
Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

[DOI: 10.2197/ipsjjip.23.655]

Regular Paper

HTTP-GET Flood Prevention Method by Dynamically
Controlling Multiple Types of Virtual Machine Resources

MizukiWatanabe1,a) Ryotaro Kobayashi1 Masahiko Kato2

Received: November 28, 2014, Accepted: June 5, 2015

Abstract: Currently, Web services are widely utilized to disclose company information, and offer online services and
e-commerce. As these services have become an essential part of our everyday lives, the public is greatly inconve-
nienced when they are disrupted. Denial of service (DoS) attacks exert adverse influences on Web services. We focus
on HTTP-GET Flood attacks, which are manually operable DoS attacks. It is possible to simply block manually op-
erable DoS attacks such as F5 attacks on the server side; however, such measures could be noticed by the attackers.
Therefore, to prevent the attacker changing their method of attack, it is possible to overcome the attack by redirecting
the attack to another system, for which a previous study has proposed a feasible technique located in the service
provider. The previous study assumes a correlation between the CPU resource and the request error rate. However,
the Web Server actually has multiple resources. Therefore, it is important to be able to control the server resources
rather than the CPU and the memory. The operational implementation of the proposed method and the evaluation
experiments confirm the effectiveness of the proposed method.

Keywords: network, DoS, virtual machine, HTTP-GET flood

1. Introduction

Currently, web services are widely utilized to disclose com-
pany information and offer online services and e-commerce. As
these services have become an essential part of our everyday
lives, the public is affected when they are disrupted. Denial of
service (DoS) attacks exert significant adverse effects on Web ser-
vices. If a DoS attack floods a targeted system with requests, the
service of the system becomes unavailable to its intended users.

DoS attacks can be classified into one of the two following cat-
egories:
(1) Human controlled DoS attacks
(2) Bot-based DoS attacks

In a human controlled DoS attack, a human controls the attack
by entering keyboard commands or executing an attack program
on the attacker’s computer, while monitoring responses from the
targeted server. By contrast, in a bot-based DoS attack, a client
computer is infected with a virus that forcibly overflows the net-
work or the targeted server unbeknown to the owner of the in-
fected computer. In our study, we propose a prevention system
for the former.

According to another classification standard, DoS attacks can
be divided into some classes including the followings.
• Attacks that utilize system vulnerabilities
• Attacks that waste network resources
• Attacks that waste server resources
Attacks utilizing system vulnerabilities attempt to carry out se-

1 Faculty of Engineering, Toyohashi University of Technology, Toyohashi,
Aichi 441–8580, Japan

2 Internet Initiative Japan Inc., Chiyoda, Tokyo 101–0051, Japan
a) watanabe.mizuki@ppl.cs.tut.ac.jp

curity attacks by exploiting existing system vulnerabilities result-
ing from design errors or ambiguities. These types of attacks can
be alleviated by building new software that incorporates knowl-
edge about security, and verifies and corrects all vulnerabilities
in the systems. Attacks that waste network resources attempt to
render a running service unavailable to its users by sending the
network a large number of large-sized packets. In this case, if
the system cannot supply sufficient network resources to process
the vain packets, the network bandwidth becomes inundated, in-
dicating a successful attack. These types of attacks are difficult
to address on the server side. Thus, they should be prevented on
the network side. Although it is important to protect network re-
sources, this paper focuses on the attacks which are prevented on
the server side. Attacks wasting server resources attempt to pre-
vent the server from responding to its users by sending a mass of
extraordinary packets that saturate server resources such as mem-
ory, CPU time, and disk space. These can often be prevented on
the server-side.

Examples of attacks that waste server resources include SYN
Flood attacks, Connection Flood attacks, and HTTP-GET Flood
attacks. A SYN Flood attack repeatedly starts a TCP three-way
handshake but does not complete it by responding to the server
with an ACK code, resulting in increasingly large numbers of
half-open connections that eventually prevent the server from es-
tablishing new connections with legitimate traffic. A well-known
countermeasure for such an attack is to either shorten the regula-
tion time for a time-out decision while waiting for an ACK or use
defense functions (e.g., SYN cookies). A Connection Flood at-
tack occupies sockets of the server by establishing a large amount
of connections, which remain open for a long time. Some well-

c© 2015 Information Processing Society of Japan 655



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

known countermeasures have been proposed, one of which is to
increase the socket open-state of the server or queue assignment
for the TCP, while another is to shorten the regulation time for
a time-out decision of a connection. An HTTP-GET Flood at-
tack sends a large amount of GET requests to the server, forc-
ing it to process them, and saturating the server to prevent the
service. A number of well-known countermeasures include en-
abling KeepAlive, decreasing the capacity of the Web page, and
introducing load balancing.

In this paper, we focus on F5-Attacks, which are manually op-
erable types of HTTP-GET Flood attacks. The F5 key is assigned
to the function of updating the Web page (resending a GET re-
quest) in a variety of browsers. An attacker simply continues to
push the F5 key to send a large number of GET requests. The
attacker can only confirm whether the attack is performed suc-
cessfully by browsing the affected web pages.

Several prevention methods are available to prevent DoS at-
tacks. One prevention method is to raise server performance;
however, this method requires surplus server resources even when
there is no attack, degrading the cost performance of the system.
Moreover, if the attackers judge the amount of attacks as insuffi-
cient, they can merely increase the severity of attacks; thus, the
administrator needs to reinforce server performance endlessly to
manage any attacks. Another prevention method is to filter and/or
restrict the bandwidth in the firewall or the router [2]. However, if
these methods are applied to the victim server, the attackers may
notice that their attacks are being prevented and subsequently
change their method of attack [3].

To overcome this problem, Takahashi et al. [1] proposed a
prevention method (referred to in this paper as the conventional
method) that allows the server to continue providing a service to
its users in the presence of an F5-attack. This method prepares
two types of virtual machines: one for its users and the other for
the attackers. The F5-attack delays the response time to GET re-
quests on the attacker virtual machine. If the response time to a
GET request is longer than the timeout time, the request becomes
an error. A moderate rate of request errors on the attacker vir-
tual machine makes it difficult for attackers to notice that their
attacks are being prevented. In order to stably control the rate
of request errors, despite the varying amount of F5-attacks, the
CPU resource of the server is dynamically controlled according
to the monitored server response. However, this study focuses
only on the CPU resources for stable control of the request er-
ror rate. Therefore, if there is a low, or no, correlation between
the CPU resources and the request errors [4], [5], [6], the request
error rate is difficult to control.

In order to solve this problem, by focusing on both the CPU
and memory resources, we propose a method that dynamically
selects one of the two resources closely correlated with the re-
quest errors caused by the F5-attacks and controls the selected
resource to control the request errors. An unfavorable request to
the server side is regarded as an attack, and if the request fre-
quency from a client’s IP address is over a certain threshold, the
client is judged as an attacker. In this paper, we implement our
proposed method and evaluate the effectiveness of the system.

The remainder of this paper is organized as follows. In

Section 2, we discuss the conventional method proposed by
Takahashi et al. [1]. In Section 3, we describe related research,
and in Section 4, we state our ideas and the proposed method.
Section 5 illustrates the implementation of our method, and an
evaluation of our method is presented in Section 6. Our discus-
sion of the effectiveness of our method is given in Section 7, and
Section 8 concludes our paper.

2. Conventional Method

2.1 Attacker Assumed in the Conventional Method
The conventional method assumes that the attackers perform

the F5-Attack to send GET requests to the Web Server and moni-
tor the responses. If the request error rate is very low, the attackers
judge that their attacks are insufficient and increase the amount of
attacks. If the request error rate is very high, they judge that their
attacks are simply being prevented by some kind of countermea-
sure and change their method of attack. If the request error rate is
moderate, they judge their attacks as successful and continue to
sustain their attacks.

2.2 Idea of the Conventional Method
The conventional method takes measures considering that the

prevention has a minimal effect on the normal users and is hardly
noticeable by the attackers.

In the conventional method, the Web Server is separated into
a Decoy Machine and a Normal Machine: the Decoy Machine
is a Web Server for the attackers, while the Normal Machine is a
Web Server for the intended users. As mentioned in Introduction,
virtual machines operate as the Normal and Decoy Machines. At-
tacker’s requests are forwarded to the Decoy Machine, and nor-
mal user’s requests are forwarded to the Normal Machine by the
administrative domain. In this way, the separate resources used
in the conventional method protect the normal users from attacks.

The Decoy Machine offers the same web service as the Nor-
mal Machine so that the attackers are unaware the computer re-
sources are being separated for attack prevention. However, a
Decoy Machine alone is insufficient. In order to create the situ-
ation in which the attacker believes the attacks are successful, it
is necessary to stably control the request error rate. Therefore,
the conventional method controls the CPU resource of the Decoy
Machine while the Decoy Machine is running so that the request
error rate reaches a target value set by the administrator.

2.3 Problem of the Conventional Method
The conventional method assumes that a correlation exists be-

tween the CPU resource and the request error rate. In this case,
if the CPU resource increases or decreases, the request error rate
decreases or increases, respectively. The conventional method
focuses on the above correlation to control the CPU resource and
realize the stable control of the request error rate.

However, the Web Server actually has multiple resources; thus,
determining which resource has a practical correlation with the
request error rate differs from one case to another. Therefore, if
there is a low, or no, correlation between the CPU resource and
the request errors [4], [5], [6], it is difficult for the conventional
method to stably control the request error rate. Similarly, if the

c© 2015 Information Processing Society of Japan 656



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

request error rate is too high or too low, it cannot be controlled by
the CPU resource control.

In this paper, we assume the Web Server that requires either the
CPU resource control or the memory resource control for the sta-
ble control of request error rate. Which resource has the practical
correlation depends on the service supplied by the Web Server.

In the Web Server that requires the memory resource control,
the attacks make the Web Server generate many processes, each
of which requires the large memory space for dynamic contents
on the web page [7], [8]. As a result, the memory resource is
saturated. In this case, the conventional method does not work
well.

There are many types of server resources, major ones of which
are as follows: CPU, memory, disk I/O, and network I/O. In this
paper, we focus on the CPU and the memory. Although it is also
important to be able to control other server resources, we leave it
to future work.

3. Related Work

Xie et al. [9] proposed a technique for DDoS attack prevention,
but this is outside the scope of this paper. Their method identi-
fied whether a “flashcrowd,” a situation in which a large volume
of users accesses a popular website on the internet, is generated
by a DDoS attack. DDoS attacks are detected through a learn-
ing model based on principal component analysis (PCA), inde-
pendent component analysis (ICA), and a hidden semi-Markov
model (HsMM). If this method is introduced, it may be possi-
ble to prevent bot attacks from hindering our proposed method to
deal with F5-Attacks.

Khor et al. [10] also proposed a DDoS prevention method that
constructed a DDoS Mitigation-as-a-Service (DaaS), which sup-
plies a service to protect servers against DDoS attacks. DaaS
drops bot traffic, using its own resources only for legitimate
clients. DaaS has inbuilt defense functions for three types of
DDoS: network-layer DDoS, application-layer DDoS, and eco-
nomic DDoS (eDDoS). This defense function is realized using
the following operations: (1) The DaaS framework facilitates
utilization of idle internet resources from existing or future sys-
tems/services without modification, and (2) a function termed,
self-verifying Proof-of-Work (sPoW), defends against eDDoS at-
tacks by performing increases in resource requirements for DDoS
attacks and decreases in resource consumption required for effec-
tive defense. PoW is an economic method used to deter DoS
attacks and other service abuses such as spam on a network by
requiring additional work from service requesters. In addition,
sPoW has an internal function to modify its own operation. If
the server is prepared to protect against DDoS independently, our
method can exclude bot attacks from objects controlled under this
network.

Wang et al. [11] proposed making schedulers on both the vir-
tual machine host and the virtual machine guest which operate co-
operatively to improve resource management and application per-
formance. In fuzzy-modeling based resource management, work-
load characteristics are extracted and the virtual machine model-
ing is improved based on the guest-layer application knowledge.
The scheduler on the virtual machine host feeds back a resource

allocation decision and takes account of the application config-
uration on the virtual machine guest. This method is applied to
virtualized databases with dynamic and complex resource usage
behaviors. In this application, this method characterizes query
workloads and efficiently allocates resources to the database vir-
tual machines to improve application performance.

Das et al. [12] proposed an effective method that detects HTTP-
GET Flood attacks. They assumed three different situations in
which HTTP-GET Flood attacks occur. As the patterns of at-
tacks are hardly identifiable (e.g., the slashdot effect) this method
prepares the right request patterns in advance and calculates non-
conformity between the right request patterns and the current re-
quest patterns that are dynamically captured. If the nonconfor-
mity, which is calculated based on the arrival rate of the GET re-
quests, exceeds a predetermined threshold configured by a user,
the GET requests are judged as attacks. The evaluation results
showed that their proposed method can detect attacks with an ac-
curacy rate of 99%.

4. Proposal

4.1 Main Idea
Figure 1 shows the example of the construction of the pro-

posed method. In this paper, we assume the attackers described
in Section 2.1 and that the Web Server requires either the CPU
resource control or the memory resource control to stably con-
trol the request error rate. However, the Web Server actually has
multiple resources; thus determining which resource has the prac-
tical correlation with the request error rate depends on the service
supplied by the Web Server. This paper focuses on two server
resources: CPU and memory. It is also important to be able to
control other server resources, and this will comprise future work.

Based on this situation, the conventional method does not work
well. For example, when the Web Server requires the memory re-
source control, the request error rate changes according to the
amount of attacks, even if the conventional method controls the
CPU resource for the target error rate. This cannot control the
stable request error rate and fails to convince attackers that their
attacks are successful.

To address the problem, we propose a method that stably con-
trols the request error rate for varying amounts of F5-attacks, re-
gardless of which resource has a correlation with the request error
rate. This method selects whether to control the CPU or memory
resources in advance and controls the selected resource to stably
control the request error rate to make it close to the target value

Fig. 1 Main Idea.

c© 2015 Information Processing Society of Japan 657



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

which is set by the administrator even when the amount of F5-
attack varies. This stable request error control falsely shows the
attackers that their attacks are going to succeed in saturating the
server resources.

If the change of server resource affects the response time the
most, the server resource contributes to the response time [13].
Hence, in order to select the resource to be controlled, our pro-
posed method changes the CPU and memory resources individu-
ally to confirm the change in the request error rate, and selects the
resource that contributes more to the request error rate control.

4.2 Criteria of the Attack and the System Load
DoS attacks are considered requests with the intention of dis-

rupting Web services. A request without such an intention cannot
be called a DoS attack, even if it puts enough load on the Web
Server to affect the service. However, it is difficult for the service
providers to detect whether a request is made with the intention of
disrupting the service. Therefore, in this paper, an unfavorable re-
quest to the server side is regarded as an attack, and if the request
frequency from a client’s IP address is over a certain threshold,
the client is judged as an attacker. According to the above defi-
nition, the requests are separated into normal and attack requests.
The normal/attack request separation is assumed to be perfectly
performed.

Similar to the conventional method, this study uses the request
error rate as the evaluation criteria for the system load of the
server. We assume that an HTTP communication succeeds if a
client sends a GET request to a server and receives a response,
even if the response is negative, for example, the request page is
not found on the server. The response time is the time between
the sending of the GET request and the receipt of the response.
F5-attacks put a load on the server, which slow the response time.
Therefore, if the response time is longer than the timeout time,
the request is processed as an error.

4.3 Components
4.3.1 Separation of Computer Resources

In the proposed method, we separate the computer resources
into three different types of machines: the Decoy Machine, the
Normal Machine, and the Control Machine, in order to keep the
attackers from having an impact on normal users and to provide
a control mechanism for the proposed method. In the conven-
tional method, the term “Decoy” is used as the general term. In
the proposed method, we define three types of Decoy Machines
in Section 4.3.2: Init-Decoy, CPU-Decoy, and Mem-Decoy.

Since it is not realistic to prepare multiple, costly physical ma-
chines for momentary attacks, and it is difficult to control the
resources of a physical machine operating as a Decoy, we use
virtualization software to implement multiple units of virtual ma-
chines on a physical machine [14], [15].

When the clients communicate with the virtual machines, all
the packets go through the host OS, which forwards the requests
from the clients to the virtual machines depending on the types
of clients and machines. Attackers’ requests are forwarded to the
Decoy and normal user requests are forwarded to the Normal Ma-
chine. This forwarding prevents normal users from being affected

by any attacks because the resources for the attackers and those
for normal users are kept separate.
4.3.2 Operations of Control Machine and Web Servers

The Control Machine performs the selection of the resource to
be controlled, the judgment of the attackers, the forwarding of the
requests, and the control of the selected resource. The details of
them are described in the next section.

Normal Machine and Decoy operate as Web Servers. If there
is no attack, they offer the service for normal users. If F5-attacks
launch, Normal Machine and Decoy offer the same service for
normal users and attackers, respectively. Before the resource se-
lection, any resource is not controlled. After the resource se-
lection, either the CPU resource or the memory resource of the
Decoy is controlled to stably control the error rate of the GET
requests. A Decoy is called an Init-Decoy if any resource is not
controlled. A Decoy is called a CPU-Decoy if the CPU resource
is controlled and a Mem-Decoy otherwise.

4.4 Comparison with Conventional Method
In the conventional method, the Web Server has Normal Ma-

chine and Decoy which has only CPU resource control. In order
to control both CPU and memory resources, we extend the De-
coy in the conventional method to propose the new method. In
the proposed method, unlike the conventional method, the term
“Decoy” is the general term and we introduce three types of De-
coys: Init-Decoy, CPU-Decoy, and Mem-Decoy. When the Web
Server starts to run, a Decoy starts to run as an Init-Decoy. An
Init-Decoy does not have any resource control. Based on the re-
source selection result, an Init-Decoy is changed to a CPU-Decoy
or a Mem-Decoy. A CPU-Decoy in the proposed method corre-
sponds to a Decoy in the conventional method. A Mem-Decoy
is introduced for memory resource control which can’t be per-
formed in the conventional method.

5. Implementation

5.1 Web Server
Figure 2 shows an example of the Web Server using the pro-

posed method. The Web Server consists of the control machine
and two Web Sites. These sites are implemented by using virtual
hosting, which allows a single server to host multiple Web Sites.
Each website consists of a Normal Machine and a Decoy. The
Decoys shown in Fig. 2 have been already judged to be either a
CPU-Decoy or a Mem-Decoy by the Control Machine. On the
client side, every user will appear to transmit GET requests to
Web Site A or B, while on the server side, the Normal Machines
and the Decoys supply the actual services.

We use Xen as virtualization software to prepare the privileged
virtual machine called Dom0, which runs as the Control Machine,
and the unprivileged virtual machines, called DomU, which run
as the Normal Machines and the Decoys. The Control Machine
can capture and forward the request packets from the clients to
the virtual machines and control the server resources of the vir-
tual machines contained in the Web Sites. We write dedicated
software, called Controller, in a Python language and a script lan-
guage to implement the operations of the Control Machine. Con-
troller runs on the Control Machine.

c© 2015 Information Processing Society of Japan 658



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

Fig. 2 Example of system configuration.

5.2 Resource Control Mechanism
The following parameters are related to the CPU and memory

resources of DomU:
• the number of virtual CPU
• mapping from physical CPU to virtual CPU
• threshold of CPU utilization
• CPU scheduling priority
• memory size
• maximum memory size
In this paper, only the threshold of CPU utilization, called a

cap, and the memory size are used.
In order to control the CPU resource, we use an xm command

and a sched-credit option to set the cap of a DomU to allocate
CPU time to the DomU. The cap is the maximum amount of
CPUs that can be consumed by a DomU. The cap can be set from
0 to 100 per one physical CPU. The cap values between 1 and
100 indicate the maximum CPU utilization rate of a DomU. On
the other hand, cap value 0 has a different meaning and indicates
that there is no constraint on CPU utilization. For example, if the
cap is 50 and one physical CPU is allocated, the maximum CPU
utilization rate is 50%. In addition to the cap, a CPU scheduling
priority can affect the CPU time; however, it does not affect it in
our implementation because the CPU scheduling priorities of all
the DomUs are the same.

In order to control the memory resource, we use an xm com-
mand and a mem-set option to set the memory size of a DomU.

5.3 Request Forwarding Mechanism
We use a NAT function of iptables on the Control Machine to

forward the GET requests from the clients to the Normal Ma-
chines and the Decoys. The controller executes an iptables com-
mand to create a NAT mapping between a client and a DomU,
where the DomU is either a Normal Machine or a Decoy. The se-
lected DomU changes from case to case. Based on the database
containing the NAT mappings, the Control Machine forwards the
requests from the clients to the Normal Machines and Decoy Ma-
chines.

When there are no attacks, mappings are created between nor-

Fig. 3 Structure of controller.

mal users and Normal Machines and between normal users and
Decoys Machines, depending on the hash value of the client’s IP
address.

When attacks are being made, mappings are created between
normal users and Normal Machines, while separate mappings are
created between attackers and Decoy Machines.

5.4 Controller
Controller is software that runs on the Control Machine and

consists of a log acquisition program, an attacker judgment pro-
gram, a resource selection program, and a resource control pro-
gram (Fig. 3).
5.4.1 Log Acquisition Program

The log acquisition program repeats a series of operations at
regular intervals to acquire the access log from output of tcpdump
and send it to the attacker judgment program and the resource se-
lection program to clear log. Tcpdump is a software tool that can
capture the contents of all or certain packets for network traffic
analysis.
5.4.2 Attacker Judgment Program

According to the log sent from the log acquisition program,
the attacker judgment program calculates the number of requests
each client makes at one time. If the number of requests exceeds
a predetermined threshold, the client is judged an attacker; other-
wise, the client is judged a normal user. As a result, all the clients
are classified as either normal users or attackers. Based on the
classification, this program registers the NAT mappings for each
client in the database.
5.4.3 Resource Selection Program

The resource selection program sends GET requests to the Init-
Decoys for the resource selection and performs the following op-
erations. First, according to the log sent from the log acquisition
program, the request error rate of each Init-Decoy in the case of

c© 2015 Information Processing Society of Japan 659



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

no change in resources is calculated. Second, the CPU resource
and the memory resource are individually changed and the re-
quest error rates of each Init-Decoy after changes in the CPU
resource and the memory resource are calculated, respectively.
Lastly, if the change in the request error rate due to the CPU re-
source is larger than the change due to the memory resource, the
CPU resource is selected for the resource control. Otherwise, the
memory resource is selected.
5.4.4 Resource Control Program

The resource control program performs the following functions
for each Decoy:
• calculation of the request error rate
• modification of the selected resource
In this program, each Decoy is either a CPU-Decoy or a Mem-

Decoy. The first function sends a GET request per second to the
Decoy and records the time when a GET request becomes an er-
ror. Based on the record, the request error rate is calculated per
second by dividing the number of request errors by the number
of GET requests in the last 60 seconds. In the last 60 seconds,
the number of request errors varies depending on the operation
of the Web Server but the number of GET requests is always 60
because the first function sends a GET request per second. The
second function compares the last request error rate with the tar-
get request error rate and modifies the selected resource of the
Decoy to make the next request error rate closer to the target re-
quest error rate.

5.5 System Operation
In this subsection, we explain the system operation, which is

divided into two modes: normal mode and prevention mode. If
there is no attack, the system selects normal mode; otherwise, it
selects prevention mode. The presence or absence of attacks is
checked at regular intervals by the Control Machine.
5.5.1 Normal Mode Operation

The system operation of normal mode is shown in Fig. 4. In
this figure, it is assumed that the construction of the Web Server
is the same as that shown in Fig. 2; there are no attackers, normal
users A and B send requests to Web Site A, and normal users C
and D send requests to Web Site B.

The Control Machine selects the CPU and memory resources
to be controlled for Web Sites A and B, respectively. Based on
the hash value of each normal user’s IP address, the NAT map-
pings related to the normal users are registered in the database.
According to the database, the Control Machine forwards the re-
quests from the normal users to the Normal Machines and the
Decoys, as shown in Fig. 4.
5.5.2 Prevention Mode Operation

Figure 5 shows the system operation of the prevention mode.
The Web Server in Fig. 5 is the same as that shown in Fig. 4 with
the exception of the operation mode. In Fig. 5, it is assumed that
attacker A and normal user A send requests to Web Site A, and
attacker B and normal user B send requests to Web Site B.

The Control Machine judges that attacker A and attacker B are
attackers based on the NAT mappings relating to the normal users
and the attackers, which are registered in the database. According
to the database, the Control Machine forwards the requests from

Fig. 4 Normal mode operation.

Fig. 5 Prevention mode operation.

the normal users to the Normal Machines and those from the at-
tackers to the Decoys, as shown in Fig. 5. The Control Machine
controls the CPU resource of the CPU-Decoy and the memory
resource of the Mem-Decoy to make the request error rates of the
CPU-Decoy and the Mem-Decoy close to the target value.

6. Evaluation Method

In this section, we describe the evaluation environment and
method. Figure 6 shows the evaluation environment, which in-
cludes multiple machines: Attack server 1, Attack Server 2, Web
Server, and Measurement Server. Web Server is included the
Control Machine described in Section 4.3.2. The servers are the
host machines, which run Xen to implement multiple VMs, de-
noted as V Mn, where n is the number of VMs. Table 1 shows the
specifications of the Web Servers and VMs.

To operate four Web Servers on a single machine, we prepare
four VMs: VM1-4. We evaluate two prevention methods: the
conventional method and our proposed method. In the evaluation
of the conventional method, VM1-4 are operated as Normal Ma-
chines and Decoys. It should be noted that only the CPU resource
of each Decoy is controlled in the conventional method. On the
other hand, in the evaluation of the proposed method, VM1-4 are
operated as Normal Machines, a CPU-Decoy, and a Mem-Decoy.
Attack Server 1 and Attack Server 2 are each equipped with 10 at-
tacks, VM1-10, which launch HTTP-GET Flood Attacks against
the Web Servers, making 20 attackers.

An attacker launches HTTP-GET Flood Attacks using a Java
application called JMeter, which is a commonly used a load test-

c© 2015 Information Processing Society of Japan 660



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

Fig. 6 Evaluation environment.

Table 1 Specification of servers and virtual machines.

(a) Web server specification.

OS openSUSE 11.3 64 bit (2.6.34.7-0.5-xen)
CPU Intel Xeon L3426 (1.87 GHz)

Memory 8 GByte
VM Xen 4.0.0 21091 06 0.1

(b) Attack server specification.

OS openSUSE 11.3 64 bit (2.6.34.12-xen)
CPU AMD Phenom II X6 1055T (2.8 GHz)

Memory 8 GByte
VM Xen 4.0.0 21091 06 0.1

(c) Virtual machine specification on Web server.

OS openSUSE 11.3 64 bit (2.6.34.7-0.3)
CPU 1 Unit

Memory 512 MByte or 2 GByte

(d) Virtual machine specification on attack server.

OS openSUSE 11.3 64 bit (2.6.34.7-0.3)
CPU 1 Unit

Memory 512 MB

ing tool. We use the JMeter parameters, thread delay interval
and the number of issuable threads, to control the amount of at-
tacker requests per second, which are set to 180, 200, 220, 240,
and 260 [unit/sec]. These values are determined as shown below.
The amount of attacker requests per second is calculated by the
product of the number of attackers and the number of attacker
requests per attacker per second. As described in the 3rd para-
graph in Section 6, 20 attackers are prepared. The numbers of
attacker requests per attacker per second are set to 9, 10, 11, 12,
and 13 [unit/sec], which are determined based on the observation
result which is acquired by actually pushing F5 key on the key-
board by a finger on several occasions.

The Measurement Server enables JMeter to measure the re-
quest error rate on VM1-4 without being affected by the attack-
ers. The mapping information used for the request is registered
in the NAT table and referred to by iptables on the Control Ma-
chine. The request error rate is measured once per second for
calculation. The duration of each evaluation is 30 minutes.

The initial value of the cap and memory of each VM is set to
0 and 512 MB to allow resources to be equally distributed among

Fig. 7 The request error rate of the conventional method.

Fig. 8 The request error rate of the proposed method.

the four VMs on the Web Server. The cap or the memory of each
VM is adjusted by the resource control program in order to make
the request error rate approach the target value of 50% that is used
in Ref. [1].

7. Result

We evaluate the request error rate with varying amounts of at-
tacker requests per second. Figure 7 shows the results of the
conventional method and Fig. 8 shows the results of the proposed
method. In the figures, “Decoy (VM3),” “Decoy (VM4),” “CPU-
Decoy (VM3),” and “MEM-Decoy (VM4)” are used as graph leg-
ends to specify the correspondences of a Decoy to a VM.

Since the request error rate of the Normal Machines is 0%, the
request error rates in each graph are omitted. Figure 7 shows the
request error rates in the conventional method, described in Sec-
tion 2, with varying amounts of requests per second. Figure 7
shows that each group of two bars from left to right indicate the
request error rates of Decoy (VM3) and Decoy (VM4), respec-
tively. Only the CPU resource of each Decoy is controlled. For
Decoy (VM3), we can make the error rate close to the target value
of 50% regardless of the amount of attacker requests per second,
while for Decoy (VM4), when the amount of attacker requests
per second is 240, the request error rate is higher than the target
value of 50%. Conversely, when the amount of attacker requests
per second is 260, the request error rate is lower than the tar-

c© 2015 Information Processing Society of Japan 661



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

Fig. 9 Memory size of the conventional method.

get value, meaning that the conventional method is unsuitable for
Decoy (VM4). In addition, if the Decoy (VM4) resource is con-
trolled in the conventional method, the request error rate is up to
22.7% far from the target value. One of the reasons for this is the
memory resource usage of Decoy (VM4). Figure 9 shows the
variation of memory size of the Web Servers in the above mea-
surement. The vertical axis shows the memory size, and the hor-
izontal axis shows the elapsed time. The memory size of Decoy
(VM3) is relatively stable, while that of Decoy (VM4) is signif-
icantly increased between the start and the end of the measure-
ment. Therefore, if the request error rate control focuses solely
on CPU resources, it cannot adapt to variations of memory size
and fails to control the request error rate stably on Decoy (VM4);
thus affecting the result.

Figure 8 shows the request error rate when the amount of re-
quests per second varies in the proposed method described in Sec-
tion 4. Figure 8 shows that each group of two bars from left
to right indicate the request error rates of CPU-Decoy (VM3)
and Mem-Decoy (VM4), respectively. As for both CPU-Decoy
(VM3) and Mem-Decoy (VM4), we can make the request error
rate close to the target value of 50% regardless of the amount of
attacker requests per second. Since we don’t improve the con-
ventional method in terms of adjusting the CPU resource, there is
no functional difference between “Decoy (VM3)” in the conven-
tional method and “CPU-Decoy (VM3)” in the proposed method.
However, in the evaluation results, they are close but not the same
in the request error rate even if the amount of attacker requests per
second is fixed. The reason for this is as follows. The request er-
ror rate depends on the operation of the Web Server. However, the
operation of the Web Server is not stable when the request errors
occur. Therefore, the request error rate varies depending on each
time of evaluation. In the proposed method, we control memory
resources of Mem-Decoy (VM4), the memory usage of which
varies widely with the resource selection program. In addition,
if Mem-Decoy (VM4) resources are controlled in the proposed
method, the request error rate is at most 9.5% far from the target
value. Therefore, the request error rate is improved by 13.2% in
the proposed method.

The above results show that memory resource control is needed
to control the request error rate stably on Mem-Decoy (VM4) and
that the mechanism of the proposed method enables more sta-

ble control by changing control resources depending on the Web
Servers.

The proposed method extends the conventional method to in-
crease the kinds of Decoys and add the functionality to Controller.
In order to evaluate the influence of the extension on the system
load, we run a top command for 30 minutes to measure the aver-
age CPU time of Controller on the Control Machine when the
amount of attacker requests per second is 180 [unit/sec]. The
results show that the average percentages of the CPU time in
the conventional method and the proposed method are 8.2% and
7.1%, respectively. However, the CPU time changes depending
on each time of evaluation. Considering the change in the CPU
time, the results confirm that there is no significant difference in
the CPU time between the conventional method and the proposed
method. Unlike the conventional method, the proposed method
needs to select the resource to be controlled in advance. We use
a top command to measure the average CPU time of Controller
during the resource selection, the time needed for which is 2 min-
utes. The evaluation result shows that the average CPU time of
the resource selection is only 1.0%.

The system implemented in the proposed method deploys mul-
tiple Web Servers of which one server is designated as a Decoy
Machine. The experiment shows that the dynamic resource selec-
tion between the CPU and memory resources makes the resource
control more effective. We focus on two types of resources; how-
ever, other resources also affect the performance of Web Servers,
which should be considered in future work.

8. Conclusion

In this paper, we focused on HTTP-GET Flood attacks, which
are a type of DoS attack. Our previous work proposed a method
to make Attackers believe their attacks are successful. The con-
ventional method assumes there is a correlation between the CPU
resource and the request error rate. However, the Web Server ac-
tually has multiple resources. The resource which has a practical
correlation with the request error rate differs from case to case. As
a result, even if the request error rate is too high or too low, it can-
not be controlled by the CPU resource control. To solve this prob-
lem, we proposed a method that stably controls the request error
rate for varying amount of F5-attacks, regardless of which re-
source has a correlation with the request error rate. Furthermore,
we have evaluated our method and shown its effectiveness. In this
study, we focus solely on memory and CPU resources; neverthe-
less, as many resources affect the performance of the Web Server,
the subject of future work will be to study the effect of the other
resources.

Acknowledgments The authors wish to thank Tsuyoshi
Mikami and Shoma Yoshida for technical assistance and helpful
discussions that they provided when they were master students at
Toyohashi University of Technology.

References

[1] Takahashi, T., Taguchi, G., Kobayashi, R. and Katoh, M.: HTTP-
GET Flood Provision by Dynamic Resource Control to Virtual Ma-
chine, IEICE Trans. IaS., Vol.J94-D, No.12, pp.2058–2068 (2011) (in
Japanese).

[2] @police: The results of the internet observation from July to Septem-

c© 2015 Information Processing Society of Japan 662



Journal of Information Processing Vol.23 No.5 655–663 (Sep. 2015)

ber in 2012, available from 〈http://www.npa.go.jp/cyberpolice/detect/
pdf/20121114.pdf〉.

[3] IPA: The report of investigation into the DoS Attack Preven-
tion, available from 〈http://www.ipa.go.jp/security/fy22/reports/isec-
dos/index.html〉.

[4] Chandra, A., Gong, W. and Shenoy, P.: Dynamic Resource Alloca-
tion for Shared Data Centers Using Online Measurements, Proc. 11th
International Conference on Quality of Service, pp.381–398 (2003).

[5] Ramamurthy, P., Sekar, V., Akella, A., Ander, B.K. and Shaikh, A.:
Using Mini-flash Crowds to Infer Resource Constraints in Remote
Web Servers, Proc. 2007 SIGCOMM Workshop on Internet Network
Management, pp.250–255 (2007).

[6] Srivatsa, M., Iyengar, A., Yin, J. and Liu, L.: A Middleware System
for Protecting Against Application Level Denial of Service Attacks,
Proc. ACM/IFIP/USENIX 2006 International Conference on Middle-
ware, pp.260–280 (2006).

[7] Lee, S., Jung, C. and Pande, S.: Detecting Memory Leaks Through
Introspective Dynamic Behavior Modelling Using Machine Learn-
ing, Proc. 36th International Conference on Software Engineering,
pp.814–824 (2014).

[8] Ben-Yehuda, O.A., Posener, E., Ben-Yehuda, M., Schuster, A. and
Mu’alem, A.: Ginseng: Market-driven Memory Allocation, Proc.
10th ACM SIGPLAN/SIGOPS International Conference on Virtual Ex-
ecution Environments, pp.41–52 (2014).

[9] Xie, Y. and Yu, S.: Monitoring the Application-layer DDoS Attacks
for Popular Websites, IEEE/ACM Trans. Netw., Vol.17, No.1, pp.15–
25 (2009).

[10] Khor, S.H. and Nakao, A.: DaaS: DDoS Mitigation-as-a-Service,
Proc. IEEE/IPSJ International Symposium on Applications and the In-
ternet, pp.160–171 (2011).

[11] Wang, L., Xu, J. and Zhao, M.: Application-aware Cross-layer Virtual
Machine Resource Management, Proc. 9th International Conference
on Autonomic Computing, pp.13–22 (2012).

[12] Das, D., Sharma, U. and Bhattacharyya, D.K.: Detection of HTTP
Flooding Attacks in Multiple Scenarios, Proc. 2011 International
Conference on Communication Computing Security, pp.517–522
(2011).

[13] Liu, X., Sha, L., Diao, Y., Froehlich, S., Hellerstein, J.L. and Parekh,
S.: Online Response Time Optimization of Apache Web Server, Proc.
11th International Conference on Quality of Service, pp.461–478
(2003).

[14] Rao, J., Wei, Y., Gong, J. and Xu, C.: DynaQoS: Model-free Self-
tuning Fuzzy Control of Virtualized Resources for QoS Provisioning,
Proc. 19th International Workshop on Quality of Service, pp.31:1–
31:9 (2011).

[15] Perez-Botero, D., Szefer, J. and Lee, R.B.: Characterizing Hypervisor
Vulnerabilities in Cloud Computing Servers, Proc. 2013 International
Workshop on Security in Cloud Computing, pp.3–10 (2013).

Mizuki Watanabe received his B.E. de-
gree in Information from Toyohashi Uni-
versity of Technology in 2011. He is now
a master student at Toyohashi University
of Technology. His research interests in-
clude network security.

Ryotaro Kobayashi received his B.E.,
M.E., and D.E. degrees from Nagoya Uni-
versity in 1995, 1997, and 2001, respec-
tively. He had been a research assistant
in Nagoya University from 2000 to 2008.
He is currently a lecturer at Toyohashi
University. His research interests include
computer architecture, parallel process-

ing, and network security.

Masahiko Kato recieved his B.Sc.
and M.Sc. degrees in engineering from
Toyohashi University of Technology in
1993 and 1995 respectively. He is now
working for Internet Initiative Japan Inc.
since 1998. He is currently interested in
network security and cloud computing
security.

c© 2015 Information Processing Society of Japan 663


