
IPSJ SIG Technical Report

Black and White Rendering in Complex Background

KUI CHEN
†1
 CLAUS ARANHA

†2

HITOSH KANOH
†2

In this paper, we present an algorithm for abstracting images with complex background into monochrome art images. Mould et

al. rendered monochrome images by inputting photos which have only one object and have no complex background. To render

images with complex background, we firstly segment the input image and extract the foreground from the background

automatically. Then the belief propagation algorithm based on Hidden Markov Model is used to render the foreground objects

and Otsu method is used to render the background. Finally, we combine the results and obtain the black and white image as the

output. Comparing with the results gained with only one rendering method, by using different method to render the foreground

and the background, we get more details of the foreground objects and stand out them from the background.

1. Introduction

 There are many scenes where an input color image should be

turned into a black and white art image, especially in

documentaries and comics. This paper addresses the problem of

rendering black and white art image from a color photo which

has complex background. The input image not only has a single

object, but also has complex background. A single object image

and image with complex background are shown in Figure 1.

 a b

Figure 1. The Comparison of Simple Image and Image with

Complex Background.

 In Figure 1, image (a) has a single object in the middle of it,

so the background can be ignored. On the other hand, (b) has not

only a single object but a little complex background which

cannot be ignored in the process. Here, we define “complex
background” as below: the foreground object does not dominant

the whole image while the background occupies a large part of

input image and cannot be ignored in the process.

 The aims in this paper include: segmenting foreground

objects from the background, making the foreground objects

stand out from the background, and drawing the details of

foreground objects carefully.

 This paper is organized as follow. In section 2, we review

some scientific works related to our goal. We also point out the

problems in these works. Next, in section 3, we describe the

details of proposed method. Finally, we show results of applying

proposed method to different input images and give some

commentary on the effectiveness of this method in section 4.

 †1 Department of Computer Science, Graduate School of Systems and

Information Engineering, University of Tsukuba.

 †2 Division of Information Engineering, Faculty of Engineering, Information and

Systems, University of Tsukuba.

2. Overview

2.1 Previous approach

 The simplest method used to convert images to binary images

is setting threshold. First of all, the color image is converted into

a grayscale image in which one pixel is 8 bits. Then a threshold

value between 0 and 255 is selected and each pixel’s gray level
is compared with it. The pixels whose gray level is smaller than

the threshold value are given black, otherwise white. This

method is very intuitive but does not respect the details in the

input image.

 Setting threshold is not an acceptable method in most

application scenes. However, some improvements can be done

to grab the details of the input image and produce a better result.

Xu [1] proposed an optimization-based method called “artistic

threshold”. Firstly, segmentation is applied to a source image.

Then, based on the result of segmentation, a region adjacency

graph is generated and an energy function that measures the

quality of different black and white colorings of the segment is

established. Finally, the algorithm searches for a black and

white assignment that minimizes the energy function. The

optimization is controlled via a set of intuitive user-selected

weights that can produce distinct results.

 Hidden Markov Model can also be used to create a black and

white image. Mould [2] presented a Hidden Markov

Model-based method. First of all, the gray levels of pixels is

regarded as observations of Hidden Markov Model and two

labels, 0 and 1, are defined as states which represent black and

white respectively. For each given pixel p in the foreground

object, we associate a label
p

l with it. A label can be either

black or white, and the cost of each pixel is defined as:

1

()
1

p

p

p

l black
c l

l white

 








 (1)

 Then, let the mean intensity of the image be v , the intensity

of each pixel be v . The global energy component for a pixel is

determined by comparing v and v :

1

G

v v

M






 (2)

Where M is the possible maximum pixel intensity, in our case,

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-CG-160 No.9
2015/8/29

IPSJ SIG Technical Report

it is 255. Finally the global energy cost of assigning a pixel with

label
p

l is defined as:

 () ln(0.5 0.5 () () | |)
p p G G

G l c l sign
       (3)

The function ()
G

sign  is to ensure the sign (positive or

negative) of
G

 retained after raising to a power.

 Similarly, defining the mean intensity of 8 neighbors of each

pixel as 8v , then the local energy component for a pixel is

defined as:

8

1
L

v v

M






 (4)

The local energy cost of assigning a pixel with label
p

l is

defined as:

 () ln(0.5 0.5 () () | |)
p p L L

L l c l sign
       (5)

Now the data cost function is defined by combining 3 and5:

 () (1) () ()
p p p

D l G l L l    (6)

High value of α keeps the local details of input image and on the

other hand, the low value of α creates larger segmentation of

one color.

 The other part of energy function is smoothness function,

which indicates the cost between two neighbour pixels p and q.

Let
p

g and
q

g represent the gradient magnitude at pixels p and

q respectively, and GM is the maximum gradient magnitude

value in the image. Similar to the data cost function, we define

smoothness function
pq

V as:

max(,)

(,) 1
p q

V

g g
p q

GM
   (7)

 (,) ln(0.5 0.5 (,) (,))
V

pq p q p q V
V l l c l l p q

     (8)

Smoothness function
pq

V punishes neighbour pixels assigned to

different labels with a high energy value.

 Once the energy functions are defined, then Loopy Belief

Propagation algorithm is used to minimize the Gibbs energy

function. Finally, if Loopy Belief Propagation converges, the

label, 0 or 1, is assigned to each pixel.

 Both Xu and Mould’s methods can generate nice results but

the shortcoming is also clear. These algorithms proposed above

can only draw black and white images from photographs which

contain only single item in the middle of the image and have no

complex background. If the input image has complex

background, the detail in result becomes worse because the

foreground object is affected by the background seriously. (See

Figure 2.)

 a b

 c d

Figure 2. The Results of Simple Image and Image with Complex

Background Using Mould’s Method. (a) and (c) are the input

images, (b) and (d) are the result of Mould’s method.

2.2 Related work

 To generate a black and white image from a photograph

which has complex background, it is important to recognize the

foreground objects from the background.

 “Grab cut” [3] is a very famous algorithm that can extract the

foreground objects from the background. Generally, unlike

“Graph cut” [4], users only need to drag a rectangular loosely

around an object. Based on the hint given by users, color data is

modeled by Gaussian Mixture Model (GMM) and an iteration is

done on an energy function. The iteration terminates when the

minimum value of the energy function is found. The result is a

high performance of accurate segmentation of object from

background.

 However, instead of dragging a rectangular around an object

manually, we can use saliency map based on histogram to do the

same thing automatically [5]. First of all, we use the method

proposed by Cheng [5] to generate the saliency map of input

image. Then, GrabCut based on the generated saliency map is

applied to extract the foreground object from the background.

 Once the foreground object is separated from the background,

we can render the foreground object and the background

respectively. Instead of rendering the whole image with only one

method, we use two different algorithms to obtain the result.

 Otsu algorithm [6] is used to automatically perform

clustering-based image thresholding and reduces a grayscale

image to a binary image. The algorithm assumes that the image

contains two classes of pixels following bi-model histogram, it

then calculates the optimum threshold separating the two classes

so that their inner-class variance is maximal. Otsu algorithm is

very fast and can be complemented easily. However, the result is

a little rough, and many details are ignored. Another

shortcoming of Otsu algorithm is that it cannot be adjusted by

user or parameters because it is based only on histogram of

input image.

 On the other hand, Belief Propagation [7], which is a method

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-CG-160 No.9
2015/8/29

IPSJ SIG Technical Report

based on Hidden Markov Model, can also be used to generate

black and white image. By defining the Gibbs energy function

and adjusting the parameters, more details can be preserved.

Belief propagation is not as fast as Otsu algorithm, but can

obtain better result. However, if it is used on the whole input

image, the background will be rendered excessively and it is

difficult to make the foreground object stand out.

 In our implementation, according to the result from GrabCut,

we apply belief propagation on the foreground object so that the

details of foreground object can be preserved, and Otsu

algorithm is used to obtain the background result. Finally, the

two results are combined and the final result is output.

 The novelty of our approach lies first in the handling of

rendering. Unlike the previously mentioned methods which

usually render the whole image with only one algorithm, we use

two different methods to render the foreground object and

background respectively so that the foreground details are

preserved and background details are suppressed. The result is

that the foreground object is stood out. Secondly, our method is

automatic, and no intervention from user need after inputting the

original images.

3. Proposed method

 The process of the proposed method is shown in Figure 3.

 a b

 c d

 e

Figure 3. The Process of Proposed Method.

 First of all, we calculate the saliency map of input image (a)

and then based on the saliency map, GrabCut is used to separate

the foreground object from the background (b). Secondly, Otsu

method is used on the whole input image and belief propagation

is used on the foreground object only (c and d). Finally, we

combine the results of foreground a background together to

produce the final result (e).

3.1 Separating foreground object from background

 Given a source color image, we use GrabCut based on

saliency map proposed by [3] and [5]. The foreground object

can be separated from background automatically by this method.

The result gained by this step is a mask of input image, where

the foreground is represented with white and the background is

indicated with black. The result is shown in Figure 4.

 a b c

Figure 4. GrabCut based on Saliency Map. (a) Input images. (b)

Saliency map. (c) The results generated from GrabCut based on

the saliency map (b).

3.2 Rendering background with Otsu method

 Otsu method is used to rendering the background of the input

image. First, the source color image is converted into a

grayscale image. Then, Otsu method is applied on the whole

grayscale image. After that, using the mask generated in section

2.1, the background is cut out from the result of Otsu method.

We also try to apply Otsu method on the foreground object only

but find no improvement. This process is shown in Figure 5.

 a b c

Figure 5. Otsu Method Using on the Whole Image and on the

Mask Only. (a) Input image. (b) The output image generated by

Otsu method on the whole image. (c) The output image

generated by Otsu method on the mask only. There is no

improvement for the details of foreground objects. The masks

used here are identical to the ones in Figure 4.

3.3 Rendering foreground with loopy belief propagation

 The foreground object is rendered by loopy belief propagation

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-CG-160 No.9
2015/8/29

IPSJ SIG Technical Report

(LBP). The input image is also converted into grayscale image

first. Then the mask is used to cut the foreground object out

from background. We designed the energy function based on [2],

and do some improvements.

 First of all, the mask generated in section 3.1 is improved so

that it is suitable to be applied in LBP. Because LBP is applied

on 2D Markov Model, we use the minimum enclosing

rectangular of originally mask as the mask of LBP. This is

shown in Figure 6

 a b

Figure 6. The Masks Used in Belief Propagation Algorithm. (a)

The original mask produced by GrabCut. (b) The masks used in

LBP.

 Then, in our implementation, we found that the ln function

was easy to underflow. To avoid this, we modified the

implementation, so that 2 is added to all ln function to avoid

underflow:

() ln(0.5 0.5 () () | | 2)
p p G G

G l c l sign
        (9)

() ln(0.5 0.5 () () | | 2)
p p L L

L l c l sign
        (10)

(,) ln(0.5 0.5 (,) (,) 2)
V

pq p q p q V
V l l c l l p q

      (11)

Adding 1 is not a good idea because many function values will

turn to 0. The functions 9 and 10 punish a label that falls on the

opposite side of the mean intensity as the original pixel intensity.

The parameter γ is used to control the magnitude of energy. The higher γ, the more severe punishment is for even small
values of

L
 and

G
 . Smoothness function 11 punishes

neighbour pixels assigned to different labels with a high energy

value. The data cost function is identical to function 6.

 After defining the energy function, instead of max-product,

which is frequently used in LBP, we invoke the min-sum

method to calculate the message delivered from pixel p to its

neighbour pixel q:

() min(() (,) ())
p q p p pq p k p

l
k

msg l D l V l l msg l
 

    (12)

Min-sum is a minimization problem because we are trying to

find the smallest cost. In function 12, l  is the label which can

be either white or black and k is the neighbour of pixel p except

q. In our implementation, we use 4 neighbourhood (right, left,

up and down). Min-sum is more computationally efficient than

the max-product because it does not have any expensive

exponential functions and uses addition operations mainly so

that it is not as easy to underflow as max-product.

 Finally, to avoid overflow, we normalize each message before

sending it to its neighbour:

 log exp(())

p

p q p

l

A msg l


  (13)

 () ()
p q p p q p

msg l msg l A
 

  (14)

After this step, all messages has been restricted to interval (0, 1).

 The LBP is executed on the foreground object. The target is to

assign a set of labels over all pixels that minimizes the total

energy:

 () (,)
p pq p q

p

E D l V l l   (15)

In function 15, the data term is ()
p

p

D l , which means the total

data cost is the summation of all pixels. The smoothness term is

(,)
pq p q

V l l , where the summation is taken over all

neighbouring pixel pairs (in our implementation, 4 neighbours

model is used, that is right, left, up and down). The result is

shown in Figure 7.

 a b c

Figure 7. Results Produced by Belief Propagation Algorithm. (a)

Input image. (b) Results produced by BP without masks. (c)

Results produced by BP only on the foreground objects.

3.4 Combination

 We combine the results above and produce the final result.

The background of the final result comes from Otsu method and

the foreground of it comes from LBP. The final result is shown

in Figure 8.

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-CG-160 No.9
2015/8/29

IPSJ SIG Technical Report

 a b c

Figure 8. Combining. (a) Foreground object generated by LBP

with mask. (b) Otsu method used on the whole image. (c)

Combining foreground object in (a) and background in (b) with

mask (a), we obtain the final result.

4. Experiments

 All experiment images are from MSRA10K benchmark

dataset and can be downloaded from

http://mmcheng.net/zh/salobj/ .

4.1 Comparison of different methods

 We show that using LBP with mask can gain good results

with respect to render details of foreground object in Figure 9

and Figure 10. The parameters of LBP used in our experiment

are: iteration time=10, 0.3333  16V  0.7 

 From the results, we find that Otsu method cannot enhance

the details of foreground object even if the mask is used because

it only calculates the grayscale histogram of input image once

while LBP method with mask on the foreground object can

improve the details significantly.

 a b

 c d

Figure 9. Comparison of Different Methods. (a) Otsu method on

the whole image without mask. (b) BP on the whole image

without mask. (c) Otsu method on the foreground object only

with mask. (d) BP on the foreground object only with mask.

 We also observed that Otsu method on the whole image can

deduce the background details. To make the foreground objects

stand out, we combine the background from Otsu method and

the foreground from the LBP. See Figure 11.

 a b

 c d

Figure 10. Another Instance of Comparison of Different

Methods. (a) Otsu method on the whole image without mask. (b)

BP on the whole image without mask. (c) Otsu method on the

foreground object only with mask. (d) BP on the foreground

object only with mask.

 a b c

Figure 11. Comparison of the Background Produced by

Different Methods. (a) Otsu method on the whole image without

mask. (b) Otsu method on the background only with mask. (c)

BP on the whole image without mask.

4.2 CPU time

 We also compute the CPU time by testing 105 input images.

The CPU time of each step is listed in Table 1. According to this

table, the most expensive operation is the LBP on the whole

image without mask. But fortunately, we just use the LBP on the

foreground and Otsu on the whole image only, the total average

CPU time is 8.58 + 0.19 + 0.08 = 8.85s.

Table 1. The Run Time of Different Methods in Each Step

Method Average CPU Time

LBP on the whole image 25.61s

LBP on the foreground only 8.58s

Otsu on the whole image 0.19s

Combining 0.08s

5ⓒ 2015 Information Processing Society of Japan

Vol.2015-CG-160 No.9
2015/8/29

IPSJ SIG Technical Report

4.3 More results

 More results are listed in Figure 12.

a

b

c

d

Figure 12. More Results. (a) Input image. (b) Otsu on the whole

image. (c) BP on the foreground object only. (d) Combining

results.

5. Conclusions

 In this paper, we presented a method for converting a color

image with complex background into a black and white art

image. Mask is used to separate the foreground object and the

background. By using different algorithm to render the

foreground and background respectively, our method can keep

the details of foreground object as far as possible and deduce the

details of the background so that foreground object can stand

out from the background.

 There are avenues for future work. First, although the input is

color image, we convert it into grayscale image before

processing it and the color information is ignored here. We want

to find a method to process color image directly without any

conversion.

 Secondly, for some images, our method cannot improve the

result. See Figure 13. There is no enhancement for the details of

foreground object even if mask is used. The reason, in our

opinion, is that the contrast of the flower is too low. The Otsu

method only calculates the histogram of the input image while

the data cost function and smoothness function in BP only

concern with the grayscale gradient, the change of color and

contrast is ignored. We will improve this problem in the future

work.

 a b

 c d

 e f

Figure 13. A Bad Result. (a) The input image. (b) Otsu method

on the whole image without mask. (c) Otsu method on the

foreground object only. (d) BP on the whole image without

mask. (e) BP on the foreground object only. (f) Result.

Reference
1) Jie Xu, Craig S. Kaplan: Artistic thresholding. ACM-NPAR 2008:

39-47

2) David Mould, Kevin Grant: Stylized black and white images from

photographs. ACM-NPAR 2008: 49-58

3) Carsten Rother, Vladimir Kolmogorov, Andrew Blake: "GrabCut":

interactive foreground extraction using iterated graph cuts. ACM Trans.

Graph. 23(3): 309-314 (2004)

4) Yuri Boykov, Marie-Pierre Jolly: Interactive Graph Cuts for Optimal

Boundary and Region Segmentation of Objects in N-D Images. ICCV

2001: 105-112

5) Ming-Ming Cheng, Guo-Xin Zhang, Niloy J. Mitra, Xiaolei Huang,

Shi-Min Hu: Global contrast based salient region detection. CVPR

2011: 409-416

6) Nobuyuki Otsu: A threshold selection method from gray-level

histograms. IEEE Trans. Sys., Man., Cyber. 9 (1): 62–66, 1979

7) Weiss, Y., And Freeman, W: On the optimality of solutions of the

max-product belief-propagation algorithm in arbitrary graphs. IEEE

Transactions on Information Theory 47, 2001.

6ⓒ 2015 Information Processing Society of Japan

Vol.2015-CG-160 No.9
2015/8/29

