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Another Representation of Integers in Logic

MASAHITO KURIHARAT and AzumMma OHucHi?

In first-order logic, natural numbers are usually represented by the terms constructed from the
constant 0 and the successor function s( ). Addition is defined recursively by two program clauses.
In this paper we present another representation based on difference, and show that addition is defined

by a unit clause, thus without recursion.

1. Introduction

In first-order logic, natural numbers (includ-
ing zero) are usually represented by the terms
constructed from the constant 0 and the succes-
sor function s(:)”"%. For example, the term
s(s(0)) represents the natural number 2. In

general, 8"(0)=s(s(---s(0)---)) represents n.
N

n times
We will omit the parentheses.
s(X) is written as sX.

The following logical formulas, written in
Prolog, define the predicate plus for addition.
The intended meaning of plus (X, Y, Z) is that
X+Y=2Z, where X,Y and Z are natural
numbers represented by X, ¥ and Z, respective-
ly.

plus (0, Y, Y). (1)
plus (sX, Y sZ):-plus (X, Y, Z).(2)

Since most of the logic programming lan-
guages implement integers as built-in objects,
representation by terms has practically no
importance, but at least theoretically and for
educational purposes such representation is use-
ful, because it demonstrates the capability of
logic for (arithmetic) computation. In this
paper we show another representation of inte-
gers which demonstrates the power of incom-
plete data structure in logic programming. It
also suggests interesting combination of logic
programming and term rewriting.

For example,

2. Another Representation

Recently, we noticed that another representa-
tion of integers is possible. The idea is similar
to that of “difference list,” which is a well-
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known representation of a list based on incom-
plete data structure in Prolog programming®.
For example, a list of integers 1, 2 and 3 may be
represented by a pair of incomplete structures [ 1,
2,3|X] and X. A technical merit of this repre-
sentation is that it is easy and efficient to append
two lists. The list given above and the list
represented by the pair of [4]Y] and Y may be
appended simply by unifying X with [4| Y] and
constructing the pair of [1, 2, 3| X] and Y as the
result, which would yield the pair of [1,2, 3, 4
| Y] and Y if the most general unifier is applied
to.

Now, back to the representation of integers,
we introduce a two-place function symbol d(-,
+), which means difference of two integers.
Integers are represented by the terms of the form
d(s"X,s"X), whose intended meaning is m
—n, because s”X and 8"X mean m-+X and »
+ X, respectively, so the difference is (m—+X)
—(n+X)=m—n. When m-n=0, the term
d(s"X,s"X) is called the normal form re-
presenting m—n.  For example, d(X, X),
d(ssX, X) and d(X, ssX) are normal forms
representing 0, 2 and —2, respectively. For
convenience, we use the notation 8" X — "X for
d(s"X,s"X). Using this representation, addi-
tion is defined by the following unit clause.

plus(X—Y, Y—-Z X—-2). (3)

For example, the sum of 2 and 3 can be

computed by the following query.
?—plus (ssX—X,sssY Y, Z)

Verify that the answer substitution gives Z =
s°Y — Y, which means 5. Contrast this compu-
tation with the traditional way using (1) and
(2), in which addition is defined recursively
and computing m-+#n requires m-+1 steps of
logical inference. On the other hand, our addi-
tion is defined non-recursively, and a single
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addition requires only a single step of logical
inference.

We can also compute difference. For exam-
ple, the difference of 3 and 1 is obtained by

?—plus (sX— X, Z sssY—~Y)

The answer substitution gives Z=ssY —Y.
Another way of computing 3— 1 might be by the
following query :

?—puls (Z sX—X,sssY—Y)

In this case, however, the answer substitution
gives Z=s8ssY —sY, which is not a normal
form, although it is a correct answer. The
following proposition summarizes the general
situation. The trivial proofs are omitted.

Proposition 2.1 Let m,n,p and q be non-
negative integers. We define u(x)=x if x=0;
and u(x)=0if x<0. Then:

(1) The answer substitution for the query
?—plus (s"X —s"X, s’Y —s'Y, Z).
gives Z =gntumm X —gitun=nx

(2) The answer substitution for the query
?—plus (s"X —s"X,Z,8"Y —s?Y).
gives Z;S’Hu(pﬁm)X‘“ Sq+u(m—p)X_

(3) The answer substitution for the query
?—plus (Z, s"X —s"X,s’Y —sY).
gives Z =gttt X . gnrula-m x

Let us restrict ourselves to the computation on
natural numbers represented by normal forms,
and assume that n=g=0. We also assume that
m<p to ensure that the result of the subtraction
is a natural number Z=p—m=>0. Then by
Proposition 2.1, queries of the form given in
(1) and (2) always yield a normalized answer
for Z. Queries of the form in (3) do not
necessarily yield a normalized answer. How-
ever, if the answer is to be passed to a continua-
tion which does not require the value to be in
normal form, we need not normalize the answer.
In particular, our program for addition does not
require the normalization of the arguments. If
you want to normalize the result, you can use the
following equation as a rewrite rule? which
rewrites instances of the left-hand side to the
corresponding instances of the right-hand side.
For example, ssssZ —ssZ would be normal-
ized to ssZ —Z.

sX—sY=X—-Y (4)

3. Conclusion

We have presented a representation of integers
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based on difference. We believe that this is
useful at least for educational purposes, because
in spite of its simplicity it demonstrates a unique
feature of logic programming such as

« the computational capability of logic even
for arithmetic,

- relational aspects of predicates (i.e., the
definition of addition allows subtraction),
and

- use of incomplete data structure to make
efficient programs.

In particular, the third point is not achievable

by the traditional representation.

From the viewpoint of research activity, we
feel that the combination of Prolog-like logic
programming and term rewriting suggested in
the previous section is interesting. In the litera-
ture, a lot of approaches to such combination
are proposed2%:610  Although it is out of the
scope of this paper, it might be interesting as a
future work to see how the proposed approaches
perform computation for the example in this
paper, and how they give mathematical seman-
tics to the computation.
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