Vol.34 No.3

Regular Paper

Polynomial-time

Transactions of Information Processing Society of Japan

MAT Learning

Mar. 1993

of

C-Deterministic Context-free Grammars

HiroMI SHIRAKAWA T and TAKASHI YOKOMORI 1T

This paper concerns the learning of context-free grammars, and introduces a subclass which we call

context-deterministic (c-deterministic) grammars.

The corresponding language class properly con-

tains the classes of regular languages and of even linear languages, and is incomparable to the classes

of simple deterministic languages and of one-counter languages.

We show that the class of c-

deterministic grammars is learnable in polynomial time from (extended) minimally adequate teacher
(MAT), which gives a generalization of the corresponding results on regular languages in Ref. 3) and

even-linear languages in Ref. 9).

1. Introduction

An inductive inference can be intuitively
viewed as the process of extracting a small finite
representation from a large number of data. In
an abstract setting, a well-defined class of objects
(the domain) is fixed to be inferred, and a
representation space for the domain is assumed.
Further, a protocol for presenting examples of
an object in the domain is also specified. Given
a targeted object L, the goal here is to find a
correct representation G in the space for L using
a finite set of examples of L. Sometimes several
oracles playing a role of a teacher is assumed to
make the inference efficient. We discuss a prob-
lem of grammatical inference, where the domain
consists of (formal) languages, and objects are
represented by grammars.

In Ref. 3), Angluin introduced the model of
learning called minimally adequate teacher
(MAT), that is, learning from membership
queries and equivalence queries. Since she
presented an algorithm which learns regular
languages using deterministic finite automata
(DFAs) in polynomial time from MAT, several
extended results about polynomial-time MAT
learnability for learning subclasses of context-
free grammars have been shown®?; however,
the polynomial-time learnability of the whole
class of context-free grammars is still open.

In this paper, we introduce the class of
context-deterministic ~ (c-deterministic) — gram-

T Department of Informatics, Sanno College
Tt Department of Computer Science and Information
Mathematics, University of Electro-Communications

380

mars, which is a subclass of the class of context-
free grammars, and show that the class is learn-
able in polynomial time from MAT. Since the
class of languages generated by c-deterministic
grammars properly contains the classes of regu-
lar languages and of even linear languages, this
gives a generalization of the corresponding
results for regular languages in Ref 3) and
even-linear languages in Ref. 9).

The idea used in this paper is that all the
possible nonterminals and rules are introduced
from positive counterexamples, and among these-
rules, wrong ones are removed by negative
counterexamples. A similar idea is employed in
Ref. 2),7). The paper? discusses the problem of
learning of k-bounded context-free grammars in
which any production rule has at most k nonter-
minals on the righthand side. In her setting, the
set of nonterminals is known by the algorithm,
and only production rules are to be learned.
The learning algorithm presented there is similar
to our algorithm described later, except for using
noneterminal membership queries to find such
wrong rules, which is a fairly strong requirement
for the teacher. Hence, the most important issue
is how to determine the wrong rules without
nonterminal membership queries. In fact, the
latter paper (Ref. 7)) discusses such a method
for learning a subclass called simple determinis-
tic grammars, in which a single nonterminal
membership query is replaced by a number of
membership queries. Here, we introduce c-
deterministic grammars whose properties make
it possible to determine wrong rules without
using nonterminal membership queries.

Vol.34 No.3

In a c-deterministic grammar, intuitively, for
each nonterminal appearing in the derivation for
a terminal string, there exists a pair of prefix and
suffix of the string which specifies the nonter-
minal. For example, consider the following
grammar G = (N, X, P, §), that is a c-deter-
ministic grammar, where N={S, I, C T, E}, X
={if, then, else, {condition), {statement)} and
P consists of the following rules.

S — ICTSES |{statement)

I—if

C —<condition}

T — then

E — else
It is easy to see that this grammar generates all
the statements of “if-then-else” structures. Let us
see the concept of c-determinism through the
property of this grammar. Suppose that an
unknown string “if’ {condition) a {statement)
else {statement)’’ is given, where @ indicates an
unknown substring. Then, it is easy to guess
that the unknown substring is “‘then’”, that is, the
string derived from the nonterminal 7. We can
see that for any terminal string derived by this
grammar, any nonterminal which appears in the
derivation is specified by the prefix and suffix of
the string, that is, they specify all the strings
derived from the nonterminal. Because of this
property, the learning algorithm for the class of
c-deterministic grammars becomes simpler than
those previously mentioned.

In the next section, we give some definitions
and notation used in this paper. The formal
definition of c-deterministic grammars is given in
Section 3. In Section 4. 1, a learning algorithm
for c-deterministic grammars is given, and its
correctness and time complexity are discussed in
Section 4. 2. Further, we entablish the relation-
ships between several classes of languages and
the class of c-deterministic context-free lan-
guages in Section 3.

2. Preliminaries

2.1 Definitions and Notation

We assume the reader to be familiar with the
rudiments of formal language theory (See, e. g.,
Ref. 5)), and we only give some basic definitions
and notation used in this paper.

For a given finite alphabet X, the set of all
strings with finite length (including zero) is
denoted by X*. (An empty string is denoted by

Polynomial-time MAT Learning of C-Deterministic Context-free Grammars 381

A.) Ilg(w) denotes the length of a string w. X+
denotes ¥*—{A}. A language L over Y is a
subset of J*. A language L is A-free iff A is not
contained in L. If two languages L and L’ are
equivalent ignoring A, two languages are said to
be equivalent modulo / and denoted by L & L.
For any strings x, y&2* and any languge L
over 3, let x\L={ylxye L)(L/x={y|yxsL}).
A language x\L (resp. L/x) is called left (resp.
right) derivative of L with respect to x.

A context-free grammar is denoted by G=
(N,X,P,S), where N and X are alphabets of
nonterminals and terminals, respectively, such
that NNXY=¢. P is a finite set of rules: each
rule is of the form 4 — ¢, where 4 is a nonter-
minal and ¢ is a string of symbols from N U 2.
S is a special nonterminal called the start
symbol. A grammar G is A-free iff no rule has A
on its righthand side. Two grammars G and G’
are equivalent iff L(G)=L(G") holds.

If A-»p3 is a rule of P, and @ and y are
arbitrary strings in (N U X)*, then we may write
aAy=>¢ afy. The notation =¥ is the reflexive
and transitive closure of =,. For AS N, let
Lo(A)={we I*| A=%w}. (In each case, the sub-
script G is abbreviated as in= and L(A4),
respectively, when it is clear from the context.)
In particular, L(S), equivalently denoted by
L(G), is called the language generated by G. Two
nonterminals 4 and B are distinct iff L(A)+*
L(B) ; otherwise, they are equivalent. A language
L is context-free if there exists a context-free
grammar G such that L=L(G).

Since we are concerned with the learning
problem of context-free grammars, without loss
of generality, we restrict our consideration to
only A-free context-free grammars.

A context-free grammar G=(N,6X P S) is
in Chomsky normal form (abb., CNF) if each
rule is of one of the following forms: A—- BC
(called binary rule), A—a (called terminal
rule), where A, B and C are nonterminals and
a is a terminal. It is known that any A-free
context-free language can be generated by some
context-free grammar in CNF, that is, any A-free
context-free grammar can be transformed into an
equivalent CNF. A context-free grammar G=
(N, 2, P, S) is k-restricted if each rule is of the
form either A—>a or A— B, B>+ B;, where A, B;
EN(1<LVYi<)),acy and 2< I j<k. Note
that any grammar in CNF is 2-restricted. A

382 Transactions of Information Processing Society of Japan

CFG G is reduced if (1) for any 4, BEN,
L(A4)=+L(B), (2) for any AE N, there are deriva-
tions such that S=* g4 and 4=* w, where ¢,
BE(NUX)* and we 3™

Proposition 1(Ref. 5)) For any A-free
context-free language L, there exists a context-
free grammar G in CNF such that G is
reduced and L=L(G). o

In what follows, we may assume that any
grammar G is a A-free, reduced CFG. Further,
a derivation by the relation = indicates the
left-most one.

By |N|+|P|, we measure the size of the gram-
mar, where |N|(|P]) is the cardinarity of N(P),
and denoted by size(G). G is minimal iff size
(G) is minimum, that is, for any CFG G’ that is
equivalent to G, size(G)<(G") holds.

2.2 MAT Learning

Let L be a target CFL over a fixed alphabet
2. We assume the following types of queries in
the learning process.

A membership query proposes a string x & 3'*
and asks whether x& L or not. The answer is
either yes or no. An equivalence query proposes
a grammar G and asks whether L=L{G) or not.
The answer is yes or no, and in the latter case
together with a counterexample w in the sym-
metric difference of L and L(G). A counterex-
ample w is positive if it is in L—L(G), and
negative otherwise.

The learning protocol consisting of member-
ship queries and equivalence queries is called
minimally adequate teacher (MAT). The
purpose of the learning is to find a CFG G=(N,
Y, P, S) such that L=L(G) with the help of
minimally adequate teacher.

This definition is slightly different from the
original one. In Ref. 3), equivalence queries are
done only with conjectures of the same type as
the target class. However, our model allows to
query with arbitrary context-free grammars, that
is, conjectured grammars constructed in the
algorithm can be any (context-free) grammars.
Equivalence queries modified as above are
called extended equivalence queries, and the
learning protocol consisting of membership
queries and extended equivalence queries is
called extended minimally adequate teacher,
and is employed in Ref. 7) to learn the class of
simple deterministic grammars. Hereafter, we
assume that MAT means extended MAT.

Mar. 1993

In Ref.2), Angluin employs a strong query
called nonterminal membership queries which,
given a string x& X* and a nonterminal 4 of G
with unknown set of rules, can ask whether x&
L(A4) or not, and the answer is yes or no. The
primary issue here is how one can replace
nonterminal membership queries by membership
queries at the sacrifice of some sort of restriction
on the class of grammars to be learned.

3. c-Deterministic Grammars and Lan-
guages

Let G=(N, % P, S) be a CFG. Then, a
grammar G is context-deterministic (abb., c-
deterministic) iff whenever the derivation S =*
xAz exists, L(4) T x\L(G)/z holds, where x,
z€X* and AEN. A language L is c-
deterministic iff there exists a c-deterministic
grammar G such that L=L(G). Note that for
any context-free grammar G'=(N’, 5, P’, S),
L(A) <x\L(G")/z holds whenever the deriva-
tion S=%* x4z exists. For example, the lan-
guage L generated by the grammar G introduced
in Section 1 is c-deterministic.

Let G=(N, 2 P, S) be a context-free gram-
mar. For any nonterminal A€ N, define the
context of A, written as Cont (A4), by Cont
(A) ={(x, 2)EX*X 3*|S=>* x4z}. Then, an
alternative definition for c-deterministic gram-
mar is that for any AE N, for every pair (x, z)
&€ Cont (A), x\L(G)z = L(A) holds.

As an example, consider a context-free gram-
mar G’'=(N", X, P’, E), where

N'={E]},

={+, %,(,), id)},

P'={E->E+E|E % E|(E)|id}
(As easily seen, G’ is a grammar which gener-
ates all the arithmetic expressions with operators
+and *9.)

Transforming G’ into CNF grammar, we

obtain G=(N, X, P, E), where

N={E X, Xo, Xa, Xo, Xs}
P={E— EX\|X:X,|id,

X1 4 XzE,

Xo— +[%,

X3,

X~ EX,

Xs") },

It is easy to see that L(G)=L(G")(=L). We
claim that G is c-deterministic. By simple calcu-
lation, we get the following equations :

Vol.34 No.3
LX) ={+wlweL}U{* wlweL}

L(X)={+, %}
L(X:)={(}
L(X)={w)lwe L}
L(Xs)={)}

Let (x, z) € Cont (x) and X €N. To prove that
x\L/z=L({X), it is sufficient to show that x\L/
zS L(X), that is, for any string y& X such that
xyz€= L, we have that y& L(X).

Consider the nonterminal X;. By the form of
the grammar, the context of X; is defined recur-
sively as follows:

(1) (w,A)is in Cont (X;).

(2) If (w v) is in Cont (X;), then both of

(w, v+w), (w+u v) are in Cont (X,).

(3) 1f (% v) is in Cont (X;), then both of

(w, v % w), (w % u, v) are in Cont (X;).
(4) 1f(w v)isin Cont (X,), then ((% v)) is
in Cont (X;).

(5) Those and only those are in Cont (X)),
where w is a string in L. Let y&X* be any
string such that xyz& L for some (x, z)& Cont
(X1). Then, (x, z) follows the above definition,
and there exists a string we& L such that x'w=
x for some x’EX* and wye& L. This implies
that ye{+, * }L=L(X;), and therefore, x\L/z
= L(X,) for all (x, z)& Cont(X;). Similarly
from the contexts of the nonterminals E, X,, X3,
X, and Xs, which are also recursively defined, we
see that for any pair of string (x, z), if (x, z)&
Cont(X), x\L/z = L(X) holds. Hence, G is a
c-deterministic grammar and L is a c-
deterministic language.

4. Main Results

4.1 Learning c-Deterministic Grammars

(1) Introducing the set new nonterminals

Given a positive counterexample w, define a
set of new nonterminals N (w) as the set of all
the triples (x, y, z) such that w=xyz, where y is
not empty, that is,

=xyz}.
The following lemma obviously holds.
Lemma2 Let G =(N,X,P,S) be a c-
deterministic grammar such that L=L(G),
and w& L. Then, for any nonterminal A that
appears in the derivation S=% w, there is a
triple (x,y,z) in N(w) such that L(4)5 x\L/
z. 0
(2) Constructing new candidate rules

Polynomial-time MAT Learning of C-Deterministic Context-free Grammars 383

From the set of nonterminals N together with
the new ones N (w) produced above, we newly
construct the set of nonterminals N=N U N(w).
Then, the set of new candidate rules Pyg, is
constructed as

wew={A—alAEN(w), acE X}
U{4—-BCl|A4, B, CEN, at least
one of 4, B, C is in N(w)}.

(3) Learning algorithm LA

The following is the learning algorithm LA
for c-deterministic grammars :

Input : a c-deterministic CFL L over fixed 5.
Output : a CFG G in CNF such that L=L{G) ;
Procedure :
intialize G=({S}, 2,4, S);
repeat
make an equivalence query to G=(N, %, P,
S);
if the answer in yes then output G and halts
else if the answer is a positive counterexample
w
then introduce the set of new nonterminals
N(w) from w;
N:=NUN(w);
construct the set of new rules Py ;
P:=P UPnew;
else (the answer is a negative counterexample
w’)
parse w’ with conjectured grammar G ;
construct the derivation tree T, ;
diagnose P and find an incorrect rule r ;
P:=P—{r}

(4) Diagnosing the set of rules P

Before describing the diagnosing algorithm,
we need some more definitions.

A derivation tree for a derivation A=¥ w is
denoted by 7a,,. We call such a string w a leaf
string of Ty, .

For a target c-deterministic CFL L, let Gy=
(Nx, X, Px, S) be a c-deterministic CFG such
that L=L(Gx), and G=(N, X, P, S) be a con-
jectured grammar. For nonterminals 4A=(x, y,
z) in N and AEN,, we say that 4 is well-
corresponding to A iff x\L/z = L(A) holds.
Note that, in this case, 4=(x, y,z) can be
identified as 4 and a nonterminal membership
query to A is replaced with a membership query
using the relation L(4)= x\L/z. A nonterminal
A is non-corresponding to G iff there is no
ponterminal AS N4 to which 4 is well-
corresponding. A binary rule 4- BB, in P is

384 Transactions of Information Processing Society of J apan

well-corresponding 1o A— BB, in P iff 4, B,
and B, are well-corresponding to A4, B, and B,
respectively. Similarly, a terminal rule 4 a in
P is well-corresponding to A—a in Py iff A is
well-corresponding to A.

Let N be the set of nonterminals of a con-
jectured grammar G=(N, Y, P, S). A replace-
ment ¢ is a construct of ordered pairs [(wy, By),
(W, By)], where w;&3* and B,=(x,, y;, z)EN
for i=1,2. Suppone A=BB,. Then, an
instance of 5 by o, denoted by o[8], is a termi-
nal string obtained by replacing B; of 8 with a
terminal string w; for i=1, 2.

Let » be a binary rule 4 - B, B,, where 4=(x,
¥,z). Then, r is incorrect for L iff there exists
a replacement g=[(w, B)), (w,, B,)] such that
for i=1,2, wy&x\L/z;, but o[BB]EX\Lfz. A
similar definition is given for a terminal rule,
that is, a rule A a is incorrect for L iff agt x\
Lfz. A rule is correct for L iff it is not incorrect
for L. These definitions are a natural extension
of those in Ref.2),7). Note that the rule
containing non-corresponding nonterminals
may be incorrect for L or may not.

It is clear that every rule well-corresponding
to a rule of Gy is correct for L. We show that
if a string w” which is not in L is derived by the
conjectured grammar G, then there exists at least
one incorrect rule in P, that is, if P has no
incorrect rule, then G derives no string w’ such
that w'é L.

Lemma3 Let G=(N,X,P,S) be a con-
Jectured grammar and L be a target c-
deterministic language. If all the rules in P are
correct for L, then for all A=(x,y z)EN, L
(A)S x\L/z holds.

Proof. Let w be a string such that wE L(4).
We show that w is also in x\L/z by induction
on the maximum length i of the path of deriva-
tion tree for w. Suppose i=1, that is, A= w.
Then, w=a must be derived using a terminal
rule 4 a correct for L, and therefore, ac x\ L/
z

Next, suppose that the claim holds for j<k.
Let Tg,, wi, Ts,, w, be two derivation trees, where
Bi=(x;, y;,z)&N for i=1,2, such that the
maximum length of the path in each Tj, 4, is at
most k. By the induction hypothesis, w,E x,\L/
z;. Let A— BB, be a correct rule in P. Then, we
obtain a derivation tree T, »,u, for wywy, where
the maximum length of the path is at most k& +1.

Mar. 1993

Suppose w (=ww,) is not a string in x\L/z
Then, there exists a replacement o=[(B;, w,),
(B, wo)| such that for i=1,2, w,&x,\L/z; but
o[ByB:]=wiwoE x\ L/z, from which we have that
the rule 4— BB, is incorrect for L. This con-
tradicts the assumption, and therefore, the lemma
holds. B

Note that by replacing 4 of the above lemma
by S, we have that if all the rules in P are
correct for L, then L(G)=L(S)SN\LJA=L.

Given a negative counterexample w’, the al-
gorithm has to prevent the conjectured grammar
from producing w’ by removing wrong rules. In
order to determine such wrong rules, the algor-
ithm calls the diagnosing procedure whenever a
negative counterexample is provided.

The diagnosing algorithm is a modification of
Shapiro’s contradiction backiracing procedure
(Ref. 8)). This procedure takes as an input a
subtree T4, ., a derivation tree of w’ rooted with
A, and outputs a rule # which is incorrect for L.

The diagnosing algorithm in turn deals with
each child of the root A of T4, . 1f A has only
one child, which must be labeled with a symbol
a{(=w’)& 3, then the algorithm returns the ter-
minal rule »: A a. Otherwise, that is, if 4 has
two children, the algorithm proceeds as follows.

Assume that the left (resp. right) child of the
root 4 =(x,y,z) is labeled with B;=(xy, y,,
z)(resp. B,=(xs, y», 2)), and w; (i=1,2) is the
leaf string of the subtree rooted by B,. First, the
algorithm queries with B, whether xyw,z& L or
not. If the answer of the membership query is
“no”, then it recursively calls with the subtree
T3, w,. Otherwise (the answer is “yes”), then it
goes on the right child B, and performs it in the
same manner. If the both queries are answered
with “yes”, then the diagnosing procedure
returns the binary rule A4— B;B, at the top of
T4, », Which is incorrect for L. This will be
discussed in more detail later.

Procedure diag(T,,)
if w=a¢€lX, then output »:A4—a and
halts
else for i==1, 2 (each child of 4), do
make a membership query “x,w;z.&
L
if the answer is no
then diag(Ts, u,) ;
output »=4- BB, and halts
We show an example of the run of the

Vol.3¢ No.3

diagnosing algorithm. Let L={a"cb"|n>0} be
the target language. Note that the grammar Gx
=({S, 4, B, X},{a,b,c}, P, S), where Py is
composed of the rules

S->AX|c

A—a

B-b

X - SB,
is a c-deterministic grammar such that L=
L(G). Further, suppose that the current con-
jecture G has the rules

S—AX|c

A-a

B-b

X - SB|SA,
where nonterminals A, B and X are the triples
(a, a, cbb), (aaach, b, b) and (aa, acbb, b),
respectively.

Let w’=aacab be a negative counterexample
returned in the learning algorithm. Then, LA
constructs the derivation tree Ts ., using the
conjectured grammar, which contains at least
one incorrect rule. In Fig. 1, the derivation tree
Ts . for this derivation is shown.

Since the node labeled with S has two chil-
dren, the diagnosing algorithm first considers the
subtree T4 ., and queries whether a-a-cbbE L
or not.
returned, and the algorithm considers the next
subtree Tx. ..s making the next membership
query “aa-acab-b& L 7", Then, the answer is
no”. Therefore, the diagnosing algorithm is
recursively called for the subtree 7'z, acab- The
algorithm considers the subtree Ts. aca» Where S
is the label of the left child of X, and queries
whether acas L or not. Again, the answer is
“no”, and the algorithm is called for Ts e
Then, it eventually makes two membership
queries “a-a-chb& L 77, and “aa-ca-b& L7,
for two subtrees T4, and Tg .. While the
answer for the former is “yes”, the answer for the
latter query is “no”. Therefore, the diagnosing
algorithm is applied for the subtree 7'x, co At
this time, two membership queries “c& L ?” and
“qe.a-chbe L 77 are made, but both answers for
the queries are “yes”. Then, the diagnosing
algorithm returns the rule X - SA as an incor-
rect tule for L and halts.

Note. The diagnosing algorithm correctly
works even for a derivation in which some
non-corresponding nonterminals appear.

13

Since aachb& L, the answer “yes” is .

Polynomial-time MAT Learning of C-Deterministic Context-free Grammars 385

8
/

A
A
a

>

S]

N
S
L

AN

>

[4

E f—n

Fig.1 A derivation tree for w'=aacab.

Although a rule has some non-corresponding
nonterminals, the rule may not be used in any
derivation of a negative example.

We are now in a position to prove the correct-
ness of the diagnosing algorithm.

Lemma 4 Given a negative counterexample w’
and a conjectured grammar G, the diagnosing
algorithm always halts and outputs a rule
incorrect for L.

Proof. It is clear that since the procedure diag
is recursively called with a proper subtree of the
initial input tree 7% ., the algorithm always
halts and outputs some rule in P.

Let us assume that a rule #: A—a (aEN?U
') is returned by this algorithm,where A4 =(x,y,
z) and w is the leaf string of a derivation tree
Ta ». Note that xwze L.

Suppose that is a terminal rule A - a. Then,
it is returned with the answer “no” to the
membership query “xaz& L ?”, which implies
that xazg L. Thus, r is incorrect for L.

Now, suppose 7 is a binary rule, that is, o=
B,B,= N2 Let B;=(xy, y;, z;) and the string w; (i
=1,2) be the leaf string of a subtree rooted B..
When r : A— BB, is returned, from the property
of diag, it must hold that x;w;z;& L for i=1, 2.
Hence, 7 is incorrect for L. O

Thus, it is seen that the diagnosing algorithm
finds not a rule containing non-corresponding
nonterminals but an incorrect rule, which may
contain some non-corresponding nonterminals
or may not.

4.2 The Correctness and Time Analysis of

LA '

Let Go=(No, X, P, S) be a minimal c-
deterministic grammar such that L= L(Gy) and /
be the maximum length of all counterexamples
provided through this algorithm.

386 Transactions of Information Processing Society of Japan

Lemma5 Let Go=(N,, 5, Py, S) be a minimal
context-free grammar. Then, the number of
positive examples needed to identify a correct
grammar is at most | Ny).

Proof. Let G=(N, X P, S) be the conjectur-
ed grammar from LA, and suppose a positive
counterexample w is given. Then, we claim that
at least one new triple well-corresponding to
some A in N, is introduced.

For w, let Ny(w) be the set composed of all
the nonterminals in N, used in the derivation of
Gy for w. By the nature of LA, if a positive
counterexample w is given, then there exist some
rules or nonterminals needed to derive w but not
contained in P or N. By Lemma 2, all triples
well-corresponding to the nonterminals in N,
that appear in the derivation S = ¥ w are in
N(w). Further, for each new nonterminal A, all
the rules containing 4 are added to the rule set
P, and only incorrect rules in P are removed by
the diagnosing procedure.

To sum up, whenever a positive counterexam-
ple w is given, there exists at least one nonter-
minal A=(x, y,z) in N(w)— N that is needed
to derive w and is well-corresponding to A.
That is, satisfying that x\L/z = L(A4) for some
A € N,, and these are added to N. This justifies
the claim, and therefore, the lemma holds. O
This means that after receiving at most |Ny|
positive counterexamples, NV includes a sufficient
number of nonterminals to generate the target
language L.

For the number of nonterminals produced

from each w, the following lemma is easily
shown.
Lemma 6 Let we&3* be a positive counterex-
ample given in the algorithm. Then, |N(w)|,
that is, the number of nonterninals introduced
is at most (1/2) lg(w)(1g(w)—1). al

From Lemma 6, the number of rules construct-

ed from N(w) is also bounded.
Lemma?7 Let G=(N,5 P, S) be the con-
Jectured grammar, where N is the set of
nonterminals incremented by adding new
nonterminals. Then, the number of new rules
Prew is at most (|N|x|Z])+(IN|)> o

Let | Nmax| be the maximum number of nonter-
minals of conjectured grammars, and | Py be
the total number of rules introduced in LA.
From Lemmas 5 and 6, the following two lem-
mas immediately hold.

Mar. 1993

Lemma8 Through running the learning al-
gorithm, the maximum number |Npax| of
nonterminals is at most (1/2)|Ny|I{(I—1). o
Lemma 8 together with Lemma 7 immediately
leads to the following.
Lemma9 The number |Piua| of rules
introduced in the whole of the learning algo-
rithm is bounded by ((1/2)|No|I(I—1)x|3|)
(/2N (1= 1)), o
Now, suppose a negative counterexample w’ is
given. Then, the algorithm constructs its deriva-
tion tree using the conjectured grammar G=(N,
X, P,S) at that time. Since there exists an
algorithm (e. g., Cocke-Kasami-Younger
algorithm®) that constructs the derivation tree
for w’ is time proportional to (|N|+|P|)
(Ig(w"))?, each parsing procedure requires at most
(| Vx| +| Protar]) I° steps, where |N| < |Npayl, |P| <
[Prota| and 1g(w’)<I. From these observations,
the next lemma immediately follows ;
Lemma 10 When a negative counterexample
is given, the time complexity of constructing its
derivation tree is at most

{0z Dgimii -1+
<%INO|I(1 1))}313. .

As for the number of membership queries
performed in one calling of diagnosing algo-
rithm, the next lemma holds.

Lemma 11 In the diagnosing algorithm, the
number of required membership queries is at
most 2lg(w’)—1, where w' is a negative
counterexample given in the algorithm LA.

Proof. 1t suffices to show by the induction on »
(=1g(w")), the length of ’, that the number of
internal nodes of each derivation tree for w’,
using the grammar G=(N, X P, S), is 2lg(w’)
—1, because the membership queries are made
for each nonterminal appearing in the derivation
of w’. First, let n=1. Then, the claim holds,
since the derivation tree has one internal node,
namely, the root node. Next, assuming that the
claim holds for all » less than or equal to k,
suppose S = AB is a rulle in P and let w/E
L(A), wic L(B) be two strings such that
lg(wi)+1g(ws)=k +1. Then, consider a derivation
tree T 4. By the induction hypothesis, both
lg(w{)<k and lg(wf) <k holds. Therefore, the
numbers of internal nodes of the two derivation
trees T4 4, and T ., are 2lg(w{)—1 and

Vol.34 No.3

2lg(ws)—1, respectively. Then, the number of
internal nodes of the derivation tree T, . is
Qlg(w))—1)+lg(ws)—1)+1=2(k+1)—1.
Thus, the claim holds for n=4k +1.

This means that the number of membership
queries required in the diagnosing algorithm for
the negative counterexample w’ is at most
2lg(w)—1. o

When |No| positive counterexamples are given,
the set of rules Py includes all the rules that
are well-corresponding to the ones in P, that is,
any string in L is derivable using Piota. This
implies that LE L(G) for a conjectured gram-
mar G at that time, and hence no more positive
counterexample is given. By Lemma4, each
time a negative counterexample is given, one
incorrect rule is determined and removed.
Therefore, the number of required negative
counterexamples is at most |Poa|, the maximum
number of rules of conjectured grammar. By
Lemma 3, if all incorrect rules are removed, the
resulting conjectured grammar derives no string
which is not in L, that is, L(G)< L. From these
facts described above, we conclude that LA
always converges and outputs a correct grammar
G.

From a series of lemmas above, we obtain the

main theorem ;
Theorem 12 For any c-deterministic language
L, the learning algorithm LA identifies a CFG
G such that L= L(G) in time polynomial in the
maximum length [of counterexamples and the
size of a minimal grammar Gy for L, where the
size of the grammar G, is the sum of the
numbers of nonterminals and rules. o

5. Relationships between Other Subclasses
of CFGs

In this section, we discuss the. relationships
between the class of c-deterministic languages
and other subclasses of context-free languages
which are learnable from MAT.

First, the class of regular languages is proper-
ly contained in the class of c-deterministic lan-
guages.

Lemma 13 For any regular language L, there
exists a c-deterministic grammar such that L=
L(G).

Proof. The grammar corresponding to a mini-
mal DFA which accepts L is obviously c-
deterministic. o

Polynomial-time MAT Learning of C-Deterministic Context-free Grammars 387

Furthermore, there exists a non-regular language
L’ which is c-deterministic, such as the language
L introduced in Section 3.

As mentioned previously, the class of simple
deterministic languages and of one-counter lan-
guages is also polynomial-time learnable from
MAT. We claim that the class of c-deterministic
languages is incomparable to the class of simple
deterministic languages and of one-counter lan-
guages. In order to show this, we need the next
easy lemma.

Lemma 14 Let L be a c-deterministic lan-
guage. Then, there exists a constant p, >0 such
that for two strings z=uvwxy and z’=uvw'x’y
in L, if lg(z)=p., lg(z")=p, and for all i>
0, both w'wx'y and wv'*w'x"’y are in L, then
w'w’x’y and w''wx’'y are also in L for all i
>0.
Proof. Let G =(N,X, P,S) be a c-
deterministic grammar such that L=L(G).
Then, by what is called “Pumping Lemma”,
there exists p.(>0) depending only on L and
satisfying the conditions of the lemma. Let z, 2’
be two strings in L such that z=wuvwxy, z’=
uv'w'z’y and both lg(z) > p, and lg(z’) = p, hold.
Assume that both uv'w’x’y and uv*wx"’y are in
L for all i>0. Then, there exist the derivations

S=>%udy, A=EvAx, A=>Ew,

S=%uBy, B=>%VBx', B=>tw
for z and z’, where 4, BEN, Since G is
c-deterministic 4 =B holds. Hence, both

S=%udy=% w Ax" y=>uw/ ' wx’ly
and

S=>%udy=% wAxy=>%uv'w'x’'y
hold for all i=0. o
Example 1 Consider the two languages Lo=
{a™b"cb"a™|m=>1, n>0} and Lo={a™d"ed"a™|
m=>1, n=0} over an alphabet X ={q, b, ¢, d, e}.
Let Go:({S(), A, B}, Z, Po, So) and GO:<{§0, A~,
B}, 3, Py, Sy), where

Py: So—ada

A~ claAa|bBb
B - c|bBb

and
ﬁo : 50 - d /‘I a

A-elaAdaldBd

B-eldBd.
Then, Lo=L(G,) and Ly= L(G,), and moreover,
both G, and G, are c-deterministic.

Let Li=Lo\U L. Then, L; is not c-
deterministic, because from Lemma 14, if it is

388 Transactions of Information Processing Society of Japan

c-deterministic, the strings such as addedda or
aabebaa must also be in L;, which contradicts
the fact. o
Lemma 15 The class of c-deterministic lan-
guages is incomparable to the class of simple
deterministic languages.

Proof. The language proposed in Section 3
(the language consists of all the arithmetic
expressions with operators + and %) is a c-
deterministic language, but not a simple deter-
misistic language.

Conversely, we show that the language L,
introduced in Example 1, which is not a c-
deterministic language, it a simple deterministic
language. Let Gi=({S,4,B,C,D, E, F} %,
P{, S) be a context-free grammar, where P
consists of the rules

S—aAB

A-cleladB|bCD|dEF

B-a

C—c|lbCD

D-b

E—e|dEF

F-d.
It is easy to show that L,=L(GY). Since Gf is a
simple deterministic grammar, L, is a simple
deterministic language. m]

A deterministic one-counter automaton M is
described by a 6-tuple (X, O, go, F, 8, 8”), where
Q is a finite set of states, o< Q is the initial state
and F<Q is the set of final states. The two
functions §: QX3 x{0, 1} Q xX(Z U{clear})
and 0" QXY XN QXN together define the
transition function®. For example, 8(p, a, 1)=
(g, +1) means that if the current state is p, the
input is @ and the stack (counter) is not empty,
it changes its state to ¢ and add 1 to the counter.
The alternative function ¢’ is used instead of §
only when the value of the counter becomes
negative after applying §.

Lemma 16 The class of c-deterministic lan-
guages is incomparable to the class of one-
counter languages.

Proof. The language L, introduced in Example
1 is a c-deterministic language, but it is not a
one-counter language.

Consider a one-counter automaton M =(JX,
0, q, F, 8, 0), where Q={qo, g1, ¢, 4s, s, G, Gs,
a7}, F={gs, ¢;}, and define & as

8(qo, @,0)=(q,, 0) 8(qu, @, 0)=(qu, 0)

8(q, a,0)=(g, 0) 8(gs, d, 1)=(gs, +1)

Mar. 1993

0(q, b,0)=(g, +1) (g5, €, 1)=(gs, 0)
e, d,0)=(gs, +1) (gs, d, 1)=(gs, — 1)
8(g, b,)=(g, +1) (gs, a,0)=(q, 0)
8(g, ¢, 1)=(gs, 0) 8(ar, a,0)=(g, 0).
8(gs, b, 1)=(gs, — 1)

8(gs, a,0)=(qu, 0)

The language L, accepted by M is L,=
{a"bcd’a™i, m, n=1}U{a"d’ed’a"|i, m, n>1}.
This is not a c-deterministic language, proved by
Lemma 14. Iui

Finally, we show that the class of even linear
languages is properly contained in the class of c-
deterministic languages.

An even linear grammar (abb., ELG) is a
linear grammer whose production rules are of
the form either 4 - uBv such that lg(u)=Ig(v)
or A-w, where 4, BEN and u,v, wEI+,
(Recall the assumption that any grammar G
considered in this article is A-free.) It is known
that the class of even linear languages properly
contains the class of regular languages®. The
Lemmas 17, 18 and 19 are shown in Ref. 9).
Lemma 17 (Ref.9)) Any even linear Ilan-
guage is generated by an even linear grammar
G=(N,X P,S) such that each rules in P is
of the form

A—-a, A->ab, A- aBb,
where A, BEN and a, b, o
Let G°=({S°%,X, P° S% be an even linear
grammar, where

P’={S5°>qglac 3}

U{S~>abla, b=}
U{S%> aS%l|a, b€}

We call G° the universal ELG for ¥. Let C be
a language on the labels of P° that is, C is a
language composed of the strings of rule labels
of G° Then, we define

L[C](GO):{WEZ*[S:}“W, ac C},
where S=“w denotes a derivation using the
string of rules @. We call C a control set.
Lemma 18 (Ref. 9)) For any even linear lan-
guage L, there exists a regular control set C
such that L= Lc,(G°). o
Lemma 19 (Ref. 9)) Let C be a regular con-
trol set. Ther, L=L;c,(G% is an even linear
language. =

From above results, we show that any even
linear language is c-deterministic.

Lemma 20 For any even linear grammar G=
(N,X,P,S), there exists an even linear gram-
mar G'=(N' X P',S) such that L(G)=

Vol.34 No.3

L(G) and G’ is c-deterministic.
Proof. Without loss of generality, we assume
that L does not contain {A}. Let C be the control
set such that L=Lc)(G%)=L(G). Since C is
regular, there exists a DFA M =(N, P’ 4, S,
F), which accepts C. Note that the alphabet N
is used as the set of states and S as the initial
state. From M, we construct a grammar G'=
(N, Z, P, S), where P’ is defined as follows :
(1) For p:S°>asuch that §(4,p)EF, a
rule A—-a is added to P’.
(2) For p:S8°>ab such that §(4, P)EF,
a rule A— ab is added to P’.
(3) For p:S°>aS° such that 8(4, p)=
B, a rule A- aBb is added to P’.

(4) P’ is composed of only the rules

defined above.

It is assured that L==L(G")?. We show that
G’ is c-deterministic. By the determinicity of M,
it is seen that if the two production rules A4 -
aBb and A — aCb exist, then B=C holds. This
implies that if there exist two derivations S=%
xAz and S=*xBz in G’, then A= B holds, and
by the form of the grammar, £(A4)=x\L/z holds
for every AEN. o

6. Conclusion

We have presented an algorithm that learns
the class of c-deterministic languages, a subclass
of the class of context-free languages, from
minimally adequate teacher. This algorithm is
based on the characterization results of nonter-
minals using derivatives of a target language. It
has been shown that the algorithm learns a
correct grammar in polynomial time from
minimally adequate teacher, which gives a gener-
alization ef the corresponding result on regular
languages in Ref.3). It is noted that the
definition of the minimally adequate teacher
used in this paper is slightly different from the
original one, proposed by Angluin®. In her
problem setting, the class of conjectures consists
of deterministic finite automata, and the target
class is the class of regular languages, that is, the
class of conjectures exactly represents the target-
ed class : however, we used the teacher which
allows arbitrary context-free grammars in CNF
as conjectures to learn the class of c-
deterministic grammars. This kind of teacher is
called extended minimally adequate teacher?”.

Finally, we have discussed the relationships

Polynomial-time MAT Learning of C-Deterministic Context-free Grammars 389

between several classes of context-free languages
and the class of c-deterministic languages. It was
shown that the class of c-deterministic languages
properly includes the class of regular languages
and even the class of even linear languages, and
is incomparable to the class of simple deter-
ministic languages which is also learnable in
polynomial time from extended minimally ade-
quate teacher. The class of one-counter lan-
guages, which is learnable in polynomial-time
from minimally adequate teacher (Ref. 4)), has
been shown to also be incomparable to the class
of c-deterministic languages.

As for the closure properties of c-deterministic
languages, it is shown that the class is closed
under union, intersection and homomorphism,
while there still remains open whether or not the
class of c-deterministic languages is closed under
complement, concatenation, Kleene closure and
intersection with regular languages.

We have considered the learning problem on
the class of 2-restricted (i.e., in CNF) c-
deterministic grammars, in order to discuss the
essence of the problem. Note that given a fixed
k >2, the algorithm LA is easily extended for
learning of the class of k-restricted c¢-
deterministic grammars, by modifying the proce-
dure of constructing new rules. With the fixed %,
the time complexity of modified LA is still
bounded by a polynomial of |Ny| and /.

Although a little is known about the class of
c-deterministic languages, the class is moderately
powerful so that it may generate some of the
well-known context-free languages such as the
sentenses of if-then-else structure, arithmetic
expressions, and so on.

Acknowledgements The authors would like
to thank the referees for their helpful comments
and suggestions which greatly improved the
completeness of this paper. This work is support-
ed in part by Grants-in-Aid for Scientific
Research Nos. 02650261 and 03245104 from the
Ministry of Education, Science and Culture,
Japan.

References

1) Amar, V. and Putzolu, G.: Generalizations of
Regular Events, Inf. Control, Vol.8, pp.56-63
(1965).

2) Angluin, D.: Learning k-bounded Context-free
Grammars, Res. Rep. 557, Dept. of Comput. Sci.,

390 Transactions of Information Processing Society of Japan

Yale University (1987).

3) Angluin, D.: Learning Regular Sets from
Queries and Counterexamples, Inf. Comput.,
Vol. 75, pp. 87-106 (1987).

4) Berman, P. and Roos, R.: Learning One-
counter Languages in Polynomial Time, 28t
IEEE Symp. on FOCS, pp. 61-67 (1987).

5) Harrison, M. A. : Introduction to Formal Lan-
guage Theory, Addison-Wesley, Reading, MA
(1978).

6) Hopcroft, J. E. and Ullman; J. D.: Introduction
to Automata Theory, Languages, and Computa-
tion, Addison-Wesley, Reading, MA (1979).

7) Ishizaka, H.: Polynomial Time Learnability of
Simple Deterministic Languages, Machine
Learning, Vol. 5, pp. 151-164 (1990).

8) Shapiro, E.: Inductive Inference of Theories
from Facts, Res. Rep. 192, Dept. of Comput. Sci.,
Yale University (1981).

9) Takada, Y.: Grammatical Inference for Even
Linear Languages Based on Control Sets, Inf.
Process. Lett., Vol. 28, pp. 193-199 (1988).

(Received April 6, 1992)
(Accepted December 3, 1992)

Mar. 1993

Hiromi Shirakawa was born in
Tokyo, Japan on Dec. 8, 1967.
She received the B.B.A degree
from Sanno College in 1990 and
M.E. in University of Electro-
Communications in 1992. Cur-’
rently she is a teaching assistant of
Sanno College Graduate School of Management and
Informatics. Her research interest includes database
theory and algorithmic learning theory.

Takashi Yokomori received the
B.S., the M.S. and the D.S. degrees
from the University of Tokyo, in
1974, 1976 and 1979, respectively.
After working for the Department
of Informatics, Sanno College, he
joined the ITAS-SIS, Fujitsu Lim-
ited in 198? Hf‘ is currently with the Department of
Computer Science and Information Mathematics,

&

University of Electro-Communications. He was a
Postdoctoral Fellow at McMaster University,
Canada in 1981-1982, and at University of Penn-
sylvania, U.S.A. in 1982-1983. His research interests
include formal language theory and computational
learning theory. Dr. Yokomori is a member of the
ISPJ, the IEICE, the JSAI and EATCS.

