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Sensor Number Reduction in Skeleton Estimation from
Magnetic Motion Capture Data
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Abstract: In this paper, we try to reduce the number of sensors used in skeleton estimation from magnetic motion
capture data. A disadvantage of limiting the subject’s motion caused by wiring for sensors can thereby be reduced. We
remove the sensors attached to the lower legs and forearms. The parameters related to non-sensor body segments are
estimated based on the biomechanical structure of the human body. Experimental results showed that the parameters
were properly estimated by the present method, even though the number of sensors was reduced.
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1. Introduction

Nowadays, motion capture (Mocap) systems are used to ac-
curately record human-body motions. Magnetic Mocap systems
are known as those having several advantages; e.g., sensors give
the information on both the position and the orientation, and are
not occluded by non-metallic objects [1]. However, there is also
a disadvantage that the wiring for sensors can limit a subject’s
motion [1].

Meanwhile, raw Mocap data are often converted into those
giving the motion of an articulated biomechanical model, i.e.,
a skeleton [2], [3]. In a skeleton, rigid-body segments are con-
nected via rotating joints. The above conversion allows us to
represent the state of body motion systematically with a skele-
tal structure. As for magnetic systems, several researchers have
proposed methods to automatically estimate the parameters of a
skeleton from acquired Mocap data. O’Brien et al. [4] proposed
an approach to estimate joint positions by linear least squares
fitting (LLSF). Knight and Semwal [5] improved the computa-
tion speed of joint-position estimation by adopting the General-
ized Delogne-Kåsa Estimator (GDKE). Both methods require the
setup of two sensors for estimating the position of a joint sand-
wiched between them. This means that every segment in a skele-
ton must have at least one sensor corresponding to itself.

In this paper, we try to reduce the number of sensors. The
disadvantage of limiting the subject’s motion can thereby be re-
duced. We remove the sensors attached to the lower legs and
forearms. The positions of joints connected to a non-sensor seg-
ment are estimated based on the biomechanical structure of the
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human body. As for the positions of remaining joints each sand-
wiched between two sensors, we use any of the methods pre-
viously proposed, i.e., LLSF or GDKE. Meanwhile, we also
present a method to estimate the orientation of each segment;
to our knowledge, there are few reports explicitly presenting a
biomechanically valid approach for orientation estimation from
magnetic Mocap data.

2. Methods

2.1 Joint-position Estimation
Figure 1 shows the skeleton used in this paper. As mentioned

in Section 1, the sensors attached to the specific segments con-
stituting the limbs (i.e., dotted boxes in Fig. 1) are removed. The
parameters LT, LTH, LLL, LUA and LFA will be used later in Eq. (4).

First, the positions of the following joints (i.e., joints in the
torso, each sandwiched between two sensors) are estimated by
LLSF or GDKE: W (waist), N (neck), LH (left hip), RH (right
hip), LS (left shoulder) and RS (right shoulder). Next, the posi-
tion of R (root) is obtained by calculating the centroid of W, LH
and RH. Then, the position of C (chest) is obtained as follows:

qC,O(i) =
q′C,O(i) − qW,O(i)

|q′C,O(i) − qW,O(i)|α + qW,O(i) (1)

α =
1
M

M∑

i=1

|q′C,O(i) − qW,O(i)|

where qC,O(i) is the position of C (at the ith frame in the global co-
ordinate system having the origin O, the same hereinafter), q′C,O(i)
is the middle point between the two points (one is on Line W-
N and the other on LS-RS, giving the shortest distance between
W-N and LS-RS), qW,O(i) is the position of W and M is the total
number of frames, respectively. Finally, the positions of the joints
constituting the limbs are estimated as follows.

Figure 2 shows the arrangement of sensors and joints with re-
spect to the limb. The jth and ( j + 1)th joints are connected to a
non-sensor segment. Under the assumption that each segment is
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Fig. 1 Arrangement of sensors and joints in the skeleton.

Fig. 2 Arrangement of sensors and joints with respect to the limb.

a rigid body, the distance between these joints becomes constant.
As a result, the variance of the distance throughout an entire time
series, v j, j+1, should become zero:

v j, j+1 =
1
M

M∑

i=1

{l j, j+1(i) − l̄ j, j+1}2 (2)

l̄ j, j+1 =
1
M

M∑

i=1

l j, j+1(i),

l j, j+1 = |{pk+1,O(i) + Pk+1,O(i)s j+1,k+1} − {pk,O(i) + Pk,O(i)s j,k}|
where pk,O(i), pk+1,O(i), Pk,O(i) and Pk+1,O(i) are the positions and
orientations (rotation matrices) of the kth and (k + 1)th sensors at
the ith frame in the global coordinate system, and s j,k and s j+1,k+1

are the positions of the jth and ( j+ 1)th joints in the local coordi-
nate systems of the kth and (k+1)th sensors, respectively. We can
estimate appropriate joint positions by adjusting s j,k and s j+1,k+1

so as to minimize v j, j+1.
To prevent the deterioration of estimation accuracy caused by

the lack of the motion amount of the limb, we also introduce the
evaluation indices eS j, j+1 and eL j, j+1 in addition to v j, j+1:

eS j, j+1 = |s j,k |2 + |s j+1,k+1|2 (3)

eL j, j+1 =
1
M

M∑

i=1

[{l j−1, j(i) − Lj−1, j}2 + {l j, j+1(i) − Lj, j+1}2] (4)

l j−1, j(i) = |q j−1,O(i) − {pk,O(i) + Pk,O(i)s j,k}|,
Lj−1, j = LβL

′
T/LT (β: TH for the leg, UA for the arm),

Lj, j+1 = LγL
′
T/LT (γ: LL for the leg, FA for the arm),

L′T =
∑M

i=1{|qW,O(i) − qLH,O(i)+qRH,O(i)

2 | + |qC,O(i) − qW,O(i)|}
M

Fig. 3 Joint rotation of the limb.

where q j−1,O(i) is the position of LH (for the left leg), RH (for the
right leg), LS (for the left arm) or RS (for the right arm). Min-
imizing eS j, j+1 prevents that the distance between a sensor and a
joint becomes too large, whereas minimizing eL j, j+1 suppresses
an extreme deviation from the standard physical constitution. We
eventually adopt the index E as a cost function to be minimized:

E = v j, j+1 + wSeS j, j+1 + wLeL j, j+1 (5)

where wS and wL are the weights for eS j, j+1 and eL j, j+1, respec-
tively. We give wS and wL small values to take a tolerance margin
(wS = wL = 0.01). We use the simplex method [7] to minimize E.

2.2 Segment-orientation Estimation
We define the axes of the local coordinate system of each seg-

ment as follows; x: leftward, y: upward and z: forward (in an
upright posture). As for each of the segments constituting the
limbs, its long axis gives the y-direction. We identify the x- and z-
directions using the information on joint rotation. Figure 3 shows
a joint rotation of the limb. lm,O(i) × lm+1,O(i) in Fig. 3 gives both
the mth and (m + 1)th segments the x-direction at the ith frame
(for the leg, −x-direction for the arm). However, the direction of
the above outer product becomes indefinite when θ(i)≈0 (θ(i): ro-
tation angle). Therefore, we use the vector x(i) (for the leg, −x(i)
for the arm) as that giving the x-direction at the ith frame:

x(i) = Pk,O(i)x̄k{π − θ(i)} + lm,O(i) × lm+1,O(i)
|lm,O(i) × lm+1,O(i)|θ(i) (6)

x̄k =
xk

|xk | , xk =

M∑

i=1

Pk,O(i)−1 lm,O(i) × lm+1,O(i)
|lm,O(i) × lm+1,O(i)|θ(i)

where Pk,O(i) is the orientation of the kth sensor attached to the
mth segment. When θ(i)≈0, the direction of x̄k (i.e., the aver-
age direction of the outer product weighted by θ(i)) is dominant,
whereas the instant direction of the outer product itself becomes
dominant as θ(i) approaches π. The z-direction is finally obtained
from the outer product of x(i) (or −x(i)) and lm,O(i) or lm+1,O(i).

Flexion of the knee is reproduced by the above method. As for
the arm, the elbow is regarded as a joint giving a twist in addition
to flexion. We obtain the twist angle as follows. First, we obtain a
time series of the orientation of the hand by giving it a particular
orientation at a particular frame (i0th frame):

RH,O(i) = PH,O(i){PH,O(i0)−1RH,O(i0)} (7)

where RH,O(i) and PH,O(i) are the orientations of the hand and the
sensor attached to the hand at the ith frame, respectively; the ori-
entations of the foot and head are determined in the same way *1.

*1 In the present method, giving the hands, feet and head particular orien-
tations at a particular frame is the only procedure users have to carry out
in advance.
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Fig. 4 Determination of the twist angle of the forearm.

Then, the procedure of Fig. 4 is executed. The forearm is twisted
so as to match its x- and z-directions to those of the hand, after
the y-direction of the hand is matched to that of the forearm.

Meanwhile, we obtain the orientation of the pelvis as follows:

RP,O(i) = [xP(i)/|xP(i)| yP(i)/|yP(i)| zP(i)/|zP(i)|] (8)

xP(i) = yP(i) × zP(i),

yP(i) = qW,O(i) − {qLH,O(i) + qRH,O(i)}/2,
zP(i) = {qRH,O(i) − qW,O(i)} × {qLH,O(i) − qW,O(i)}

where qLH,O(i) and qRH,O(i) are the positions of LH and RH. To
determine the orientations of the segments constituting the chest,
we first obtain the orientation of the whole chest:

RC,O(i) = [xC(i)/|xC(i)| yC(i)/|yC(i)| zC(i)/|zC(i)|] (9)

xC(i) = yC(i) × zC(i),

yC(i) = {qLS,O(i) + qRS,O(i)}/2 − qW,O(i),

zC(i) = {qLS,O(i) − qW,O(i)} × {qRS,O(i) − qW,O(i)}
where qLH,O(i) and qRH,O(i) are the positions of LS and RS. The
orientation of the segment W-C is given as follows:

RWC,O(i) = RC,O(i)R(θWC(i), nWC(i)) (10)

θWC(i) = cos−1([0 1 0]T·n′WC(i)),

nWC(i) = [0 1 0]T × n′WC(i),

n′WC(i) = RC,O(i)−1{qC,O(i) − qW,O(i)}/|qC,O(i) − qW,O(i)|
where R(θWC(i), nWC(i)) is the rotation with the angle θWC(i) and
axis nWC(i). The orientation of the segment C-N is obtained in
the same way. The orientations of the segments C-LS and RS-C
are obtained by replacing [0 1 0]T with [1 0 0]T.

3. Results

We report experimental results in this section. The Mocap data
used are shown in Table 1. We selected them from various motion
categories. All the data in Table 1 are acquired using 15 sensors
configured as shown in Fig. 1 (including the dotted boxes). In the
cases that the present method is applied, we use only the data of
the 11 sensors represented as the white boxes in Fig. 1. The ob-
tained results are compared with those given by LLSF or GDKE
both using the data of all the 15 sensors.

Figure 5 shows the difference of joint positions between the
present method and LLSF or GDKE. The values shown in the
figure are those of the distance between the same joints averaged
over an entire time series. Since the positions of the joints in the
torso are given by LLSF or GDKE also in the present method, we
compare only the joints of the limbs. According to Ref. [4], an
error in joint-position estimation from magnetic Mocap data can
reach several centimeters. In Fig. 5, the difference in joint posi-
tions with respect to the arms is within the above range in almost

Table 1 Motion capture data (frame rate: 30 fps).

Label Category Frames Subject System

RT1
Rajio Taisō, No.1

6,283 A A(Japanese radio calisthenics)

RT2
Rajio Taisō, No.2 (part)

3,944 B A(Japanese radio calisthenics)

FW1
Farm working

2,389 C B(cultivating a field, rice planting)

FW2
Farm working

2,443 C B(rice reaping, sawing)
SO Sansa Odori (Japanese folk dance) 3,124 C B

KJ
Jinku Odori from Kemanai Bon Odori

2,199 D B(Japanese folk dance)

B
Ballet (échappé, passé,

1,508 B Aentrechat quatre, piqué en dehors)

CD
Contemporary dance

2,754 B A(release technique)
Subject A: male, B, C and D: female
System A: MotionStar WirelessTM (Ascension Technology Corporation)

B: MotionStar WirelessTM with LIBERTYTM (Polhemus) ×2

Fig. 5 Average joint-position difference between the present method and
the other methods.

all the cases. On the other hand, the difference in ankle position
was remarkably deviated from the above range in many cases.

Figure 6 shows two examples of the obtained skeletons. These
gave especially a large difference in ankle position. In the cases
that only LLSF or GDKE were applied, the position of the ankle
(or both the ankles) was too far away from the sensor attached to
the foot. In the cases that the present method was used, in con-
trast, the positions of both the ankles were properly estimated,
even though the number of sensors was reduced. The same ten-
dency is seen in all the cases in which a significant difference in
the ankle position is shown. As for the orientation of each seg-
ment, an appropriate estimation according to the rotation of each
joint was carried out as long as joint positions were properly es-
timated. Errors caused by improper joint-position estimation are
seen in the orientations of the thighs in (1) of (a) in Fig. 6.

It should also be pointed out that the present method has a dis-
advantage in calculation time. As shown in Table 2, the calcula-
tion time of the present method is several times longer than that of
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Fig. 6 Examples of the obtained skeletons.

Table 2 Calculation time.

Label
Calculation time [s]

LLSF LLSF+Present GDKE GDKE+Present
RT1 6 27 2 25
RT2 4 13 1 15
FW1 2 8 1 8
FW2 2 9 1 8
SO 3 10 1 9
KJ 2 7 1 7
B 2 6 1 5

CD 3 9 1 9
CPU: Intel Core i3-350M

the other methods. This is caused by iterative calculations to min-
imize the cost function used for joint-position estimation. Further
research efforts are needed to address this issue.

4. Conclusions

The main contribution of this paper is to reduce the number
of sensors in skeleton estimation from magnetic Mocap data.
The experimental results showed the effectiveness of the present
method. However, the issue of long calculation time still remains
unresolved. This will be the subject of future work.
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