camera
pose) during running. Even though Ref. [16] shows good results,
the proposed method gives perfect results during the transition
of body orientation (see 4th frame from the left on both rows in
Fig. 14 (d)). Figure 15 shows some key frames in the women’s
soccer tests. Figure 15 (a) and (c) (test1 and test7) shows run-
ning sequence examples. Compared with the American football
scenes, the soccer scenes have more diagonally running players
and diagonal body orientations: classes 1, 3, 5, and 7 in Fig. 3 (c).
Occlusions and Using only the Upper Body Region

Figure 16 shows some cases with hard occlusions within the
upper body region. Since our method only uses the upper body
region (larger blue rectangle) for body pose estimation, the up-
per body poses are estimated correctly (Fig. 16 (b)). However,
estimation of the upper body orientation tends to fail if most
of the background becomes an unknown image pattern for the
poselet-regressor and body orientation classifiers (Fig. 16 (a) and
(c)). Even though the background in our videos consists of sim-
ple green flat texture and the random decision forests can select
the features mostly of the foreground (player) HOG cells after the
feature selection, our upper body pose estimation results become
unstable when hard occlusions occur because we have not yet
built the foreground-only selection. This is a very important prob-
lem in the application of our framework to other sports videos
where the background consists of more complex textures.

Figure 15 (d) (test10 for women’s soccer scenes) is also an ex-
ample of the advantage of the usage of only the upper body re-
gion’s appearance. Our method can estimate the upper body pose
of soccer players even as they interact with the ball with their
legs, because the ball does not affect the estimation at all as long
as it does not enter the upper body region.
Bending Poses

Figure 17 shows the results of bending (side-view) poses. If
the spine pose is estimated correctly, the upper body orientation
is also classified correctly (Fig. 17 (a) and (c)). If the drifts of the
head tracker become large, the poselet-regressor tends to provide
an incorrect pelvis center location and the upper body orientation
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Fig. 14 Results from the American football scenes. The first row shows the results of the proposed
method and the second row shows the method of Ref. [16].

classifiers tend to fail because of the wrongly estimated spine an-
gle class (Fig. 17 (b) and (d)). These spine pose estimations while
bending from side-view monocular videos (not only for pedestri-

ans) are novel outputs in the computer vision field, while having
some errors in our experiments.
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Fig. 15 Results from women’s soccer scenes. The first row shows the results of the proposed method and
the second row shows the method of Ref. [16].

The Effect of the Alignment of the Upper Body Region and
the Selected Features.

Our body orientation method depends on the alignment of the

tracker and the selected features in each spine angle. Figure 18
shows some examples of the effect of the alignment of the head
tracker and pelvis center estimation. In Fig. 18 (a) and (b), the
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Fig. 16 Results during occlusion between players.

Fig. 17 Sample results of bending poses from American football tests.

head center location is not good. This misalignment causes the
misclassification of the body orientation in Fig. 18 (b), while the
body orientation is correct in Fig. 18 (a) because the misalignment
of the head is small (for 8 × 8 pooling of HOG features for the
poselet-regressor and the body orientation classifiers).

In Fig. 18 (c) and (d), the head tracker is good enough. How-
ever, in Fig. 18 (d), the pelvis estimation is not accurate and our
algorithm selects the wrong spine angle class from the misaligned
upper body region. There is a tradeoff between the selected fea-
tures of each spine angles class vs. alignment of the upper body
region and the precision of the pelvis center location.
Models for One Specific Team

Our evaluation for American football videos shows the robust-
ness of our method mainly for running poses, which account for
the vast majority of player poses not only in American football
but also in all other team sports. Compared with FMP [20] or
other frontal upper body estimators that must know the various
types of clothing and hair styles, human pose estimators for team

Fig. 18 Effect of the alignment of the upper body region for body orienta-
tion estimation.

sports (such as our method) only need to know the appearance of
the two team’s uniforms for a specific match. In this sense, al-
though our method uses fully supervised models for one specific
team (or uniform), our experiments shows that our classifiers are
robust enough to estimate the upper body poses of the target team
players.

7. Conclusion

We proposed an upper body pose estimation framework for
team sports videos, which estimates the upper body orientation
and the spine pose of one player from the tracked and aligned
upper body appearances and feature selection with random deci-
sion forests. Our method employs a scene-specific head tracker,
a spine pose regressor (poselet-regressor), and body orientation
classifiers conditioned by the spine angle. Both our poselet-
regressor and the conditioned body orientation classifiers are
trained from the player images of the same team, and can be
used for the players wearing the same uniform (or performing the
same sports actions in the other scenes). Our alignment-based
body orientation classification, guided by the 2D spine pose, can
predict not only the body orientation but also the 2D spine pose
even when hard-occlusions or part disappearance occurs, because
it uses a few selected features within the aligned upper body win-
dow. This alignment-based pose estimation framework, is suit-
able for side view running poses as [25] and suitable for upper
body bending poses which both frequently appear in team sports
videos.

Moreover, our previous method [16] proposed a rough conver-
sion of a 2D spine pose to a 3D pose by combining the 2D spine
pose with horizontal body orientation recognition (Fig. 3 (b)).
This means that the upper body poses estimated by the proposed
method can be also used for generating (approximate) 3D upper
body pose information as Ref. [16] does.

Future work includes upper body orientation estimation us-
ing team contexts such as movement directions of all players
on the same team or their common attending direction. In ad-
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dition, 3D geometry of the scene and players should be consid-
ered to restrict the variation of the human appearance on images.
Also, we would like to utilize the spine pose information esti-
mated from our poselet-regressor as a mid-level feature for ac-
tion recognition, such as the understanding of defensive behavior
from bending poses or the team activity analysis as proposed in
Refs. [29], [30], [31] for surveillance.

Acknowledgments Authors would like to thank Japan
American Football Association for providing the American foot-
ball scene videos and also thank Keio University soccer team for
providing the women soccer scene videos. Authors would like to
thank the editor and reviewers’ valuable comments.

References

[1] Carr, P., Sheikh, Y. and Matthews, I.: Monocular object detection us-
ing 3d geometric primitives, Computer Vision–ECCV 2012, pp.864–
878, Springer (2012).

[2] Fleuret, F., Berclaz, J., Lengagne, R. and Fua, P.: Multicamera peo-
ple tracking with a probabilistic occupancy map, IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol.30, No.2, pp.267–282 (2008).

[3] Atmosukarto, I., Ghanem, B., Ahuja, S., Muthuswamy, K. and Ahuja,
N.: Automatic recognition of offensive team formation in american
football plays, 2013 IEEE Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pp.991–998, IEEE (2013).

[4] Bialkowski, A., Lucey, P., Carr, P., Denman, S., Matthews, I. and
Sridharan, S.: Recognising team activities from noisy data, 2013 IEEE
Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp.984–990, IEEE (2013).

[5] Lan, T., Sigal, L. and Mori, G.: Social roles in hierarchical models
for human activity recognition, 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp.1354–1361, IEEE (2012).

[6] Wang, Z., Shi, Q., Shen, C. and van den Hengel, A.: Bilinear Program-
ming for Human Activity Recognition with Unknown MRF Graphs,
2013 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp.1690–1697, IEEE (2013).

[7] Kim, K., Grundmann, M., Shamir, A., Matthews, I., Hodgins, J.
and Essa, I.: Motion fields to predict play evolution in dynamic
sport scenes, 2010 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.840–847, IEEE (2010).

[8] Choi, W., Shahid, K. and Savarese, S.: What are they doing?: Collec-
tive activity classification using spatio-temporal relationship among
people, 2009 IEEE 12th International Conference on Computer Vision
Workshops (ICCV Workshops), pp.1282–1289, IEEE (2009).

[9] Chen, C., Heili, A. and Odobez, J.-M.: Combined estimation of loca-
tion and body pose in surveillance video, Advanced Video and Signal
Based Surveillance (2011).

[10] Chen, C. and Odobez, J.: We are not contortionists: Coupled adap-
tive learning for head and body orientation estimation in surveillance
video, 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), pp.1544–1551, IEEE (2012).

[11] Baltieri, D., Vezzani, R. and Cucchiara, R.: People orientation recog-
nition by mixtures of wrapped distributions on random trees, Com-
puter Vision–ECCV 2012, pp.270–283, Springer (2012).

[12] Andriluka, M., Roth, S. and Schiele, B.: Monocular 3D Pose Estima-
tion and Tracking by Detection, IEEE Conference on Computer Vision
and Pattern Recognition, 2010, CVPR 2010, IEEE (2010).

[13] Benfold, B. and Reid, I.: Guiding Visual Surveillance by Tracking
Human Attention., BMVC, pp.1–11 (2009).

[14] Dalal, N. and Triggs, B.: Histograms of Oriented Gradients for Human
Detection, Computer Vision and Pattern Recognition, Vol.1, pp.886–
893 (2005).

[15] Bourdev, L. and Malik, J.: Poselets: Body part detectors trained using
3d human pose annotations, 2009 IEEE 12th International Conference
on Computer Vision, pp.1365–1372, IEEE (2009).

[16] Hayashi, M., Yamamoto, T., Ohshima, K., Tanabiki, M. and Aoki, Y.:
Head and Upper Body Pose Estimation in Team Sport Videos, 2013
2nd IAPR Asian Conference on Pattern Recognition (ACPR), pp.754–
759, IEEE (2013).

[17] Dantone, M., Gall, J., Fanelli, G. and Van Gool, L.: Real-time fa-
cial feature detection using conditional regression forests, 2012 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR),
pp.2578–2585, IEEE (2012).

[18] Sun, M., Kohli, P. and Shotton, J.: Conditional regression forests for
human pose estimation, 2012 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp.3394–3401, IEEE (2012).
[19] Wang, Y., Tran, D. and Liao, Z.: Learning hierarchical poselets for hu-

man parsing, 2011 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.1705–1712, IEEE (2011).

[20] Yang, Y. and Ramanan, D.: Articulated pose estimation with flexi-
ble mixtures-of-parts, 2011 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.1385–1392, IEEE (2011).

[21] Pishchulin, L., Andriluka, M., Gehler, P. and Schiele, B.: Poselet con-
ditioned pictorial structures, 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pp.588–595, IEEE (2013).

[22] Bourdev, L., Maji, S., Brox, T. and Malik, J.: Detecting people us-
ing mutually consistent poselet activations, Computer Vision–ECCV
2010, pp.168–181, Springer (2010).

[23] Criminisi, A., Shotton, J. and Konukoglu, E.: Decision forests: A uni-
fied framework for classification, regression, density estimation, mani-
fold learning and semi-supervised learning, Foundations and Trends R©
in Computer Graphics and Vision, Vol.7, No.2–3, pp.81–227 (2012).

[24] Maji, S., Bourdev, L. and Malik, J.: Action recognition from a dis-
tributed representation of pose and appearance, 2011 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp.3177–
3184, IEEE (2011).

[25] Hayashi, M., Oshima, K. and M.T.Y.A.: Lower Body Pose Estima-
tion in Team Sports Videos Using Label-Grid Classifier Integrated
with Tracking-by-Detection, IPSJ Transactions on Computer Vision
and Applications, Vol.7, No.1, pp.18–30 (2015).

[26] Benfold, B. and Reid, I.: Unsupervised learning of a scene-specific
coarse gaze estimator, International Conference on Computer Vision,
pp.2344–2351 (2011).

[27] Schulz, A., Damer, N., Fischer, M. and Stiefelhagen, R.: Combined
Head Localization and Head Pose Estimation for Video–Based Ad-
vanced Driver Assistance Systems, Pattern Recognition, pp.51–60,
Springer (2011).

[28] Schulz, A. and Stiefelhagen, R.: Video-based pedestrian head pose
estimation for risk assessment, 2012 15th International IEEE Con-
ference on Intelligent Transportation Systems (ITSC), pp.1771–1776,
IEEE (2012).

[29] Lan, T., Wang, Y., Yang, W., Robinovitch, S.N. and Mori, G.: Dis-
criminative latent models for recognizing contextual group activities,
IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.34, No.8,
pp.1549–1562 (2012).

[30] Chamveha, I., Sugano, Y., Sato, Y. and Sugimoto, A.: Social Group
Discovery from Surveillance Videos: A Data-Driven Approach with
Attention-Based Cues, BMVC (2013).

[31] Choi, W. and Savarese, S.: A unified framework for multi-target track-
ing and collective activity recognition, Computer Vision–ECCV 2012,
pp.215–230, Springer (2012).

[32] Eichner, M., Marin-Jimenez, M., Zisserman, A. and Ferrari, V.: 2d
articulated human pose estimation and retrieval in (almost) uncon-
strained still images, International journal of computer vision, Vol.99,
No.2, pp.190–214 (2012).

[33] Bourdev, L., Maji, S. and Malik, J.: Describing People: Poselet-Based
Attribute Classification, International Conference on Computer Vision
(ICCV), (online), available from 〈http://www.eecs.berkeley.edu/
lbourdev/poselets〉 (2011).

[34] Patron-Perez, A., Marszalek, M., Reid, I. and Zisserman, A.: Struc-
tured learning of human interactions in TV shows, IEEE Trans. Pat-
tern Analysis and Machine Intelligence, Vol.34, No.12, pp.2441–2453
(2012).

[35] Ramanathan, V., Yao, B. and Fei-Fei, L.: Social role discovery in hu-
man events, 2013 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pp.2475–2482, IEEE (2013).

[36] Yao, B. and Fei-Fei, L.: Modeling mutual context of object and human
pose in human-object interaction activities, 2010 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp.17–24, IEEE
(2010).

[37] Yao, B., Ma, J. and Fei-Fei, L.: Discovering object functionality,
Submitted to the IEEE International Conference on Computer Vision
(ICCV) (2013).

[38] Felzenszwalb, P.F. and Huttenlocher, D.P.: Pictorial structures for ob-
ject recognition, International Journal of Computer Vision, Vol.61,
No.1, pp.55–79 (2005).

[39] Andriluka, M., Roth, S. and Schiele, B.: Pictorial structures revis-
ited: People detection and articulated pose estimation, IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2009, CVPR 2009,
pp.1014–1021, IEEE (2009).

[40] Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A. and Ramanan,
D.: Object Detection with Discriminatively Trained Part-Based Mod-
els, IEEE Transactions on Pattern Analysis and Machine Intelligence,
Vol.32, pp.1627–1645 (2010).

[41] Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M.,
Blake, A., Cook, M. and Moore, R.: Real-time human pose recogni-

c© 2015 Information Processing Society of Japan 136



IPSJ Transactions on Computer Vision and Applications Vol.7 121–137 (Oct. 2015)

tion in parts from single depth images, Comm. ACM, Vol.56, No.1,
pp.116–124 (2013).

[42] Kazemi, V., Burenius, M., Azizpour, H. and Sullivan, J.: Multiview
body part recognition with random forests, British Machine Vision
Conference (2013).

[43] Belagiannis, V., Amin, S., Andriluka, M., Schiele, B., Navab, N. and
Ilic, S.: 3d pictorial structures for multiple human pose estimation,
CVPR, IEEE (2014).

[44] Raptis, M. and Sigal, L.: Poselet key-framing: A model for human
activity recognition, 2013 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp.2650–2657, IEEE, (2013).

[45] Ek, C.H., Torr, P.H. and Lawrence, N.D.: Gaussian process latent vari-
able models for human pose estimation, Machine learning for multi-
modal interaction, pp.132–143, Springer (2008).

[46] Jaeggli, T., Koller-Meier, E. and Van Gool, L.: Learning generative
models for multi-activity body pose estimation, International Journal
of Computer Vision, Vol.83, No.2, pp.121–134 (2009).

[47] Urtasun, R., Fleet, D.J. and Fua, P.: 3D people tracking with Gaus-
sian process dynamical models, 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition, Vol.1, pp.238–245,
IEEE (2006).

[48] Andriluka, M., Roth, S. and Schiele, B.: People-tracking-by-detection
and people-detection-by-tracking, IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2008, CVPR 2008, pp.1–8, IEEE
(2008).

[49] Han, J. and Bhanu, B.: Individual recognition using gait energy im-
age, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol.28,
No.2, pp.316–322 (2006).

[50] Sugano, Y., Matsushita, Y. and Sato, Y.: Learning-by-synthesis for
appearance-based 3d gaze estimation, 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp.1821–1828, IEEE
(2014).

[51] Dollár, P., Welinder, P. and Perona, P.: Cascaded pose regression,
2010 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp.1078–1085, IEEE (2010).

[52] Benfold, B. and Reid, I.: Colour Invariant Head Pose Classification in
Low Resolution Video., BMVC, pp.1–10 (2008).

[53] Chamveha, I., Sugano, Y., Sugimura, D., Siriteerakul, T., Okabe, T.,
Sato, Y. and Sugimoto, A.: Appearance-based head pose estimation
with scene-specific adaptation, Proc. IEEE International Workshop on
Visual Surveillance (VS2011), pp.1713–1720 (Nov. 2011).

[54] Chen, C., Heili, A. and Odobez, J.-M.: A joint estimation of head
and body orientation cues in surveillance video, 2011 IEEE Interna-
tional Conference on Computer Vision Workshops (ICCV Workshops),
pp.860–867, IEEE (2011).

[55] Breiman, L.: Random forests, Machine learning, Vol.45, No.1, pp.5–
32 (2001).

Masaki Hayashi received his M.S. de-
gree in Computer Vision and Image Pro-
cessing from Keio University in 2006.
Since 2012, he has been a Ph.D. candidate
at Keio University. His research interests
are video-based human pose estimation,
activity recognition, and attention recog-
nition, especially for team sports videos.

Kyoko Oshima received her B.A. of Lib-
eral Arts from International Christian Uni-
versity in 1992. She is a staff engineer in
Panasonic Corporation and works on re-
search and development of computer vi-
sion systems.

Masamoto Tanabiki received his M.S.
degree in electrical engineering from
Waseda University in 1998. His research
interests are video-based human tracking
and pose estimation, especially for secu-
rity, business intelligence, and sports.

Yoshimitsu Aoki is an Associate Profes-
sor, Department of Electronics & Elec-
trical Engineering, Keio University. He
received his Ph.D. in Engineering from
Waseda University in 2001. From 2002
to 2008, he was an associate professor in
Shibaura Institute of Technology. Since
2008, he has been an associate professor

at Department of Electronics & Electrical Engineering in Keio
University. He performs research in the areas of Computer Vi-
sion, Pattern Recognition, and Media Sensing/Understanding.

(Communicated by Slobodan Ilic)

c© 2015 Information Processing Society of Japan 137


