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Abstract: In this paper, we propose the use of a memory system which has a partially reliable scratch-pad memory
(SPM). The reliable region of the SPM employing the ECC is higher soft error tolerant but larger energy consumption
than the normal region. We propose an allocation method in order to optimize energy consumption while ensuring
required reliability. An allocation method about instruction and data to proposed memory system is formulated as inte-
ger linear programming, where the solution archives optimal energy consumption and required reliability. Evaluation
result shows that the proposed method is effective when overhead for error correction is large.
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1. Introduction

Scratch-Pad Memory (SPM) is an on-chip SRAM mapped into
an address space that is disjoint from the off-chip memory. SPM
is efficient in terms of area, energy and predictability compared
with the cache [1]. Therefore, SPM is often employed as on-chip
memory in modern embedded systems. However, designers or
software must determine the allocation of instruction and data to
SPM.

In recent years, the rise in memory soft error rate (SER) has
been a major concern with increasing the demands on the relia-
bility of embedded systems. A soft error means a transient fault
in the circuits, which is caused by alpha ray or neutron. Fre-
quently accessed instructions and data needs to enhance soft error
tolerance. Especially, the instruction memory needs to enhance
soft error tolerance because instruction memory is accessed in al-
most every cycle. One way to enhance the soft error tolerance
of memory is by using a parity code for detecting soft error. An
error-correcting code (ECC) is employed when error correction is
required.

In modern semiconductor manufacturing technology, the SERs
in FIT/bit for DRAM with ECC, SPM with ECC and SPM with-
out ECC are 10−12, 10−7 and 10−4, respectively [2], [3]. However,
employing an ECC in a simplistic form may excessively increase
overheads such as the energy consumption, area and execution
time.

There are some previous studies about reliable memory sys-
tems. Reference [4] uses a parity code to error detection and a
data duplication method to error correction. Reference [5] pro-
poses 2-bit interleaved-parity per word to error detection. Refer-
ence [6] proposes the Partially Protected Caches (PPC) architec-
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ture in which ECC is applied to a part of the cache. The size of
cache applied ECC is enough small for the access latency not to
exceed the access latency of normal cache. The PPC is utilized to
enhance soft error tolerance in multimedia applications [7]. Ref-
erence [8] utilizes the normal cache and SPM with ECC. The
SPM is enough small for the access latency not to exceed the ac-
cess latency of cache.

The purpose of this paper is energy optimization of embed-
ded systems while ensuring the required reliability. We propose
a use of a partially reliable SPM that an ECC is applied to part
of the SPM region. The region of SPM where the ECC is ap-
plied is higher soft error tolerant but larger energy consumption
than the region of SPM without ECC. The allocation optimiza-
tion method for partially reliable SPM is formulated as an integer
linear programming (ILP). The objective function of the ILP is
energy consumption. The constraints are the SPM capacities and
the vulnerability of the whole system. An optimal solution of the
proposed ILP problem corresponds to the allocation which min-
imizes the energy consumption of the system while the ensuring
required reliability.

2. Partially-reliable Memory System

Figure 1 shows the proposed memory system which has par-
tially reliable SPM. We employ its SPM to organize the mem-
ory system as an on-chip memory. The partially reliable SPM is

Fig. 1 Proposed memory system which has partially reliable SPM.
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SPM that the ECC is applied to a part of region. The SPM region
where an ECC is applied is referred to as reliable SPM. In con-
trast, the SPM region without the ECC is referred to as normal
SPM. The reliable SPM takes high soft error tolerant but large
energy consumption. In contrast, the normal SPM takes small
energy consumption but low soft error tolerant. Instructions and
data which require high reliability can be allocated to the region
of reliable SPM. In contrast, instructions and data not requiring
high reliability are allocated to the region of normal SPM. The
proposed memory system can contribute reduction of the energy
consumption while the ensuring required soft error tolerance.

3. Allocation Optimization Problem

This section describes the problem definition of an allocation
problem to partially-reliable SPM.

The purpose of this paper is the minimization of the energy
consumption while ensuring the required reliability. We propose
an allocation method about instructions and data to partially reli-
able SPM to achieve the purpose.

In this paper, the instruction and data allocation granularities as
memory block are functions of source code and set of data (e.g.,
variable, array), respectively. The candidate memories where
these memory blocks are allocated to are the normal SPM, re-
liable SPM and off-chip main memory. We define the allocation
optimization problem as to determine an optimal instruction and
data allocation in terms of energy minimization while ensuring a
vulnerability of system.

The energy consumption of the memory is calculated by the
energy consumption per memory access and the number of ac-
cesses. In this paper, instructions and data which require high
reliability are defined as frequently accessed ones. The vulnera-
bility of the whole system is determined by the vulnerability of
instructions and data weighted by SER of memory. The vulner-
abilities of instructions and data are defined by the proportion of
the number of accesses, because errors in instructions and data
frequently accessed widely propagates. Ensuring the required re-
liability means that the vulnerability of the whole system should
not be more than a given value by the instructions and data allo-
cation. It should be noted that we assume a unified memory ar-
chitecture, where instructions and data are allocated to one SPM.
However, our method can easily be applied to the harvard mem-
ory architecture by modifying some constraints of our ILP.

Reference [1] energy consumption was used as an objective
function and the SPM capacity as a constraint, while the alloca-
tion problem was treated as the knapsack problem. The problem
was then solved as an ILP problem. We add vulnerability as a
constraint to the allocation problem; therefore, it is reasonable to
formulate our allocation problem as an ILP problem.

4. Integer Linear Programming Problem

This section describes the formulation of our allocation opti-
mization method as an ILP problem.

4.1 Preliminaries
Table 1 shows the constants in our ILP problem. In this paper,

insti and data j denote the i-th memory block of instruction and

Table 1 Constants.

Constant Definition

S insti , S data j Memory size of insti and data j

Ninsti The number of access for insti
NRdata j , NWdata j The number of read/write access for data j

ERMM , ERRS PM , ERS PM Energy consumption per read access to
main memory, RSPM and SPM

EWMM , EWRS PM , EWS PM Energy consumption per write access to
main memory, RSPM and SPM

CRS PM , CS PM The memory capacity of RSPM and SPM

RMM , RRS PM , RS PM SER of main memory, RSPM and SPM

Table 2 Binary variables.

xinsti xinsti = 1 ⇐⇒ insti is allocated in main memory
xdata j xdata j = 1 ⇐⇒ data j is allocated in main memory

yinsti yinsti = 1 ⇐⇒ insti is allocated in RSPM
ydata j ydata j = 1 ⇐⇒ data j is allocated in RSPM

zinsti zinsti = 1 ⇐⇒ insti is allocated in SPM
zdata j zdata j = 1 ⇐⇒ data j is allocated in SPM

the j-th memory block of data, respectively. S insti , Ninsti , S data j ,
NRdata j and NWdata j are obtained from a statical analysis by task
profiling, and the other constants are determined by the target
system configuration. The decision variables in our ILP problem,
which take the binary values shown in Table 2, indicate that the
allocation in which memories insti and data j is allocated to. In
the rest of this paper, the RSPM means the region of the SPM
where an ECC is applied.

4.2 Vulnerability
We define the vulnerability of the whole system Vsystem as fol-

lows. Vsystem corresponds to the FIT of whole system.

Vsystem =
∑

i
Vinsti · FIT (insti)

+
∑

j
Vdata j · FIT (data j) (1)

Vinsti = Ninsti/
∑

i
Ninsti (2)

Vdata j = (NRdata j + NWdata j )/
(∑

j
(NRdata j + NWdata j )

)
(3)

Here, Vinsti and Vdata j denote the vulnerabilities of insti and
data j, that are the ratio of access frequency for insti and data j

to all, respectively. FIT (insti) and FIT (data j) represent the FIT
of insti and data j, respectively. The instructions and data which
are frequently accessed have high vulnerability. For example, if
the number of instruction accesses with errors is twice, the prob-
ability of error propagation is twice. Therefore, FIT (insti) and
FIT (data j) are weighted by Vinsti and Vdata j , respectively. Vsystem

corresponds to a weighted average of the FIT for the instructions
and data.

FIT (insti) = xinsti · RMM · S insti + yinsti · RRS PM · S insti

+ zinsti · RS PM · S insti (4)

FIT (data j) = xdata j · RMM · S data j + ydata j · RRS PM · S data j

+ zdata j · RS PM · S data j (5)

The vulnerability of the whole system is high if the frequently
accessed memory blocks are allocated to the memory which has
high SER.
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4.3 Objective Function
The objective function of our ILP is the energy consumption of

the memory system. We aim to minimize energy consumption.

minimize :Esystem =
∑

i
E(insti) +

∑
j
E(data j) (6)

E(insti) and E(data j) denote the energy consumption of insti and
data j, respectively. These are calculated by energy consumption
of memory access and the number of accesses as follows.

E(insti) = xinsti · ERMM · Ninsti + yinsti · ERRS PM · Ninsti

+ zinsti · ERS PM · Ninsti (7)

E(data j) = xdata j · (ERMM · NRdata j + EWMM · NWdata j )

+ ydata j · (ERRS PM · NRdata j + EWRS PM · NWdata j )

+ zdata j · (ERS PM · NRdata j + EWS PM · NWdata j )

(8)

4.4 Constraints
There are three constraints in our ILP problem.
The first is about allocation. Each memory object must be al-

located to only one memory.

∀i, xinsti + yinsti + zinsti = 1 (9)

∀ j, xdata j + ydata j + zdata j = 1 (10)

The second is about the SPM capacities. Sum of S insti and
S data j allocated to RSPM or SPM exceed the capacities of them.
∑

i
yinsti · S insti +

∑
j
ydata j · S data j ≤ CRS PM (11)

∑
i
zinsti · S insti +

∑
j
zdata j · S data j ≤ CS PM (12)

The third is about vulnerability. Vulnerability of the system
Vsystem should not be more than the given vulnerability Vmax.

Vsystem ≤ Vmax (13)

Here, Vmax is specified as the requirement of the system design.

5. Evaluation

We evaluated the effectiveness of proposed method in experi-
ments.

We employed SkyEye [9] and TOPPERS/ASP kernel [10] as
the simulator of ARM and real-time operating systems for the
experimental environment, respectively. The benchmark pro-
grams were basicmath, bitcount, susan and dijkstra from
MiBench [11]. We executed the benchmark programs and pro-
filed the execution logs in order to obtain the constants in Table 1.
We used CPLEX [12] as the ILP solver. The ILP problems of the
benchmark programs comprised several hundred decision vari-
ables. In our computer environment, all the ILP problems of the
benchmark programs were solved within 0.1 seconds. Therefore,
we can conclude that the proposed ILP problems were solved
within a reasonable amount of time.

As the amount of energy consumption model for each mem-
ory, we firstly used CACTI6.5 [13]. Table 3 shows the energy
consumption per access to each memory obtained by CACTI6.5.
It should be noted that we employed the same value for write
access as read access since CACTI6.5 only output the value of

Table 3 Energy consumption obtained by CACTI.

Memory Size Energy [pJ]

Main Memory 4 MB 456.266

2 KB 3.838
RSPM 4 KB 4.952

6 KB 5.903
8 KB 6.763

2 KB 3.604
SPM 4 KB 4.714

6 KB 5.584
8 KB 6.383

Table 4 Results in case of values obtained by CACTI.

Vmax/Vorigin Configuration Normalized energy consumption
RSPM/SPM basicmath bitcount susan dijkstra

1e0 8 KB/0 KB 1.00 1.00 1.00 1.00

6 KB/2 KB 1.01 0.93 1.16 0.97
1e1 4 KB/4 KB 1.17 0.92 1.96 1.14

2 KB/6 KB 1.80 4.23 4.01 1.95
0 KB/8 KB 5.39 42.31 14.95 14.33

6 KB/2 KB 0.99 0.88 0.96 0.96
1e2 4 KB/4 KB 0.98 0.84 0.94 0.94

2 KB/6 KB 1.09 1.37 1.11 1.11
0 KB/8 KB 4.67 33.55 12.02 11.84

6 KB/2 KB 0.97 0.72 0.95 0.91
1e3 4 KB/4 KB 0.98 0.81 0.93 0.94

2 KB/6 KB 0.97 0.74 0.95 0.92
0 KB/8 KB 1.00 0.96 0.99 0.99

Table 5 Results in case of ERS PM = ES PM ∗ 10.

Vmax/Vorigin Configuration Normalized energy consumption
RSPM/SPM basicmath bitcount susan dijkstra

1e0 8 KB/0 KB 1.00 1.00 1.00 1.00

6 KB/2 KB 0.94 0.86 0.94 0.90
1e1 4 KB/4 KB 0.98 0.75 1.10 0.87

2 KB/6 KB 1.28 1.09 1.65 1.03
0 KB/8 KB 3.35 6.61 5.14 5.21

6 KB/2 KB 0.89 0.70 0.82 0.79
1e2 4 KB/4 KB 0.84 0.61 0.71 0.72

2 KB/6 KB 0.84 0.62 0.65 0.69
0 KB/8 KB 2.91 5.24 4.14 4.30

6 KB/2 KB 0.69 0.19 0.48 0.39
1e3 4 KB/4 KB 0.63 0.13 0.38 0.36

2 KB/6 KB 0.62 0.14 0.35 0.35
0 KB/8 KB 0.62 0.15 0.34 0.36

energy consumption for read access. An additional consideration
about the use of CACTI6.5 is that it only calculates the influ-
ence of the addition of an ECC bit. The ECC coding and decod-
ing processes are ignored to calculate energy consumption. Ref-
erence [14] reported that these processes consume 40.783 pJ in
case of the 70 nm CMOS process *1. 40.783 pJ is approximately
10 times as large as energy consumption in Table 3. There-
fore, we also evaluated the case for ERRS PM = ERS PM ∗ 10 and
EWRS PM = EWS PM ∗ 10.

Tables 4 and 5 show the evaluation results with the values of
CACTI and with the assumption of ERS PM = ES PM∗10. The base-
lines for energy consumption were the cases with 8 KB RSPM
and 0 KB SPM. The vulnerability of the baselines was Vorigin.
We varied Vmax from 10 times that of Vorigin to 1,000 times that of
Vorigin. We assumed that the SER of the SPM with ECC was 1,000
times lower than the SER of the SPM without ECC. Even with

*1 We gave parameters which corresponded to the configuration of Ref. [14]
to CACTI.
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1e3, Vmax did not exceed the vulnerability when using the normal
SPM. Therefore, these values satisfied the aims of this paper. For
example, in Tables 4 and 5, 1e1 denotes Vmax = Vorigin ∗ 10.

From Tables 4 and 5, proposed method is effective in case over-
head for coding and decoding are large in all programs. There-
fore, the proposed method becomes effective in case overhead
for the error detection and correction are large. Additionally, the
proposed method is effective in programs which have high local-
ity of memory access. In fact, the proportion of access to SPM
and RSPM of bitcount is more than 90%.

From evaluation results, we can observe that the optimal size
of ECC is varied by programs and Vmax. It is important to de-
termine the appropriate configuration according to programs and
Vmax.

6. Conclusion

In this paper, we proposed the memory system which has par-
tially reliable SPM and a memory allocation method for its mem-
ory system. We defined the memory allocation problem and for-
mulated the problem as ILP. the proposed method optimizes the
energy consumption while ensuring the required reliability. From
evaluation, the proposed method is effective in case the ECC over-
head is large and programs have high spatial locality. However,
our criteria of vulnerability ignores some factors such as life time
of instructions and data. In future, we will define more appropri-
ate criteria of vulnerability. It is also interesting that a searching
method to optimize the size of applying ECC to the SPM region
will be proposed.
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