
IPSJ SIG Technical Report

Periodic Pattern Mining
with Periodical Co-occurrences of Symbols

Keisuke Otaki1,2,a) Akihiro Yamamoto1

Abstract: Finding periodic regularity in sequential databases is an important topic in Knowledge Discovery and in
pattern mining such regularity is modeled as periodic patterns. Although efficient enumeration algorithms have been
studied, applying them to real databases is still challenging because they are noisy and most transactions are not ex-
tremely frequent in practice. They cause a combinatorial explosion of patterns and the difficulty of tuning a threshold
parameter. To overcome these issues we provide a novel pre-processing method called skeletonization, which was re-
cently introduced for finding sequential patterns. It tries to find clusters of symbols in patterns, aiming at shrinking the
space of all possible patterns in order to avoid the combinatorial explosion by considering co-occurrences of symbols.
Although the original method cannot allow for periods, we generalize it by using the periodicity. We give experimental
results using both synthetic and real datasets to show the effectiveness of our approach, and compare results of mining
with and without the skeletonization to see that our method is helpful for mining comprehensive patterns.
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1. Introduction
Finding patterns frequently appearing in databases is impor-

tant problems in data mining. Transactions in databases naturally
have timestamps and are often ordered with their timestamps in
the chronological order, from old to new. If such an order is im-
portant to a database, it is called a sequential database. As the
order is directly related to time, typical periods related to clocks
or calendars (e.g., hour, day, etc.) may contribute to the data.
Therefore assuming that such periodic behaviors may appear in
various sequential databases (e.g., trajectory, life-log) is natural in
data mining. To get valuable but hidden insights from databases
based on the periodicity, periodic pattern mining have been stud-
ied [3], [4], [10].

We have several variations on the definition of periodic pat-
terns in the literature. The fundamental ones are full peri-
odic patterns and partial periodic patterns [3]. For example,
let Σ = {sns, news, blog, shops}. We consider a sequence s =

(sns, news, blog, sns, news, blog, sns, shop, blog) representing cat-
egories of Web sites visited by a user. A pattern (sns, news, blog)
in s appears twice, and this is called full periodic pattern of pe-
riod length 3. Full periodic patterns require that all symbols be
fully specified. In some cases, such requirement is not flexi-
ble and it is difficult to handle various periodic behaviors. As
more flexible patterns, partial periodic patterns have been stud-
ied [4]. For example, a partial periodic pattern (sns, ?, blog)
appears 3 times, where ? is the wildcard symbol of length 1
representing any symbol in Σ. As partial periodic patterns can
contain the symbol ?, they are more flexible than full periodic
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patterns to capture periodic behaviors in databases. In mining
these periodic patterns, we assume that a given sequence s is di-
vided into d |s|P e fragments, where P is a period of users’ interest,
and the fragments are used to evaluate patterns: In the exam-
ple above, the pattern (sns, ?, blog) appears 3 times in fragments
(sns, news, blog), (sns, news, blog), and (sns, shop, blog) of s.

Although many efficient algorithms have been developed [3],
[10], it is still challenging to use them in practice because the
number of enumerated patterns highly depends on the number |Σ|
of symbols we use. When databases get large, |Σ| increases as
well. This fact consequently makes evaluating patterns by their
supports difficult because most patterns have similar and rela-
tively small supports. That is, the space of (frequent) patterns
on Σ get sparse with respect to the space of all possible patterns.

Motivating Examples: For both numerical (e.g., price, tem-
perature) and symbolic (e.g., item, product) sequences, preparing
a large set Σ of symbols is essential to achieve the high resolu-
tion of describing phenomena. For example, Fig. 1(a) shows a
sequence of electric power demand per day in UK, 2013. We dis-
cretize the sequence with dividing values into |Σ| bins uniformly*1

as seen in Fig. 1(b) with |Σ| = 16 bins. Clearly, we can represent
a sequence as a symbolic sequence with a smaller loss with a
larger set Σ. In Fig. 1(b), however, only a few combinations of
Σ appear consecutively. It is difficult to tune the set Σ while tak-
ing a balance among the expressiveness and the sparseness. Now
a typical periodic behavior is that the demand gets higher every
weekend, which could be obtained by frequent patterns, where
symbols corresponding to low values are followed by those doing
to high values. We believe that such high-level patterns are more

*1 If the range of values [0, 10) and |Σ| = 4, values in [0, 10] would be cate-
gorized into either [0, 2.5), [2.5, 5.0), [5.0, 7.5), or [7.5, 10), and symbolic
alphabets are assigned to encode the sequence into a symbolic sequence.
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(a) Original
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(b) Discretized (|Σ| = 16)

Fig. 1: A numeric sequence in Fig. 1(a), and its discretization
with 16 symbols (corresponding to dashed lines) in Fig. 1(b).

informative and useful to analyzing databases.
As another example we consider those stored from Last.fm

(http://last.fm/), which generate sequences of songs logged
by users, where similar tendencies can be seen in symbolic data
as well. We take some logs of users from an open dataset (See
Section 3 of [2]), where a sequence s = (S 1, S 2, . . . ) is a log of a
user and each S i is the set of songs heard in the index i, where i
corresponds to a 1 hour interval of the log (e.g., the set S 4 shows
the listened songs during 0 a.m. to 1 a.m.). For example, the
sequence for user ID 808 is length 16, 913 log, where the user
listened to 24, 310 songs and 1, 340 out of 16, 913 intervals are
not empty (i.e., in other intervals the user did not listen to any
songs). Then if we would like to analyze some daily behaviors
(i.e., P = 24) including the empty interval, 24, 31024 is the upper
bound of all combinations. Again, this is intractable and sparse.

Approaches: In pattern mining, therefore, Liu et al. [5] and
others insisted that users carefully need to tune the set Σ and pro-
posed the temporal skeletonization for symbolic sequential pat-
terns. Their idea is to construct clusters of symbols and assign
each cluster a label. Then a sequence can be translated into a
high-level and potentially comprehensive sequences of cluster la-
bels, which roughly characterize the given sequence. By group-
ing symbols into clusters, we reduce the size of Σ. We develop
such method for periodic analyses by generalizing the idea [5],
and discuss frequently occurring high-level periodic patterns.

We would like to emphasis on the fact that many existing stud-
ies dealt with DNA sequences, which requires only 4 symbols
(i.e., Σ = {T,C,A,G}). In such a situation, the combinatorial
explosion is only depending on the length l of patterns we try
to mine. This situation, however, is a bit restricted as many se-
quences require more symbols in general. Therefore developing a
new approach with the periodicity is an important remained prob-
lem. We thus focus on the point by following [5]. Since the tem-
poral skeletonization cannot be applied to periodic settings, we
generalize it by using the idea of periodic extensions of functions.

The rest of this paper is organized as follows. We give prelim-
inaries in Section 2. Our method is formally described in Sec-
tion 3. We provide our experimental results and discuss them in
Sections 4 and 5, and conclude our study in Section 6.

2. Preliminary
Let Σ be the alphabet. The set Σ? denotes the Kleene closure

of Σ. We use Σ+ ≡ Σ? \ {ε}, where ε is the empty string. For

a sequence s ∈ Σ+, |s| denotes the length of s. We let |ε | = 0.
In addition, si and si, j represent i-th element and the continuous
subsequence from i to j of s (i < j), respectively. Let P be an
fixed integer representing the period of users’ interest.

2.1 Frequent Partially Periodic Pattern Mining
Periodic behaviors of databases can be modeled as partially

periodic patterns. An important concept is periodic segments.

Definition 1 (Event Sequence and Segment) For an event se-
quence s ∈ Σ+ and a period P, s can be divided into m
(= d

|s|
P e) mutually disjoint segments. We denote it by s =

〈ps1, ps2, . . . , psm〉, where for 1 ≤ i ≤ m, psi = sim,(i+1)m−1.

Definition 2 (Partial Pattern) A sequence from Σ ∪ {?} is a
(partial) pattern, where ? < Σ represents any length 1 event.

Periodic patterns we want to find are those appearing in peri-
odic segments frequently. For a sequence s and a pattern p, the
traditional measure for evaluating the interestingness of patterns
is to adopt support of patterns defined below.

Definition 3 (Support) For a sequence s and a pattern p of the
same length, s is covered by the pattern p if and only if pi = ?

or pi = si for all 1 ≤ i ≤ |s|, denoted by s � p. The support
of p, denoted by SupP(p), is defined as SupP(p, s) = |{psi | s =

〈ps1, . . . , psm〉, psi � p}|. If a pattern p satisfies SupP(p) ≥ θ with
θ and P, it is called a frequent partially periodic pattern (PPP).

Problem 1 (The FPPPM problem) For a sequence s, list all
partially periodic patterns p from s satisfying SupP(p) ≥ θ.

Several efficient algorithms have been developed for the
FPPPM problem. For examples, Han et al. showed a funda-
mental algorithm using max sub-pattern trees [4] and Yang et al.
proposed a depth-first search algorithm based on projections.

2.2 Temporal Skeletonization
We refer to the original definition of temporal graphs to ex-

plain the idea of the temporal skeletonization in [5], which tries
to build a similarity graph*2 from a given database DB.

Definition 4 (Temporal Graph [5]) Let G = (V, E) be an undi-
rected graph, where V corresponds to Σ. Let DB = {s(1), . . . , s(N)}

be the set of sequences. For x, y ∈ Σ, the weight Wx,y of the edge
corresponding to {x, y} is defined as

Wx,y =
1
N

N∑
n=1

∑
1≤i≤ j≤|s(n) |, |i− j|≤r

1s(n)
i =x∧s(n)

j =y (1)

where N is the number of sequences, r be the window width, 1 f

is the indicator function that returns 1 if and only if f is true.

The right-hand side of Equation 1 can be computed by check-
ing the given database DB, where the indicator function can be
replaced with other similarity measures. The authors in [5] used

*2 A similarity graph is a weighted graph in which vertices represent data
and edges represent the similarity between two points with their weights.
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⌃ = {0, 1, 2, . . . , 15}.

DB = {s(1), s(2), s(3), s(4)},
s(1) = (12, 7, 9, 5, 3, 0, 8, 10, 1)
s(2) = (9, 11, 12, 0, 13, 5, 1, 14, 6)
s(3) = (4, 7, 11, 2, 5, 7, 9, 1, 14)
s(4) = (7, 11, 4, 2, 0, 7, 10, 14, 8)

(a) Input DB =

{s(1), s(2), s(3), s(4)}
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Fig. 2: A toy example in [5] and two heatmaps: Fig. 2(b) shows
the original W computed from DB, and Fig. 2(c) is the re-ordered
one, in which a cluster C1 is drawn.

the exponential function exp(−k|i− j|) with a parameter k. In con-
structing G, for indices 1 ≤ i ≤ j ≤ |s|, a simple implementation
is to increment the weight Wsi ,s j if |i − j| ≤ r for s ∈ DB. After
constructing G, users try to find clusters of symbols by applying
clustering methods to G (such as spectral clustering [6], [8]). The
problem of finding clusters can be formulated as a standard graph-
based optimization problem with some constraints as shown in
[5], where an important step of clustering is to compute eigenval-
ues and eigenvectors from G. Now a matrix W of weights from
G can be represented as a heatmap as shown in Fig. 2.

Example 1 The input is shown in Fig. 2(a). We compute the
weights from {s(1), s(2), s(3), s(4)} as seen in Fig. 2(b) and repre-
sent them by a heatmap, where both the x-axis and y-axis cor-
respond to some order of the alphabet Σ. After applying the
spectral clustering, we can re-order indices of W as shown in
Fig. 2(c). For example, we can find a cluster of symbols such
as C1 = {4, 7, 9, 11, 12}, which is the upper right area in Fig. 2(c).
Note that C1 appears in prefixes of sequences in DB. Then we can
now conjecture that all sequences are in the form (C1,C1,C1, . . . ).

3. Periodic Skeletonization
The key idea for taking into account periodic information is

simple: Extending functions representing areas that we check
in computing weights to some periodic functions of the peri-
odicity P of our interest. The sliding window of width r used
in the temporal skeletonization can be modeled by a rectangu-
lar function with width r and the origin i*3. By modifying this
function in a periodic manner, we can deal with the periodicity
of occurrences of symbols. We can easily imagine such tech-
niques on the analogy of Fourier series and Fourier transforms.
Please recall the toy examples used in Section 2.1. For an input
sequence s = abcabdabb and P = 3, a frequent partially peri-
odic pattern ab? appears 3 times in every segment abc, abd, and
abb. This means that not only neighbors according to the sliding
window Recti,r(·), but also periodic information from i, that is,
i + P, i + 2P, i + 3P, . . . could be used. This observation inspired
our modification for periodic skeletonization.

Definition 5 (Periodic Graph) Let G = (V, E) be a similarity
graph. In G, the weights from an input sequence s and a period P
for two symbols x, y are computed as follows:

*3 It is defined as Recti,r(t) = 0 if |t − i| > r, 1 otherwise.
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Fig. 3: Fig. 3(a) is a result only using the temporal information
and Fig. 3(b) is that adopting the periodic information only, where
rectangles are the discovered clusters.
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Fig. 4: An HMM for Example 2.

Wx,y =
∑

1≤i, j≤|s|
if si=x∧s j=y

1|i− j|≤r + 1i≡ j (mod P) (2)

The second term is newly introduced with the period P.

Example 2 Fig. 3 shows examples of computing Equation 2
from s = (0, 2, 6, 0, 2, 4, . . . ) with Σ = N. Fig. 3(a) is computed
by the temporal skeletonization, while Fig. 3(b) adopts the peri-
odic term only in Equation 2. We can see 3 clusters as rectangles:
C1 = {0, 1},C2 = {2, 3} and C3 = {4, 5, 6, 7, 8} in Fig. 3(b), and
they are clear than those in Fig. 3(a).

Our basic observation is that we can have periodic sequences by
cyclic HMMs. An example is given in Fig. 4. For example, to
simulate a partially periodic pattern 02?, in T1 and T2, H out-
puts 0 and 2, respectively with high probability 100 × (1 − u)%
and outputs 1 and 3 with low probability 100 × u%. On the other
hand in T3, H generates {4, 5, 6, 7, 8, 9} uniformly. A sequence
generated from this HMM includes 02? frequently. Compared
with the result in Fig. 3(a), we can see that C1,C2,C3 correspond
to T1,T2,T3 more clearly as blocks in the similarity matrix in
Fig. 3(b). Our periodic skeletonization is a generalized method
using the periodic co-occurrences of symbols.

4. Experiments
We report experiments with synthetic and real datasets which

should have simple periodic behaviors to observe the effect of our
proposal. We use both synthetic and real datasets. The summary
of these datasets is shown in Table 1. A synthetic dataset is gen-
erated by using the HMM shown in Fig. 4. A real dataset, named
PowerDemand, is a set of sequences of electric power demand in
2013, extracted from the GridWatch system*4, which were pre-
viously used in Fig. 1. With the discretization level d = 32, we
make a hourly sequence PD-32. Because an yearly record may
contain many periodic behaviors (e.g., daily, weekly, monthly,
etc.), we extract a small subset, named PD-128F, of PD-32 and

*4 http://www.gridwatch.templar.co.uk/
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Table 1: Summary of datasets having some clear period.
Name Length |Σ| P Note

HMM-600-u 600 10 3 with u = 0.25
PD-32 365 32 7 Discretized with level 32
PD-128F 100 128 7 Subset with level 128
Kyoto 43,833 359 365 The resolution 0.1◦C
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Fig. 5: Heatmaps representing similarity matrices of graphs from
synthetic sequences (HMM-600-u) with P = 3 and k = 3. Fig-
ures 5(b) and 5(c) successfully show clear clusters as rectangles.

make the resolution of Σ more clear by increasing the size Σ from
32 to 128 and taking a part roughly from summer to autumn. For
PD-128F, we expect that the sequence have the period P = 7. As
another dataset, we use Kyoto, a sequence of the daily tempera-
tures from 1880 to 2014 with P = 365 and |Σ| = 359.

We implemented the periodic skeletonization part in C++ *5,
and apply spectral clustering (and k-means algorithm in it) by
using the scikit-learn [7] package on Python 2.7.8. All experi-
ments are run on a machine of Mac OS X 10.10 with 2 × 2.26
GHz Quad-Core Intel Xeon processors and 64GB memory.

We would like to show computed graphs and the discovered
clusters. We set k by using the heuristic of the spectral cluster-
ing (Please see [9]), or to be a small number (2 or 3, for example).
In experiments we basically use only the original definition, i.e.,
we only use the delta function by the indicator function 1 f . In the
following, we prepare the following labels to represent methods:
1) DT means the temporal skeletonization, 2) DP users the peri-
odic information only, and 3) DTP adopts the both of them. Out
of several parameter settings we tried, we took a part of results.
We showed results of synthetic data in Fig. 5, and those of real
datasets in Fig. 6 with varying methods.

Synthetic Datasets: From results using synthetic data, we can
conjecture that periodic information of temporal graphs are help-
ful to find clusters of symbols compared with Fig. 5(a) and Fig-
ures 5(b) and 5(c), where we would like to extract periodic clus-
ters, that is, clusters representing {0, 1} and {2, 3}, which corre-
sponds to T1 and T2 in the HMM in Fig. 4, respectively. From
the result using only temporal information in Fig. 5(a), however,
we cannot find them. On the another hand, results using periodic
information seen in Fig. 5(b) and both of them in Fig. 5(c) show
two clusters {0, 1} and {2, 3} much clearly.

Real Datasets: Results from real datasets should be affected by
properties of sequences and the periodicity of them. In two cases
with PD-32 and PD-128F, for example, results were symmetric
with respect to methods: If we use the periodic information in
Figures 6(b) and 6(c), we cannot find any clusters but in Fig-
ures 6(e) and 6(f), we can find a few clusters of symbols, which

*5 gcc 4.7 with -std=c++11 without parallelization
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Fig. 6: Heatmaps from PD-32 (top row), PD-128F (middle row),
and Kyoto (bottom row), with DT, DP, and DTP.

are similar to results of synthetic data. We guessed that the differ-
ence between PD-32 and PD-128F is whether or not there exists
many periodic behaviors in sequences. Because we selected a
subsequence from PD-32 as PD-128F to remove multiple peri-
ods, the periodic skeletonization with a fixed period parameter
P = 7 seemed to work well. In results from Kyoto, we can see
that there exist roughly 3 clusters. If we adopt the periodic infor-
mation, those clusters seem to get much clearer. For example, in
Fig. 6(g) and Fig. 6(i), we confirm that two dense clusters (top
left and bottom right) in Fig. 6(i) are much clearer than in those
Fig. 6(g). We conjecture that these visualized results are helpful
to analyze given sequential databases and enumerated patterns,
particularly when we need to run methods many times.

Conclusions: We conclude experiments using sequences con-
taining clear periodic behaviors. Originally, results of clustering
symbols are sensitive to definitions of similarities. The previous
study reported in [5] that results of the skeletonization seemed to
be stable. As far as we investigated in experiments, with respect
to the parameters r, which control a kind of smoothing of sym-
bols sequences, the results could be stable as well. We also see
that our method could be helpful to highlight periodic behaviors
of sequences. We guess that this result is also affected from the
multiple periodicity, and conclude that the periodic skeletoniza-
tion help us to find underlying structures. Although the method
sometimes (as seen in PD-32) disturbs results, it seems to work
as we expected particularly when the periodicity is clear.

4.1 Case Studies
We provide results using (more) real datasets. One is from

Last.fm data that we have used in Section 1. We also adopt 2-
dimensional sequences representing trajectories of movements,
and encode them as (1-dim) symbolic sequences.

Last.fm Datasets: Because properties of data vary according
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Table 2: Statistics of user logs from the Last.fm dataset.
User ID |Lall | |Lne | (non-empty) |Σ| ||S||

User 672 384 147 247 2,329
User 808 529 147 578 2,108
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Fig. 7: Heatmaps of Users 672 and 808 from Last.fm datasets
with varying DT, DP, and DTP where P = 24 and w = 2.

to users, we would like to investigate how results get for real
datasets. Datasets are obtained from [2] by gathering and or-
dering the logs of songs listened by users based on focusing the
granularity “hour”. One database corresponds to one sequence
of sets of symbols (i.e., songs) by one user. For experiments, we
sampled users from the whole dataset, obtained sequences of sets
of symbols, and used small parts of them. We provided statistics
of selected data in Table 2. For a sequence s = S 1, S 2, . . . , S M of
S i ⊆ Σ, Lall means |s| = M, Lne shows |{S i | S i , ∅, S i is in s}|,
Σ means the size of the set |S 1 ∪ · · · ∪ S M |, and ||S|| =

∑
i |S i|,

respectively. We set P = 24 to analyze hourly behaviors.
We show results in Fig. 7. Here we do not want to say which

clustering results are good (or bad). From experiments by peri-
odic information in the skeletonization we can confirm two kind
of results: A type increases the number of clusters compared
with the ordinal temporal skeletonization (e.g., from Fig. 7(a) to
Fig. 7(c)). Another type, in contrast, decreases the number of
clusters (e.g., from Fig. 7(a) to Fig. 7(b), Fig. 7(d) to Figures 7(e)
and 7(f)). As the periodic information help us to consider periodic
co-occurrences of symbols, if there exist some periodic behaviors
of sequences, then applying our method should be helpful.

Trajectory Datasets: As an another example of skele-
tonization and mining, we adopt some trajectory time-stamped
databases used in [11], [12]. A trajectory here is an ordered se-
quence of pairs, i.e., (X,Y) corresponding to longitude and lati-
tude of an entity. A sequential database DB is now encoded as
a single sequence s by discretizing X and Y , and putting some
integer n ∈ N. Table 3 shows some statistics of trajectories used,
in which data are discretized with level d = 256, and many (X,Y)
slots on the grid could be empty. Thus the table also shows the
number of non-empty grids used.

Figure 8 are results of the skeletonization with w = 45 and
P = 60 and 120. Compared with synthetic cases or some real
datasets used above, trajectory data are more sparse. That is,

Table 3: Statistics of discretized trajectories.
ID |DB| # of non-empty (|Σ|)

1277 8187 3410
6275 3960 2450
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Fig. 8: Heatmaps of IDs 1277 and 6275 with DT and DTP
(w = 45, P = 60 and 120), trying with k = 2 (# of clusters).

most symbols in Σ appear only once in our discretized sequential
databases. In results, similar results are obtained compared with
Last.fm datasets, but it was difficult to find clusters automatically
without tuning algorithms. In fact, only small clusters (in the
right-bottom part) can be found: From Fig. 8(a) to Fig. 8(b) and
Fig. 8(c), a small cluster containing a few symbols was found. By
contrast, from Fig. 8(d) to Fig. 8(e) Fig. 8(f), a (relatively) large
cluster disappeared, and a small cluster was found again.

Discussions: Discussing the quality of clusters is fundamen-
tally impossible as we do not have any labels. Conceptually, the
skeletonization does not use any semantic information of sym-
bols, and results only depend on the co-occurrences of symbols.
In our method, we intend that adding more computations by the
periodicity have increased information we can use in the pre-
processing step. Introducing additional resources for computing
the similarities such as background knowledge or taxonomy is
one of interesting future work. However, such knowledge re-
sources are in general high cost compared with the skeletoniza-
tion. Therefore, we guess that combining both methods is much
effective for solving the sparseness problem. In addition, we also
expect that introducing sophisticated clustering algorithms is im-
portant (e.g., hierarchical spectral clustering [1]).

5. Mining Meets Skeletonization
We try to apply pattern mining algorithms based on the clusters

discovered by the skeletonization techniques. We consider the
two cases: 1) We have some assumptions on P, and 2) we have
no idea on P. For the case 1), we solve the FPPPM problem with
a fixed P we have in mind. For the case 2), we allow for patterns
contain a gap among symbols based on [13]. In experiments,
we use clustering results obtained by the above experiments. For
enumeration of patterns in the case 1), we use the algorithm pro-
posed by Yang et al. [10], and call it PPPMiner. To examine how
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Table 4: Numbers of enumerated patterns with and without the
skeletonization together with the PPPMiner.

Table 5: For the Kyoto dataset (P = 365)
Datasets θ = 0.9 0.7 0.5 |Σ|

Kyoto 0 0 0 359
Kyoto(≥1) 9,065 57,596 133,027 224
Kyoto(≥2) 28,134 210,806 523,021 97
Kyoto(≥3) 54,354 349,648 917,403 3

Table 6: For User 672 dataset (P = 24)
Datasets θ = 0.3 0.2 0.1 |Σ|

User 672 0 0 0 247
User 672(≥1) 128 318 51,304 177
User 672(≥3) 128 319 22,540 144
User 672(≥10) 127 260 5,718 10

our method affects patterns enumerated by the PPPMiner, we use
Kyoto and Last.fm datasets. On the other hand, for the case 2) we
adopt the algorithm by Zhang et al [13], named GAPMiner. All
algorithms are re-implemented in Python 2.7.8.

Mining with the PPPMiner: For the Kyoto dataset, using
k = 3, we prepared four cases: Kyoto (original), Kyoto(≥1),
Kyoto(≥2), and Kyoto(≥3) to apply the PPPMiner. We show the
number of enumerated patterns with P = 365 and with varying θ
in Table 5. For the User 672 dataset from the Last.fm dataset, we
first apply both skeletonization methods as shown in Fig. 7(c) as
well. We use the number k = 10 of clusters to pre-process. Out
of k = 10 clusters illustrated in Fig. 7(c), for the integer j in Line
6, we use the largest cluster C1 and get the re-encoded sequence
User 672(≥1) corresponding to j = 1. In the same manner, we
adopt the top three largest clusters C1,C2, and C3 (i.e., j = 3) and
get the sequence User 672(≥3). We finally use all clusters ( j = 10)
and label the obtained sequence as User 672(≥10). We show in
Table 6 the numbers of enumerated patterns.

In both cases we cannot find any frequent patterns without the
periodic skeletonization. That is, without any pre-processing,
databases are sparse and we cannot evaluate the support count
well. However, with thanks to the periodic skeletonization, we
can find many frequent patterns in other cases. Because the
method helps us to find rough, characteristic patterns by clus-
tering, we can find readable and high-level frequent patterns. For
example in the Kyoto(≥1) setting, we found 9,065 patterns which
characterize 90% of segments in the given sequence. In addition,
in the settings of User 672(≥1) and User 672(≥3), we found roughly
300 frequent patterns that characterize 20% of segments, and this
number is relatively small and easy to analyze.

Mining with the GAPMiner: We adopt the trajectory se-
quence of ID 1277 used the above. In this case, we use the num-
ber k = 2 of clusters. Then the largest cluster C1 is replaced and
a new encoded data ID 1277(≥1) is obtained. We used [α, β], the
minimum and maximum gap admitted among characters, to be
α = 0 and β = 5, and mine patterns up to the length l = 6. As
shown in Table 7, we listed almost similar numbers of patterns
(from l = 3 to 6). However, we can confirm a large difference be-
tween two patterns enumerated by checking the support of each
pattern enumerated in the logarithmic scale as shown in Fig. 9.

Although we cannot discuss the quality of clusters now,

Table 7: ID 1277 with θ = 0.00022 and [α, β] = [0, 5].
Datasets Length 3 4 5 6

ID 1277(≥1) 46 58 68 78
ID 1277 72 59 51 51
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Fig. 9: The logarithmic frequency of patterns by the GAPMiner.

through experiments, we confirmed that the skeletonization af-
fected the distribution of the frequency of patterns. Compared
with the result without the skeletonization in Fig. 9(a), Fig. 9(b)
shows our method made many patterns have similar support
counts. We conjectured that such effects are important to provide
a way for the exploratory data analysis by pattern mining.

6. Conclusion
We provide a new skeletonization method for dealing with the

periodicity of sequential patterns. Our experiments show that our
method could help us to obtain clusters of symbols even for pe-
riodic settings, particularly for a case where sequences have only
one fixed period. In future work, we would like to develop al-
gorithms to reduce the redundancy of patterns more, based on
well-studied concepts (e.g., closed patterns).
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