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In this paper, we present an algorithm for abstracting images with complex background into monochrome art images. Mould et 

al. rendered monochrome images by inputting photos which have only one object and have no complex background. To render 

images with complex background, we firstly segment the input image and extract the foreground from the background 

automatically. Then the belief propagation algorithm based on Hidden Markov Model is used to render the foreground objects 

and Otsu method is used to render the background. Finally, we combine the results and obtain the black and white image as the 

output. Comparing with the results gained with only one rendering method, by using different method to render the foreground 

and the background, we get more details of the foreground objects and stand out them from the background. 

 

 

1. Introduction     

  There are many scenes where an input color image should be 

turned into a black and white art image, especially in 

documentaries and comics. This paper addresses the problem of 

rendering black and white art image from a color photo which 

has complex background. The input image not only has a single 

object, but also has complex background. A single object image 

and image with complex background are shown in Figure 1. 

 

    

           a                      b 

Figure 1. The Comparison of Simple Image and Image with 

Complex Background. 

 

  In Figure 1, image (a) has a single object in the middle of it, 

so the background can be ignored. On the other hand, (b) has not 

only a single object but a little complex background which 

cannot be ignored in the process. Here, we define “complex 
background” as below: the foreground object does not dominant 

the whole image while the background occupies a large part of 

input image and cannot be ignored in the process. 

  The aims in this paper include: segmenting foreground 

objects from the background, making the foreground objects 

stand out from the background, and drawing the details of 

foreground objects carefully. 

  This paper is organized as follow. In section 2, we review 

some scientific works related to our goal. We also point out the 

problems in these works. Next, in section 3, we describe the 

details of proposed method. Finally, we show results of applying 

proposed method to different input images and give some 

commentary on the effectiveness of this method in section 4. 
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2. Overview 

2.1 Previous approach 

  The simplest method used to convert images to binary images 

is setting threshold. First of all, the color image is converted into 

a grayscale image in which one pixel is 8 bits. Then a threshold 

value between 0 and 255 is selected and each pixel’s gray level 
is compared with it. The pixels whose gray level is smaller than 

the threshold value are given black, otherwise white. This 

method is very intuitive but does not respect the details in the 

input image. 

  Setting threshold is not an acceptable method in most 

application scenes. However, some improvements can be done 

to grab the details of the input image and produce a better result. 

Xu [1] proposed an optimization-based method called “artistic 

threshold”. Firstly, segmentation is applied to a source image. 

Then, based on the result of segmentation, a region adjacency 

graph is generated and an energy function that measures the 

quality of different black and white colorings of the segment is 

established. Finally, the algorithm searches for a black and 

white assignment that minimizes the energy function. The 

optimization is controlled via a set of intuitive user-selected 

weights that can produce distinct results. 

  Hidden Markov Model can also be used to create a black and 

white image. Mould [2] presented a Hidden Markov 

Model-based method. First of all, the gray levels of pixels is 

regarded as observations of Hidden Markov Model and two 

labels, 0 and 1, are defined as states which represent black and 

white respectively. For each given pixel p in the foreground 

object, we associate a label
p

l  with it. A label can be either 

black or white, and the cost of each pixel is defined as: 
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  Then, let the mean intensity of the image be v , the intensity 

of each pixel be v . The global energy component for a pixel is 

determined by comparing v and v : 
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Where M  is the possible maximum pixel intensity, in our case, 
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it is 255. Finally the global energy cost of assigning a pixel with 

label
p

l  is defined as: 

 ( ) ln(0.5 0.5 ( ) ( ) | | )
p p G G

G l c l sign
         (3) 

The function ( )
G

sign  is to ensure the sign (positive or 

negative) of
G

  retained after raising to a power. 

  Similarly, defining the mean intensity of 8 neighbors of each 

pixel as 8v , then the local energy component for a pixel is 

defined as: 
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The local energy cost of assigning a pixel with label
p

l  is 

defined as: 

 ( ) ln(0.5 0.5 ( ) ( ) | | )
p p L L

L l c l sign
         (5) 

Now the data cost function is defined by combining 3 and5: 

 ( ) (1 ) ( ) ( )
p p p

D l G l L l      (6) 

High value of α keeps the local details of input image and on the 

other hand, the low value of α creates larger segmentation of 

one color. 

  The other part of energy function is smoothness function, 

which indicates the cost between two neighbour pixels p and q. 

Let
p

g  and
q

g  represent the gradient magnitude at pixels p and 

q respectively, and GM is the maximum gradient magnitude 

value in the image. Similar to the data cost function, we define 

smoothness function
pq

V  as: 
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pq p q p q V
V l l c l l p q

       (8) 

Smoothness function
pq

V  punishes neighbour pixels assigned to 

different labels with a high energy value. 

  Once the energy functions are defined, then Loopy Belief 

Propagation algorithm is used to minimize the Gibbs energy 

function. Finally, if Loopy Belief Propagation converges, the 

label, 0 or 1, is assigned to each pixel. 

  Both Xu and Mould’s methods can generate nice results but 

the shortcoming is also clear. These algorithms proposed above 

can only draw black and white images from photographs which 

contain only single item in the middle of the image and have no 

complex background. If the input image has complex 

background, the detail in result becomes worse because the 

foreground object is affected by the background seriously. (See 

Figure 2.) 

 

  

         a                   b 

  

            c                         d  

Figure 2. The Results of Simple Image and Image with Complex 

Background Using Mould’s Method. (a) and (c) are the input 

images, (b) and (d) are the result of Mould’s method. 
 

2.2 Related work 

  To generate a black and white image from a photograph 

which has complex background, it is important to recognize the 

foreground objects from the background.  

  “Grab cut” [3] is a very famous algorithm that can extract the 

foreground objects from the background. Generally, unlike 

“Graph cut” [4], users only need to drag a rectangular loosely 

around an object. Based on the hint given by users, color data is 

modeled by Gaussian Mixture Model (GMM) and an iteration is 

done on an energy function. The iteration terminates when the 

minimum value of the energy function is found. The result is a 

high performance of accurate segmentation of object from 

background. 

  However, instead of dragging a rectangular around an object 

manually, we can use saliency map based on histogram to do the 

same thing automatically [5]. First of all, we use the method 

proposed by Cheng [5] to generate the saliency map of input 

image. Then, GrabCut based on the generated saliency map is 

applied to extract the foreground object from the background. 

  Once the foreground object is separated from the background, 

we can render the foreground object and the background 

respectively. Instead of rendering the whole image with only one 

method, we use two different algorithms to obtain the result. 

  Otsu algorithm [6] is used to automatically perform 

clustering-based image thresholding and reduces a grayscale 

image to a binary image. The algorithm assumes that the image 

contains two classes of pixels following bi-model histogram, it 

then calculates the optimum threshold separating the two classes 

so that their inner-class variance is maximal. Otsu algorithm is 

very fast and can be complemented easily. However, the result is 

a little rough, and many details are ignored. Another 

shortcoming of Otsu algorithm is that it cannot be adjusted by 

user or parameters because it is based only on histogram of 

input image. 

  On the other hand, Belief Propagation [7], which is a method 
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based on Hidden Markov Model, can also be used to generate 

black and white image. By defining the Gibbs energy function 

and adjusting the parameters, more details can be preserved. 

Belief propagation is not as fast as Otsu algorithm, but can 

obtain better result. However, if it is used on the whole input 

image, the background will be rendered excessively and it is 

difficult to make the foreground object stand out. 

  In our implementation, according to the result from GrabCut, 

we apply belief propagation on the foreground object so that the 

details of foreground object can be preserved, and Otsu 

algorithm is used to obtain the background result. Finally, the 

two results are combined and the final result is output. 

  The novelty of our approach lies first in the handling of 

rendering. Unlike the previously mentioned methods which 

usually render the whole image with only one algorithm, we use 

two different methods to render the foreground object and 

background respectively so that the foreground details are 

preserved and background details are suppressed. The result is 

that the foreground object is stood out. Secondly, our method is 

automatic, and no intervention from user need after inputting the 

original images. 

3. Proposed method 

  The process of the proposed method is shown in Figure 3. 

 

       

       a                     b 

 

 

                 

               c                       d 

 

 

                     

                            e 

Figure 3. The Process of Proposed Method. 

 

  First of all, we calculate the saliency map of input image (a) 

and then based on the saliency map, GrabCut is used to separate 

the foreground object from the background (b). Secondly, Otsu 

method is used on the whole input image and belief propagation 

is used on the foreground object only (c and d). Finally, we 

combine the results of foreground a background together to 

produce the final result (e). 

3.1 Separating foreground object from background 

  Given a source color image, we use GrabCut based on 

saliency map proposed by [3] and [5]. The foreground object 

can be separated from background automatically by this method. 

The result gained by this step is a mask of input image, where 

the foreground is represented with white and the background is 

indicated with black. The result is shown in Figure 4. 

 

   

   

       a               b               c 

Figure 4. GrabCut based on Saliency Map. (a) Input images. (b) 

Saliency map. (c) The results generated from GrabCut based on 

the saliency map (b). 

 

3.2 Rendering background with Otsu method 

  Otsu method is used to rendering the background of the input 

image. First, the source color image is converted into a 

grayscale image. Then, Otsu method is applied on the whole 

grayscale image. After that, using the mask generated in section 

2.1, the background is cut out from the result of Otsu method. 

We also try to apply Otsu method on the foreground object only 

but find no improvement. This process is shown in Figure 5. 

 

   

   

       a               b                c 

Figure 5. Otsu Method Using on the Whole Image and on the 

Mask Only. (a) Input image. (b) The output image generated by 

Otsu method on the whole image. (c) The output image 

generated by Otsu method on the mask only. There is no 

improvement for the details of foreground objects. The masks 

used here are identical to the ones in Figure 4. 

 

 

3.3 Rendering foreground with loopy belief propagation 

  The foreground object is rendered by loopy belief propagation 
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(LBP). The input image is also converted into grayscale image 

first. Then the mask is used to cut the foreground object out 

from background. We designed the energy function based on [2], 

and do some improvements. 

  First of all, the mask generated in section 3.1 is improved so 

that it is suitable to be applied in LBP. Because LBP is applied 

on 2D Markov Model, we use the minimum enclosing 

rectangular of originally mask as the mask of LBP. This is 

shown in Figure 6 

 

  

  

         a                    b  

Figure 6. The Masks Used in Belief Propagation Algorithm. (a) 

The original mask produced by GrabCut. (b) The masks used in 

LBP. 

 

  Then, in our implementation, we found that the ln function 

was easy to underflow. To avoid this, we modified the 

implementation, so that 2 is added to all ln function to avoid 

underflow: 

( ) ln(0.5 0.5 ( ) ( ) | | 2)
p p G G

G l c l sign
          (9) 

( ) ln(0.5 0.5 ( ) ( ) | | 2)
p p L L

L l c l sign
          (10) 

( , ) ln(0.5 0.5 ( , ) ( , ) 2)
V

pq p q p q V
V l l c l l p q

        (11) 

Adding 1 is not a good idea because many function values will 

turn to 0. The functions 9 and 10 punish a label that falls on the 

opposite side of the mean intensity as the original pixel intensity. 

The parameter γ is used to control the magnitude of energy. The higher γ, the more severe punishment is for even small 
values of

L
 and

G
 . Smoothness function 11 punishes 

neighbour pixels assigned to different labels with a high energy 

value. The data cost function is identical to function 6. 

  After defining the energy function, instead of max-product, 

which is frequently used in LBP, we invoke the min-sum 

method to calculate the message delivered from pixel p to its 

neighbour pixel q: 

( ) min( ( ) ( , ) ( ))
p q p p pq p k p

l
k

msg l D l V l l msg l
 

      (12) 

Min-sum is a minimization problem because we are trying to 

find the smallest cost. In function 12, l  is the label which can 

be either white or black and k is the neighbour of pixel p except 

q. In our implementation, we use 4 neighbourhood (right, left, 

up and down). Min-sum is more computationally efficient than 

the max-product because it does not have any expensive 

exponential functions and uses addition operations mainly so 

that it is not as easy to underflow as max-product.  

  Finally, to avoid overflow, we normalize each message before 

sending it to its neighbour: 

 log exp( ( ))

p

p q p

l

A msg l


    (13) 

 ( ) ( )
p q p p q p

msg l msg l A
 

    (14) 

After this step, all messages has been restricted to interval (0, 1). 

  The LBP is executed on the foreground object. The target is to 

assign a set of labels over all pixels that minimizes the total 

energy: 

 ( ) ( , )
p pq p q

p

E D l V l l     (15) 

In function 15, the data term is ( )
p

p

D l , which means the total 

data cost is the summation of all pixels. The smoothness term is

( , )
pq p q

V l l , where the summation is taken over all 

neighbouring pixel pairs (in our implementation, 4 neighbours 

model is used, that is right, left, up and down). The result is 

shown in Figure 7. 

 

   

   

        a                  b               c 

Figure 7. Results Produced by Belief Propagation Algorithm. (a) 

Input image. (b) Results produced by BP without masks. (c) 

Results produced by BP only on the foreground objects. 

 

3.4 Combination 

  We combine the results above and produce the final result. 

The background of the final result comes from Otsu method and 

the foreground of it comes from LBP. The final result is shown 

in Figure 8. 
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       a               b                  c 

Figure 8. Combining. (a) Foreground object generated by LBP 

with mask. (b) Otsu method used on the whole image. (c) 

Combining foreground object in (a) and background in (b) with 

mask (a), we obtain the final result. 

 

4. Experiments 

  All experiment images are from MSRA10K benchmark 

dataset and can be downloaded from 

http://mmcheng.net/zh/salobj/ . 

4.1 Comparison of different methods 

  We show that using LBP with mask can gain good results 

with respect to render details of foreground object in Figure 9 

and Figure 10. The parameters of LBP used in our experiment 

are: iteration time=10, 0.3333   16V   0.7   

  From the results, we find that Otsu method cannot enhance 

the details of foreground object even if the mask is used because 

it only calculates the grayscale histogram of input image once 

while LBP method with mask on the foreground object can 

improve the details significantly. 

 

  

          a                    b 

  

          c               d 

Figure 9. Comparison of Different Methods. (a) Otsu method on 

the whole image without mask. (b) BP on the whole image 

without mask. (c) Otsu method on the foreground object only 

with mask. (d) BP on the foreground object only with mask. 

 

  We also observed that Otsu method on the whole image can 

deduce the background details. To make the foreground objects 

stand out, we combine the background from Otsu method and 

the foreground from the LBP. See Figure 11. 

 

  

         a                     b 

  
         c                     d 

Figure 10. Another Instance of Comparison of Different 

Methods. (a) Otsu method on the whole image without mask. (b) 

BP on the whole image without mask. (c) Otsu method on the 

foreground object only with mask. (d) BP on the foreground 

object only with mask. 

   

   

        a                b                 c 

Figure 11. Comparison of the Background Produced by 

Different Methods. (a) Otsu method on the whole image without 

mask. (b) Otsu method on the background only with mask. (c) 

BP on the whole image without mask. 

 

4.2 CPU time 

  We also compute the CPU time by testing 105 input images. 

The CPU time of each step is listed in Table 1. According to this 

table, the most expensive operation is the LBP on the whole 

image without mask. But fortunately, we just use the LBP on the 

foreground and Otsu on the whole image only, the total average 

CPU time is 8.58 + 0.19 + 0.08 = 8.85s. 

 

Table 1. The Run Time of Different Methods in Each Step 

Method Average CPU Time  

LBP on the whole image 25.61s 

LBP on the foreground only 8.58s 

Otsu on the whole image 0.19s 

Combining  0.08s 
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4.3 More results 

  More results are listed in Figure 12. 

 

a 

 

 

 

b 

 

 

 

c 

 

 

 

d 

 

 

 

Figure 12. More Results. (a) Input image. (b) Otsu on the whole 

image. (c) BP on the foreground object only. (d) Combining 

results. 

 

5. Conclusions 

  In this paper, we presented a method for converting a color 

image with complex background into a black and white art 

image. Mask is used to separate the foreground object and the 

background. By using different algorithm to render the 

foreground and background respectively, our method can keep 

the details of foreground object as far as possible and deduce the 

details of the background so that foreground object can stand 

out from the background. 

  There are avenues for future work. First, although the input is 

color image, we convert it into grayscale image before 

processing it and the color information is ignored here. We want 

to find a method to process color image directly without any 

conversion. 

  Secondly, for some images, our method cannot improve the 

result. See Figure 13. There is no enhancement for the details of 

foreground object even if mask is used. The reason, in our 

opinion, is that the contrast of the flower is too low. The Otsu 

method only calculates the histogram of the input image while 

the data cost function and smoothness function in BP only 

concern with the grayscale gradient, the change of color and 

contrast is ignored. We will improve this problem in the future 

work. 

  

           a                       b 

  

           c                       d 

  
      e                   f 

Figure 13. A Bad Result. (a) The input image. (b) Otsu method 

on the whole image without mask. (c) Otsu method on the 

foreground object only. (d) BP on the whole image without 

mask. (e) BP on the foreground object only. (f) Result. 
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