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Abstract: Over the past few years, convolutional neural networks (CNN) have set the state of the art in a wide variety
of supervised computer vision problems. Most research effort has focused on single-label classification, due to the
availability of the large scale ImageNet dataset. Via pre-training on this dataset, CNNs have also shown the ability
to outperform traditional methods for multi-label classification. Such methods, however, typically require evaluating
many expensive forward passes to produce a multi-label distribution. Furthermore, due to the lack of a large scale
multi-label dataset, little effort has been invested into training CNNs from scratch with multi-label data. In this paper,
we address both issues by introducing a multi-label cost function adequate for deep CNNs, and a prediction method
requiring only a single forward pass to produce multi-label predictions. We show the performance of our method on a
newly introduced large scale multi-label dataset of animation images. Here, our method reaches 75.1% precision and
66.5% accuracy, making it suitable for automated annotation in practice. Additionally, we apply our method to the
Pascal VOC 2007 dataset of natural images, and show that our prediction method outperforms a comparable model for
a fraction of the computational cost.
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1. Introduction

First introduced by Fukushima [3] and refined by LeCun et
al. [11], CNNs have made breakthroughs in the recent past for
single label natural image classification [10], [16] thanks to the
availability of larger annotated datasets, stronger regularization
techniques such as dropout [8], rectified linear units (ReLU) and
by leveraging the parallel computing power of GPUs and com-
puter clusters [2].

More recently, CNNs have been successfully applied to multi-
label image classification by Wei et al. [15] via pre-training on the
ImageNet dataset and using pooling over many expensive object
hypotheses. Building upon this work, we introduce a method to
train a CNN from scratch with a large scale multi-label dataset,
and a computationally cheap method to produce high quality
multi-label predictions.

In Section 2, we detail the specifics of our method. We present
a multi-label cost function which allows us to output a confidence
value for each label. Further, we introduce an efficient prediction
method which propagates confidence values across multiple scale
and uses spatial information to prune unnecessary labels.

In Section 3, we introduce our large scale, multi-label dataset
of animation images. We describe our data collection and la-
belling methodology, which allowed us to obtain “high enough”
quality ground truth with very few resources by relying on

1 Graduate School of Design, Kyushu University, Fukuoka 815–8540,
Japan

2 Faculty of Design, Kyushu University, Fukuoka 815–8540, Japan
a) alexis.vallet@gmail.com
b) sakamoto@design.kyushu-u.ac.jp

community-checked tags.
In Section 4, we measure the performance of our method on

both this dataset of animation images and the Pascal natural im-
ages dataset.

2. A Multi-label Convolutional Neural Net-
work for Efficient and Accurate Predictions

In this section, we will describe the details of our method. Our
algorithm is based on mini-batch stochastic gradient descent, an
iterative method which works not with the entire training set but
rather with small batches of images randomly picked from the
training set. At iteration t ∈ N∗ we consider a training batch
Dt = {(I1, Y1), ..., (Int , Ynt )} where nt ∈ N∗ is the number of sam-
ples in batch Dt, and for all i ∈ {1, ..., nt}, Ii is a color image de-
picting one or multiple characters, while Yi ⊆ L is a set of labels
representing the names of the characters depicted in Ii (as strings
for instance). L is the finite set of all possible labels, which we
conflate with {1, ..., l} where l = |L| for notational convenience
with matrix notation. When we are talking about a single batch
and there is no possible confusion, we will denote n = nt the num-
ber of samples in the batch. Also for convenience in notation, we
will denote images, feature maps and convolution filters in chan-
nel, row and column notation - i.e., an image with d channels, r

columns and c rows is a 3 dimensional array in Rd×r×c.

2.1 Preprocessing
We perform a minimal amount of preprocessing and some

label-preserving transformations on the images prior to training
or prediction, mostly following the method used in Krizhevsky et
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al. [10].
2.1.1 Resizing and Pixel Value Scaling

All images are resized to 256 pixels minimum dimension, us-
ing OpenCV’s pixel area resizing method. Further, pixel values
are converted from the integer range {0, ..., 255} to the [0, 1] single
precision floating point range by dividing them by 255, to avoid
possible feature scaling issues when training our network.
2.1.2 Mean Subtraction

To obtain input features with (roughly) 0 mean, we compute
the mean pixel value across all images in the training set. We
then subtract this value from each image. At test time, we sub-
tract the same mean computed from the training data to all test
images. Note that, unlike the method in Ref. [10], we do not crop
images to the same size at this point, which allows images to have
varying aspect ratios.
2.1.3 Random Crops

As our algorithm requires images of fixed dimension, each time
an image is picked during training we choose a random crop of
the image of size 256 by 256 pixels. This makes the size of inputs
fixed at training time, allowing much more efficient processing of
mini-batches on the GPU. It also helps against over-fitting.
2.1.4 Random Flips

Each time an image crop is picked during training, we flip it
horizontally with probability 0.5, once again in order to combat
over-fitting.

2.2 Network Architecture
Our CNN architecture is composed of the following types of

layers:
• Convolutional layers, which given an input feature map (an

image in the case of the first layer) I ∈ Rd×r×c applies a col-
lection of k convolution filters Fi ∈ Rd×r′×c′ for i ∈ {1, ..., k}.
The result of the convolution of each filter with the feature
maps plus a bias vector b ∈ Rk with ReLU non-linearity x �→
max(0, x) is stored into feature maps I′ ∈ Rk×(r−r′+1)×(c−c′+1),
such that for i ∈ {1, ..., k}:

I′i = max(0, I ∗ Fi + b1T
k ).

Where 1k ∈ Rk denotes the column vector of all ones with k

coefficients. Strided convolution means the convolution ker-
nels are applied with a stride on the input feature maps, and
not at every possible position.

• Max-pooling layers, given input feature maps I ∈ Rd×r×c

and a pooling window of size r′ × c′, only pick the maxi-
mum value for each individual feature map under this win-
dow. This window is applied over each input feature map,
possibly with a stride.

• Fully-connected layers, which are just linear layers followed
by an element-wise ReLU non-linearity. The number of
units corresponds to the number of desired outputs.

• Dropout layers, which following a fully-connected layer ran-
domly sets to 0 some outputs with a given probability for
each time a sample is presented to the network during train-
ing.

Our network, like some recent deep CNNs [12], [14], uses
global average pooling between convolutional layers and fully-

Table 1 Full architecture of our CNN, used on our dataset of animation im-
ages. We numbered only the weight layers. The layers on the same
line of the test and training architectures share the same weights.

Layer Architecture

1 Convolutional, 64 7 × 7 filters, stride 2, padding 3
Max pooling, 3 × 3 window and stride 2

2 Convolutional, 128 3 × 3 filters, stride 2 and padding 1

3 to 6 Convolutional, 128 3 × 3 filters and padding 1
Max pooling, 3 × 3 window and stride 2

7 to 11 Convolutional, 256 3 × 3 filters and padding 1
Max pooling, 3 × 3 window and stride 2

12 to 16 Convolutional, 512 3 × 3 filters and padding 1

Layer Training architecture Test architecture
Global average pooling

17 Fully connected, 4096 units Convolutional, 4096 1 × 1 filters
Dropout, drop probability 0.5 Dropout, drop probability 0.5

18 Fully connected, 4096 units Convolutional, 4096 1 × 1 filters
Dropout, drop probability 0.5 Dropout, drop probability 0.5

19 Fully connected, 115 units Convolutional, 115 1 × 1 filters

connected layers at training time. This forces the network to pro-
duce confidence maps for each output class. The key insight here
is that adding fully connected layers on top of this global average
pooling layer does not change that fact; indeed, one simply need
to remove the average pooling layer entirely, and apply the FC
layers “pixel-wise” on each output feature maps to get the final
confidence maps. This “pixel-wise” operation is precisely a 1× 1
convolution which shares the weights of the corresponding fully
connected layer.

This equivalence between fully connected layers and 1×1 con-
volutions in the global average pooling setting allows us to use 2
different architectures for training and testing. At training time,
the cost function only requires a single scalar confidence for each
label and each sample. It would therefore be computationally
wasteful to compute 1 × 1 convolutions over entire feature maps.
We simply use global average pooling to discard spatial informa-
tion entirely, then apply the fully connected layers to this single
output value. At test time, our prediction method uses spatial in-
formation to prune labels (see Section 2.6), and so we convert the
weights previously trained in the fully connected layers for use in
1 × 1 convolutions.

For full details about our CNN architecture, see Table 1. For
notational convenience, as it would be unwieldy to manipulate
all the parameters of the network explicitly, we denote W ∈ Rm

the vectorized, concatenated parameters of all weight layers in
our network. In our case, it is the vectorized concatenation of all
filters and biases from convolutional layers, as well as weights
and biases from linear and fully-connected layers. We denote
C(W) ∈ Rn×l, the output of our network with weights W on a
given training batch, which represent confidence values for each
sample in the batch and each class.

2.3 A Multi-label Error Function
The softmax used in most deep CNNs is designed to output

probabilities, which is desirable for single-label classification.
One can then use the multinomial logistic regression (MLR) cost
function very straightforwardly to train the network.

In the case of multi-label classification though, probability out-
puts are undesirable - rather, we would like to output confidence
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scores for each possible label. Multi-label cost functions have
been proposed for neural networks in the past, such as Back
Propagation for Multi-Label Learning (BP-MLL) by Zhang et
al. [17], which we found difficult to use. Indeed, switching from
the MLR cost function to BP-MLL changes drastically the range
of values the cost and its gradient can take. This in turns requires
finding new hyper-parameters both for the network architecture
and the optimization procedure. Finding new hyper-parameters
is usually done through (cross) validation, which is somewhat
impractical with deep CNNs which usually takes weeks to train.
Therefore we attempted to stay as close as possible to the usual
MLR cost function. We used the following error function Ei for
a given sample i:

Ei(W) = − log

(∑
j∈Yi

exp(C(W)i, j)∑
j∈L exp(C(W)i, j)

)

which generalizes the MLR error function to multiple labels. The
final cost function is the mean of the error for all training samples
in a mini-batch:

E(W) =
1
n

n∑
i=1

Ei

Note that, while the error function E(W) of a CNN with ReLU
non-linearity and/or max-pooling is non-differentiable with re-
gards to W, it is still sub-differentiable, and by abuse of language
we will use the term “the gradient” to refer to any sub-gradient of
the error function in the rest of the text.

2.4 Weights Initialization
Although many successful deep CNNs for object recognition

used random Gaussian initial weights with hand-tuned standard
deviations [10], [16], we were unable to train our network with
this initialization procedure - the training error never decreased.

We speculated that the smaller number of labels (compared to
ImageNet) produced a bottleneck at the end of the network, hin-
dering proper back-propagation of gradients. The initialization
procedure recommended by Glorot et al. [5] was designed specif-
ically for proper forward and backward propagation in the net-
work, which is why we attempted to use it. Although their deriva-
tion is specific to sigmoid and hyperbolic tangent activation func-
tions, we found empirically that it works well in practice with
rectified linear activation functions as well.

After switching to this procedure, we found empirically that
training was taking place by observing the training error going
down much faster. For that reason, this is the weight initialization
we ended up using. We refer to Ref. [5] for more details, as it gen-
eralizes to convolutional layers and dropout-regularized layers in
a straightforward fashion.

Biases were initialized to 0 for the lowest and uppermost layers
- we refer to a layer as lower when it is closer to the image, and
upper when it is closer to the output. To force most hidden units
to be active at the start of learning, we initialize the biases of all
other layers to 1.

2.5 Training
Once initialized, we train our network using a variation on

the RMSprop algorithm [7]. RMSprop is basically mini-batch
stochastic gradient descent (SGD), where the gradient of the er-
ror for a given mini-batch with regards to weights Wt at a given
iteration t is divided by a running estimate of the mean gradient
magnitude over previous iterations. For that, we keep track of a
squared gradient magnitude estimate separately for each of the m

weights of the network in a vector Msqrt ∈ Rm.
We initialize the initial mean square gradient to the all ones

vector: Msqr0 = 1m. While the algorithm still requires an initial
learning rate α0 ∈ R+, we found that any “good enough” learn-
ing rate worked well after a few iterations, and that no annealing
schedule for the learning rate was necessary until the end of train-
ing. We also found it useful to introduce a maximum learning
rate αmax ∈ R+ which avoids some numerical issues and prevents
learning from overshooting too far. Taking into account these 2
parameters, the update rule for our algorithm becomes:

Msqrt = 0.9Msqrt−1 + 0.1

(
δE(Wt)
δWt

)2

Wt = Wt−1 −min

(
αmax1m,

α0√
Msqrt

)
δE(Wt)
δWt

where all operations - division, squaring, square root and mini-
mum - are element-wise. We run the algorithm for a fixed num-
ber of epochs (i.e., passes over the entire training set), picking the
mini-batches randomly without replacement for each epoch, so
that each sample is picked exactly once per epoch. Unless spec-
ified otherwise, we used α0 = αmax = 0.01 in our experiments.
We used a mini-batch size of about 128 images for training on
the dataset of animation images. The actual number varies from
batch to batch, as our dataset size is not divisible by 128 exactly.

2.6 Prediction
Although the output confidence values from our network can

be directly thresholded to get multi-label predictions, we found
in practice that it suffered from a key drawback. Often, the high-
est confidence predictions would be multiple predictions for the
same object in the image. In the context of automatic image an-
notation which we target, it would be desirable to instead only
pick the highest confidence prediction for a given object.

This is usually achieved for object detection via non-maximum
suppression: given a set of overlapping predicted bounding
boxes, only keep the highest-confidence one. This idea was used
successfully for object detection [4] and for multi-label classifi-
cation [15]. However, both these approaches wastefully evaluate
a full forward pass for each object hypothesis in a single image,
which makes them impractical in many settings.

Our approach first combines Lin et al.’s [12] global average
pooling to produce confidence maps - with additional 1×1 convo-
lutions in our case - and He et al.’s [6] insight that convolutional
networks can be applied to full images instead of crops to produce
a confidence map for each label in a single forward pass.

At this point, it should be noted that the network has not
been trained to produce confidence values at varying scales, since
we discard all spatial information at training time. We there-
fore found it beneficial to average out the confidence from mul-
tiple scales to obtain multi-scale confidence maps before pro-
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ceeding further. For this purpose, we apply average pooling to
each individual confidence map with a pyramid of kernel sizes:
{3 × 3, 5 × 5, 7 × 7}. We then upsample the resulting confidence
maps to the original resolution, and average them out to obtain
confidence maps which are scale-independent to some degree -
i.e., whether the object detected is small or large in the image, the
confidence will still be high at that point on the confidence map.

From these scale independent confidence maps, we can then
solve the issues of multiple detections for a single object. Us-
ing the simple assumption that any given point of the image must
belong to one and only one object, we only keep the highest con-
fidence label for each spatial point in the feature map, and prune
all other predictions entirely. This is similar in effect to non-
maximum suppression for object bounding boxes in object detec-
tion, and to hypothesis max-pooling as in Wei et al. [15]. We were
able to implement this method to run on a single GPU in negli-
gible time compared to a forward pass. This makes our multi-
label prediction method orders of magnitude more efficient than
the state of the art in multi-label image classification [15], which
requires as many forward passes as object hypotheses.

This last step produces a single confidence map for all labels,
where each “pixel” of the confidence map has been associated a
single label. We then simply sum up the remaining confidence
values from this confidence map for each label. As the resolution
of the feature map is typically much smaller than the number of
labels, this results in most confidence values being 0, and reduces
significantly the label space to choose from.

Once we have these final confidence values, we need to pick a
confidence threshold to actually pick the set of labels to output.
For this, we used the method recommended by Ref. [17], which
consists in picking a threshold as a linear function of the con-
fidence values, trained to maximize multi-label accuracy on the
training data. In the case of our animation images dataset, since
the training data is unnecessarily big for that purpose, we used
the validation set instead. We refer to Ref. [17] for details.

2.7 Implementation Details
As many efficient and open source implementations of CNNs

are available, we will not go into the full details of implementing
convolutional, max-pooling or fully connected layers. For these,
we relied on the routines provided by the Theano library [1], itself
based on the Nvidia CuDNN library.

In a way similar to Krizhevsky et al. [10], at any given iter-
ation t of SGD, we parallelized the computation of the gradient
and update of the weights for batch Dt on the GPU with the pre-
processing of the next batch Dt+1 on the CPU. This allows pre-
processing - e.g., loading the images from the disk, decompress-
ing the images, picking random windows and flips - to essentially
happen “for free” in terms of total computation time. Note that
we found it necessary to store images on a solid-state drive to get
pre-processing times short enough, and that JPEG decompression
was then by far the most expensive operation.

During optimization of the cost function, all the network
weights and mean squared gradients are stored on the GPU. At
each SGD iteration, we transfer a pre-processed 128 images
mini-batch to the GPU.

Using these techniques, we were able to train our network on
the animation images dataset to convergence in about 3 weeks.
Note that we achieved this run time using only a single Nvidia
GTX 760 4 GB GPU.

3. A Large Scale Multi-label Dataset of Ani-
mation Images

In order to show the performance of our multi-label cost func-
tion, we needed a multi-label dataset adequate to train a deep
CNN. Large, deep CNNs such as the ones used for object recog-
nition have required large datasets in the past, of the order of one
million images, to be trained successfully without over-fitting -
like the ImageNet dataset. As animation images is the specific
application domain we are interested in, we collected a dataset
of about 1 million animation images. Our goal is to identify the
characters in these images, for the purposes of automatic artwork
annotation in web artist communities.

As most of the characters depicted in the images are under
copyright from various entities, and as individual artworks are un-
der copyright from their respective authors, it is not possible for
us at the moment to redistribute our dataset publicly - although
we would like to in the future.

In this section, we describe in details our collection methodol-
ogy so that it is possible for other researchers to collect similar
datasets and reproduce our results. Using this methodology, we
were able to collect a 1 million images dataset suitable for train-
ing deep CNNs within a couple weeks - most of which was spent
waiting for all images to be downloaded, actual work by the au-
thors amounted to no more than a few days.

See Figs. 1 and 2 for some statistics regarding our dataset.

3.1 Selecting Labels
Our first step was to manually collect the tags corresponding

to the 100 most popular characters (in terms of number of tagged
images) in the Pixiv web artist community. We chose the most
popular characters for practical reasons - there is more interest in
identifying popular characters, and these characters also are the
ones for which we have the largest number of training samples,
increasing prediction quality. We chose the 100 most popular

Fig. 1 Histogram of the number of labels per image. The average number
of label per image is about 1.3, but there are some outliers with up
to 9 labels. Note that the maximum number of tags per image in the
Pixiv web artist community is 10, which effectively puts an upper
bound on the number of labels per image in our dataset.
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Fig. 2 Histogram of the number of images per label. The average number
of images per label is about 11,000. This is much higher than in the
ImageNet dataset for instance. The limit of at least 5,000 images is
enforced by our collection methodology.

characters, as these characters have on average 13,000 images
associated, bringing us (with the fact that these are multi-label
images) to a rough total of 1 million images.

Once this step was finished, we obtained the images’ tags and
other metadata associated with these 100 character tags from
Pixiv. This allowed us to notice that many images depicting mul-
tiple characters also include characters not within these 100 most
popular ones. We therefore added to the label set those character
tags which are not among the most popular but have at least 5,000
images in common with the 100 most popular ones. This limit
of 5,000 also stems from practical limitations - a smaller limit
would include too many tags to check manually, and may make
the classes imbalanced in terms of number of samples - which is
undesirable for training.

This process led us to a total of 125 character labels, but some
of these labels were duplicates due to different names for the same
character. As it would take a prohibitively long time to check all
possible pairs of labels manually, we automated the process partly
by only checking manually those pairs which either have a pro-
portion of images in common greater than 50% for either one, or
those whose label names are close in terms of Levenshtein dis-
tance. This brought the total to 115 character labels.

3.2 Collecting Images
For these 115 character tags, we downloaded all the (unique)

images returned by Pixiv’s search function for these tags. As it
is too daunting a task to perform manually, it was entirely au-
tomated. We used the default search settings of Pixiv, and the
only additional filtering was the exclusion of multi-image con-
tent: these submissions have a single set of tags for multiple im-
ages, such as multiple pages from a comic books, for instance.
While it would be interesting to tackle the more general prob-
lem of multiple images sharing a single label set in the future, we
do not yet know how one could train a CNN using such images.
All images were converted to the JPEG format - if they were not
originally in the JPEG format - for practical reasons in terms of
available storage space. This resulted in a total of 1,003,192 im-
ages.

3.3 Training, Validation and Test Sets
The dataset was randomly partitioned into 3 subsets:
• A test set of 15,000 images, which the training algorithm

does not have access to. We used it to evaluate the perfor-
mance of our method after training.

• A validation set of 5,000 images, which the training algo-
rithm uses for early stopping - i.e., we stop training when
the validation error stops decreasing. Although this was our
intention, we never actually reached that point, and it mostly
served as a way to evaluate how quickly our algorithm was
learning.

• A training set containing all the remaining images.
Compared to ImageNet, our test and validation sets are quite

small. Although we did not complete that task yet for lack of
time, we would like to manually check and correct possible er-
rors in the ground truth labels from our collection procedure. We
found, checking on small subsets on the order of 100 images, that
some (although not many) images have partially incorrect ground
truth labels - mostly missing labels, or labels of characters not
present in the image. Although this has not proven to be an is-
sue for training - as our network seems to be sufficiently robust to
outliers - it is an issue for the proper evaluation of our method at
test and validation time. A test + validation set of 20,000 images
makes it realistic for a single person to check all the images in a
few weeks.

With the aim of giving a rough idea of how many mislabelled
images there are in the test set, we counted them to the best of
our ability in a randomly selected subset of 1,000 images of the
test set. We counted an image as mislabelled whenever there was
a character in the image not in the ground truth but within the
115 selected characters, or a label in the ground truth not corre-
sponding to a character in the image. We counted a total of 46
mislabelled images out of 1,000.

4. Experimental Results

4.1 Dataset of Animation Images
We trained our algorithm on the training set described in Sec-

tion 3 for around 50 epochs, at which point the validation er-
ror had stopped improving, which took about 3 weeks. We used
the hyper-parameters specified in Section 2. Using the prediction
method described in Section 2.6, we computed the predicted label
sets for each of the 15,000 images from the test set. Let n′ denote
the number of test samples, Pi denote the set of predicted labels
for test sample i and Yi its ground truth label set. We measured
the quality of our prediction using 3 metrics:
• Precision measures the ability of the method to predict cor-

rect labels, but does not penalize if some labels are missing:

1
n′

n′∑
i=1

|Yi ∩ Pi|
|Pi|

• Recall measures the ability of the method to predict all the
labels, but does not penalize if too many labels are predicted:

1
n′

n′∑
i=1

|Yi ∩ Pi|
|Yi|

• Accuracy, also known as the Hamming score, measures the
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Fig. 3 Examples of predictions for 16 different images. Blue bars correspond to the confidence of the
prediction. All images are licensed under a creative commons license. See the Appendix for full
attribution information, including links to the images.
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ability of the method to predict the correct label set, penaliz-
ing both missing and superfluous labels:

1
n′

n′∑
i=1

|Yi ∩ Pi|
|Yi ∪ Pi|

We measured 75.1% precision, 71.6% recall and 66.5% accu-
racy on our test set. As mentioned in Section 3, the test set ground
truth is somewhat unreliable, and therefore one should be careful
over-interpreting these metrics.

In the context of a web artist community, this kind of classi-
fication method could be used to predict the tags of an image as
the user uploads it, with possibility of modifying them manually
in case there is an erroneous or missing tag. In that case, we can
hope that any accuracy number greater than 50% will save some
time for the user. Depending on specific design concerns, preci-
sion might be more important than accuracy or recall, in the sense
that a missing tag may not be as grave as an erroneous tag. Dur-
ing search for instance, the former simply means the image does
not appear, while the latter implies it will show up in the wrong
category - which is much more noticeable for the end user. In this
sense, we believe that the accuracy and precision of 66.5% and
75.1% respectively make our method applicable in practice.

4.2 Pascal Dataset
Additionally, to demonstrate our method’s ability to work on

natural image datasets we applied it to the Pascal VOC 2007
dataset for multi-label classification. We did not attempt to set
the state of the art on this dataset, as natural images are not the
specific application domain we have in mind. However we are
able to clearly show the value of our prediction method against a
baseline.

As the Pascal dataset is too small to train a deep CNN from
scratch, we started from a network pre-trained on the ImageNet
dataset, which we fine-tuned to the Pascal dataset in a second
step. This network is a variant of the network in network archi-
tecture by Lin et al. [12] (see Table 2 for more information).

The network pre-trained on ImageNet is freely available from
the Caffe library’s model zoo web page [9]. We then fine-tuned
our network using RMSprop, with 128 images per mini-batch,
initial learning rate of α0 = 0.001 and maximum learning rate
αmax = 0.01. Images underwent the same pre-processing as our
animation images dataset. We used the full training + validation
set from Pascal VOC 2007 as training data. We stopped training
after 9 epochs, which only took a few minutes.

To show the value of our prediction method, we compared the
training architecture as a baseline to the test architecture on the
test data from Pascal VOC 2007. The test architecture uses the
prediction method described in Section 2.6 to produce confidence
values from full images, while the baseline averages confidence
values from 10 randomly chosen 224 × 224 crops. In both case,
we trained a linear threshold on the confidence values as in Sec-
tion 2.6.

The results in Table 3 show that our method outperforms the
baseline significantly in accuracy and precision, while having re-
duced recall. We believe this to be beneficial in the context of
automatic image annotation, as argued in Section 4.1. Notably,

Table 2 Architecture for the network used on the Pascal dataset. Layers 1 to
10 were pre-trained on ImageNet, subsequent layers were trained
from scratch. The last layers share weights across training and test
architecture.

Layer Architecture

1 Convolutional, 96 7 × 7 filters, stride 4

2, 3 Convolutional, 96 1 × 1 filters
Max pooling, 3 × 3 window and stride 2

4 Convolutional, 256 5 × 5 filters, padding 2

5, 6 Convolutional, 256 1 × 1 filters
Max pooling, 3 × 3 window and stride 2

7 Convolutional, 384 3 × 3 filters, padding 1

8, 9 Convolutional, 384 1 × 1 filters
Max pooling, 3 × 3 window and stride 2

10 Convolution, 1024 3 × 3 filters, padding 1

Layer Training architecture Test architecture

Global average pooling

11 Fully connected 20 units Convolutional, 20 1 × 1 filters

Table 3 Results of our prediction method compared to a baseline method
on the Pascal VOC 2007 dataset.

accuracy precision recall

Our method 41.4% 54.5% 49.6%
Baseline 36.8% 47.1% 53.1%

our prediction method requires only a single forward pass per
image, while the baseline requires 10, which makes the former
significantly more efficient.

Although our results are far from state of the art on the Pascal
VOC 2007 dataset, averaging scores from multiple subwindows
is the standard way to perform prediction in a number of state of
the art CNN architectures [13], [14]. We believe that our method
can both outperform such methods and be much more efficient.

5. Conclusion

In this paper, we introduced a new multi-label CNN design
allowing training from large scale multi-label datasets, and ef-
ficient, accurate multi-label prediction by leveraging spatial and
multi-scale information. Due to the lack of widely available large
scale multi-label datasets, we collected a dataset of animation im-
ages to show our method’s ability in the context of automatic im-
age annotation. Although we can’t redistribute the dataset, we
make available a demo of our trained network online at the fol-
lowing url:
avallet.vcd.design.kyushu-u.ac.jp/anime_recognizer

We demonstrated that our method can provide high accuracy
when trained with a large-scale multi-label dataset of animation
images. With 66.5% accuracy and 75.1% precision, we believe it
is adequate for artwork annotation in practice.

Furthermore, we showed our prediction technique improves
accuracy and precision significantly on the Pascal VOC 2007
dataset compared to a baseline while being an order of magni-
tude more efficient.
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Appendix

Image Attributions
Images from Fig. 3, from left to right, top to bottom:
• ‘Romano Vargas’ by SakurahimaArt is licensed under CC

BY-NC-ND 3.0. URL:
http://sakurahimeart.deviantart.com/art/Romano-Vargas-

37076664
• ‘Youmu Konpaku’ by KyokoProStudios is licensed under

CC BY-NC-SA 3.0. URL:
http://kyokoprostudios.deviantart.com/art/Youmu-Konpaku-

363218438
• ‘Kotetsu x Barnaby’ by moscovia is licensed under CC BY-

NC-ND 3.0. URL:
http://moscovia.deviantart.com/art/Kotetsu-x-Barnaby-

260778579
• ‘Random sketch-Mizuhashi Parsee’ by Adeshark is licensed

under CC BY-NC-ND 3.0. URL:
http://adeshark.deviantart.com/art/Random-sketch-

Mizuhashi-Parsee-124188640

• ‘Feliciano Vargas’ by 10721 is licensed under CC BY-NC-
ND 3.0. URL:

http://10721.deviantart.com/art/Feliciano-Vargas-
180254301

• ‘APH: Kiku vs. Yao’ by AlaisL is licensed under CC BY-
NC-ND 3.0. URL:

http://alaisl.deviantart.com/art/APH-Kiku-vs-Yao-
121730274

• ‘Fujiwara no Mokou’ by relicXth is licensed under CC BY-
NC-ND 3.0. URL:

http://relicxth.deviantart.com/art/Fujiwara-no-Mokou-
141088719

• ‘Random Sniper Hina’ by NPkappa is licensed under CC
BY-NC-SA 3.0. URL:

http://npkappa.deviantart.com/art/Random-Sniper-Hina-
266381430

• ‘yuyuko’ by pcmaniac88 is licensed under CC BY-NC-ND
3.0. URL:

http://pcmaniac88.deviantart.com/art/yuyuko-163583588
• ‘Shalala Kise’ by tsubakiya is licensed under CC BY-NC-

ND 3.0. URL:
http://tsubakiya.deviantart.com/art/Shalala-Kise-306222249

• ‘Aya Shameimaru’ by Pokey-Chan is licensed under CC BY-
NC-ND 3.0. URL:

http://pokey-chan.deviantart.com/art/Touhou-Aya-
Shameimaru-136315234

• ‘tachibana makoto’ by MikaiSakura is licensed under CC
BY-NC-ND 3.0. URL:

http://mikaisakura.deviantart.com/art/tachibana-makoto-
384044366

• ‘Trafalgar Law, Sanji’ by xyz263103 is licensed under CC
BY-NC-ND 3.0. URL:
http://xyz263103.deviantart.com/art/Trafalgar-Law-Sanji-

208527782
• ‘The Heian Alien - Houjuu Nue’ by Adeshark is licensed

under CC BY-NC-ND 3.0. URL:
http://adeshark.deviantart.com/art/The-Heian-Alien-

Houjuu-Nue-134102089
• ‘Amami Haruka’ by HaRiZiA is licensed under CC BY-NC-

ND 3.0. URL:
http://harizia.deviantart.com/art/Amami-Haruka-495899410

• ‘Harem of Marisa’ by Coffgirl is licensed under CC BY-NC-
ND 3.0. URL:

http://coffgirl.deviantart.com/art/Harem-of-Marisa-
149635501
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