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Abstract: This paper presents automatic Martian dust storm detection from multiple wavelength data based on de-
cision level fusion. In our proposed method, visual features are first extracted from multiple wavelength data, and
optimal features are selected for Martian dust storm detection based on the minimal-Redundancy-Maximal-Relevance
algorithm. Second, the selected visual features are used to train the Support Vector Machine classifiers that are con-
structed on each data. Furthermore, as a main contribution of this paper, the proposed method integrates the multiple
detection results obtained from heterogeneous data based on decision level fusion, while considering each classifier’s
detection performance to obtain accurate final detection results. Consequently, the proposed method realizes successful
Martian dust storm detection.
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1. Introduction

In recent decades, the human race has pursued the potential for
Martian life and has researched Martian environment to emigrate
to Mars in the future [1]. Especially, the phenomenon where dust
are lifted into the atmosphere is named “dust storm.” Dust storms
have a great influence on the Martian environment [2]. Specif-
ically, dust storms have a significant impact on the global tem-
peratures on Mars [3], [4]. Hence, studies on dust storms have
attracted much attention. Examples of dust storms are shown in
Fig. 1.

In recent studies on Mars, many researchers have received a
large amount of Martian data taken by the Mars Orbiter Cam-
era (MOC) on board the Mars Global Surveyor (MGS) [5], [6].
Although dust storm detection from a limited number of Mar-
tian data has been previously carried out manually by the re-
searchers [7], [8], many researchers spend a lot of time for detect-
ing dust storms, and it is necessary to detect dust storms automat-
ically and accurately from Martian data. Therefore, it is expected
that machine learning could be used for this task. It should be
noted that since we utilize Martian data that are more unique and
heterogeneous than data utilized in general detection problems, it
is difficult to obtain accurate detection results through direct use
of a conventional algorithm.

In this paper, we propose a new Martian dust storm detection
method from multiple wavelength data based on decision level
fusion. As a main contribution of this paper, we try to integrate
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Fig. 1 Examples of dust storms.

detection results from multiple wavelength data by using decision
level fusion [9], [10], [11], [12]. First, the proposed method ex-
tracts visual features from heterogeneous data and selects optimal
features based on the minimal-Redundancy-Maximal-Relevance
(mRMR) algorithm [13]. Then the selected visual features are
used to train Support Vector Machine (SVM) [14] classifiers that
are constructed on each wavelength data. Furthermore, it is nec-
essary to integrate the obtained multiple detection results effec-
tively while considering each classifier’s performance in order to
improve dust storm detection. Therefore, we adopt decision level
fusion [9], [10], [11], [12], which assigns higher weights to the
detection results of the best classifiers and enables the successful
integration of multiple detection results.

2. Dust Storm Detection

Automatic detection of dust storms that utilizes multiple wave-
length data are presented in this section. In Section 2.1, we pro-
vide an overview of Martian data. In Section 2.2, we extract vi-
sual features from the multiple wavelength data and select the
optimal visual features. In Section 2.3, we generate an SVM clas-
sifier on each data. In Section 2.4, we integrate multiple detection
results obtained from the SVM classifiers based on the decision
level fusion.
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Fig. 2 Martian data used in our detection method. Each data has one value
representing the reflectance value at each axis, i.e., each pixel. The
right side corresponds to the north polar cap. In (a) and (b), the val-
ues become larger from blue to red. Each data has a resolution of
384 × 1,600 pixels.

2.1 Martian Data of MOC
In this subsection, an overview of the Martian data are pre-

sented. In studies on Mars, many researchers have utilized the re-
flectance data since only the reflectance data have been sent from
the satellites. Since the MOC had obtained daily global maps
of the Martian surface in two wavelength bands:BLUE (400 nm-
450 nm) and RED (575 nm-625 nm), we utilize both BLUE and
RED reflectance data (Fig. 2 (a)).

Since dust storms occur sporadically on Mars, it is effective to
utilize subtraction data (Fig. 2 (b)) from background data (Fig. 3)
that does not include dust storms. Note that Fig. 3 shows the
whole surface of Mars, and Fig. 2 (a) shows only a part of the
surface of Mars. Therefore, we automatically generate the back-
ground subtraction data and introduce them into our detection
method. Accordingly, the proposed method utilizes four kinds
of data that are taken in the same area, i.e., RED and BLUE
reflectance data and background subtraction data of RED and
BLUE reflectance data.

In order to generate background subtraction data, we first gen-
erate background data that do not include any dust storms from
the reflectance data. From information about the latitude and lon-
gitude obtained with the reflectance data, we performed voting
on the reflectance values according to the corresponding axis on
the Martian map. Then, by calculating their median values for
each axis, background data can be obtained. Since dust storms
occur sporadically, their reflectance values tend not to be selected
by calculating the median values. Therefore, we can obtain back-
ground data from the reflectance value by not including any dust
storms as shown in Fig. 3. Then, we take the difference between
the reflectance data and the background data to generate the back-
ground subtraction data.

2.2 Extraction and Selection of Visual Features from Multi-
ple Wavelength Data

In this subsection, the extraction and selection of visual fea-
tures are presented. Since the proposed method focuses on the
difference in local characteristics to detect dust storms, we utilize
the HOG feature [16] and the DSIFT feature [17] as local visual

Fig. 3 Background data on Mars calculated from RED reflectance data. The
upper and lower sides respectively correspond to the north polar cap
and the south polar cap. In this figure, the values become larger from
blue to red. Background data has a resolution of 1,800×3,600 pixels.

features. Thus, we can obtain a feature vector of D (= 9,180) *1

dimensions from each data. This feature vector is calculated from
the k-th (= 1, ..., kmax) kind of data and defined as vk ∈ RD, such
that each element of vk is represented as vk( j) ( j = 1, 2, ...,D).
Note that as shown in the previous section, we use the four data
and kmax = 4 in this paper. For each data, the label y ∈ {1,−1} de-
notes the existence or nonexistence of dust storms. Then dk (< D)
optimal features are selected from D features based on the mRMR
algorithm [13] as a new feature vector γk ∈ Rdk . Therefore, the
proposed method can remove features that caused performance
degradation to obtain features that have close relevance to dust
storm detection.

2.3 Generation of SVM Classifier for Each Data
In this subsection, the generation of the SVM classifier for

each different kind of data is presented. Given the k-th training
data consisting of vectors γ i

k ∈ Rdk (i = 1, 2, ...,N; N being the
number of training data) and their corresponding true class labels
yi ∈ {1,−1}, an optimal SVM hyperplane is calculated by using
the training dataset. Furthermore, the class label of the k-th test
data γk ∈ Rdk is obtained as

fk(γk) = sign
( N∑

i=1

ci
ky

iKk(γ i
k,γk) + ek

)
, (1)

where Kk(·, ·) is the kernel function, ci
k is the Lagrange multiplier,

and ek is the constant value. By using the SVM classifier, we can
perform dust storm detection for each k-th kind of data.

2.4 Integration of Multiple Detection Results
This subsection presents the integration of the multiple detec-

tion results obtained from the SVM classifiers based on the deci-
sion level fusion. Since the method in Ref. [9] has come from the
research field of computer-aided diagnosis (CAD), it integrates
multiple classification results from each human annotator, e.g.,
radiologist. We regard the kmax SVM classifiers as kmax annota-
tors. In order to integrate multiple results, we focus on the de-
tection performance of each annotator and assign higher weights
to results of annotators which have higher detection performance.
An overview of the target model and its training and test phases
is shown below.

*1 We can obtain 2,268 -dimensional values for the HOG feature and
6,912 -dimensional values for the DSIFT feature.
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2.4.1 Performance of Each Annotator and Classification
Model

The performance αk (sensitivity) and βk (specificity) of the k-th
SVM classifier are defined as follows:

αk = Pr[yk = 1|y = 1], (2)

βk = Pr[yk = 0|y = 0], (3)

where the binary class label yk ∈ {1, 0} are assigned to the feature
vector γk by the k-th annotator, and the binary true class label
y ∈ {1, 0} is the Ground Truth. Note that yk and y are assigned by
respectively rewriting yk ∈ {1,−1} and y ∈ {1,−1} in the previous
subsection.

The proposed method adopts a linear discriminating function
whose classification model is specifically written as

fw (x) = wT x, (4)

where w is a parameter and x is a feature vector of the test
data. Note that x is obtained by aligning features selected from
γ1, ...,γkmax based on the mRMR algorithm, where γ1, ...,γkmax are
the feature vectors of kmax kinds of data.
2.4.2 Training Phase

Given the training data � = {yi,xi, yi
1, ..., y

i
kmax
}Ni=1 containing N

instances, where yi is the true class label of the i-th training data.
The probability pi for the true positive class is modeled as

pi = Pr[yi = 1|xi,w] (5)

= ψ(wT xi) (6)

=
1

1 + exp(−wT xi)
. (7)

Given the training data �, the parameter w, α = {α1, ..., αkmax },
β = {β1, ..., βkmax }, the conditional likelihood is defined as follows:

Pr[ � |w] =
N∏

i=1

Pr[yi
1, ..., y

i
kmax
|yi = 1,α] · Pr[yi = 1|xi,w]

+

N∏

i=1

Pr[yi
1, ..., y

i
kmax
|yi = 0,β] · Pr[yi = 0|xi,w]. (8)

By assuming that yi
1, ..., y

i
kmax

are independent, the likelihood of
Eq. (8) is rewritten as

Pr[�|w] =
N∏

i=1

[aiψ(wT xi) + bi(1 − ψ(wT xi))], (9)

ai =

kmax∏

k=1

[αk]y
i
k [1 − αk]1−yi

k , (10)

bi =

kmax∏

k=1

[1 − βk]y
i
k [βk]1−yi

k . (11)

We can find the optimal parameter w by maximizing the log-
likelihood as follows:

ŵ = arg max
w
{ln Pr[�|w]}. (12)

In Ref. [9], the log-likelihood is maximized by the Expectation-
Maximization (EM) algorithm [18]. Let y = [y1, ..., yN] be the
set of the actual labels, and the complete data log-likelihood is
written as follows:

ln Pr[�,y|w] =
N∑

i=1

[
yi ln(piai) + (1 − yi) ln{(1 − pi)bi}

]
.

(13)

In order to obtain the optimal parameter w, the EM algorithm
alternately calculates the following two steps.
(1) E-step:
Given the training data � and the current estimate of the model
parameter w, the conditional expectation is calculated as

E{ln Pr[�,y|w]} =
N∑

i=1

[
μi ln(piai) + (1 − μi) ln{(1 − pi)bi}

]
,

(14)

where μi = Pr[yi = 1|yi
1, ..., y

i
kmax

,xi,w]. By using the Bayesian
theorem, the probabilistic label μi is obtained as follows:

μi ∝ Pr[yi
1, ..., y

i
kmax
|yi = 1,w] · Pr[yi = 1|xi,w] (15)

=
aiψ(wT xi)

aiψ(wT xi) + bi(1 − ψ(wT xi))
. (16)

(2) M-step:
In this step, we estimate the parameter w from the current esti-
mated μi and the training data �. Due to the non-linearity of the
sigmoid function, there is no closed form solution for w. There-
fore, the parameter w is estimated based on the Newton-Raphson
method [19] as follows:

w ← w − ηH−1(w)g(w), (17)

g(w) =
N∑

i=1

{
μi − ψ(wT xi)

}
xi, (18)

H (w) = −
N∑

i=1

ψ(wT xi){1 − ψ(wT xi)}xi(xi)T . (19)

In the above equations, g(w) is the gradient vector, H (w) is the
Hessian matrix, and η is a step length. By iterating the above
steps until the result of w converges, the optimal parameter w

and μi are obtained.
2.4.3 Test Phase

Given the test data, the final classification result can be ob-
tained as follows. In the previous phase, we essentially solved
a regular logistic regression problem with probabilistic labels μi.
Thus, the final classification result can be obtained by applying a
threshold to μ calculated from the test data {x, y1, ..., ymax}. The
value of μ is computed by using p, a and b calculated from the
training data. Specifically, p = 1

1+exp(−wT x) is calculated. Further-

more, a =
∏kmax

k=1 [αk]yk [1− αk]1−yk and b =
∏kmax

k=1 [1− βk]yk [βk]1−yk

are obtained, where αk and βk are respectively sensitivity and
specificity of annotator k calculated from the training data and
yk is a classification result of the test data. Since we can calculate
μ = ap

ap+b(1−p) by using p, a and b, the final classification result is
obtained as follows:

y =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if μ > λ

0 otherwise.

The dust storms of the test data can be detected when μ > λ,
where λ is a predefined threshold.

c© 2015 Information Processing Society of Japan 81



IPSJ Transactions on Computer Vision and Applications Vol.7 79–83 (July 2015)

Table 1 Details of each dust storm and number of correctly detected dust
storms. Since a dust storm is sequentially taken by MOC, there are
several data of the dust storms for each Ls.

Central Area Na

Ls Latitude Longitude (×106 km2)
161.47 −30.88 149.88 1.9 13/14
163.07 74.63 322.88 5.6 44/45
202.53 51.70 16.51 6.1 4/16
209.47 15.88 45.00 2.4 11/19

221 225 21.96 34.05 3.9 14/16
226 227 −59.50 134.25 3.5 11/11

Table 2 Recall, Precision and F-measure obtained in the experiment.

Recall Precision F-measure
Comparative method 1 0.74 0.77 0.75
Comparative method 2 0.73 0.74 0.74
Comparative method 3 0.70 0.80 0.75
Comparative method 4 0.80 0.77 0.78
Comparative method 5 0.78 0.81 0.79

Proposed method 0.80 0.82 0.81

3. Experiment Results

This section shows experimental results to verify the effective-
ness of the proposed method. Total of 312 data including 121
existence data and 191 nonexistence data are utilized in the ex-
periment. In our experiments, we performed detection of “re-
gional dust storms” *2. The verification method used was 6-fold
cross-validation. Table 1 shows the data divided into 6 groups
based on Ls in the verification, where Ls is the areocentric longi-
tude of the Sun along the Martian ecliptic. Central Latitude and
Longitude are the central location of the dust storms on Mars.
Area represents the region of the dust storms. The dimension dk

of the feature vector selected by the mRMR algorithm is set to
the values which output the best SVM classification results. Fur-
thermore, the dimension of xi based on the mRMR algorithm is
set to the values which output the final classification results. In
this paper, we used the Gaussian kernel for the kernel function in
the SVM with the kernel parameter obtained via grid search [20].
Furthermore, each data has a resolution of 384 × 1,600 pixels.

In order to verify the effectiveness of the proposed method, we
compare its detection performance with those of the following
five methods.
• Comparative method 1 is a method that obtains the results by
only using the RED reflectance data.
• Comparative method 2 is a method that obtains the results by
only using the BLUE reflectance data.
• Comparative method 3 is a method that obtains the results by
only using the background subtraction data (RED).
• Comparative method 4 is a method that obtains the results by
only using the background subtraction data (BLUE).
• Comparative method 5 is a method that integrates the multiple
detection results by using majority voting *3.

For evaluation, we utilized Recall, Precision and F-measure.
The results are shown in Table 2. In this table, recall, precision
and F-measure, which is the harmonic mean of Recall and Preci-

*2 Dust storms are categorized into “local dust storms” (< 1.6 × 106 km2)
and “regional dust storms” (> 1.6 × 106 km2 that lasted more than two
Martian days) in Ref. [4].

*3 In the experiment, majority voting obtains a positive pattern when more
than two classifiers agree on a positive pattern.

Fig. 4 The data that the proposed method detects incorrectly:
(a) overdetection and (b) misdetection.

sion, is the highest for the proposed method. Therefore, the pro-
posed method based on the decision level fusion can detect dust
storms automatically and accurately to outperform the compar-
ative methods. In addition, Table 1 also shows the experimental
results of the proposed method. Note that Na is the detection ratio
of the dust storms. In this table, the proposed method can detect
dust storms in various sizes (Areas). On the other hand, the re-
sult of the third row (Ls = 202.53) is worse since classifiers are
trained from small dust storms due to the cross validation scheme.
Thus, the classifier incorrectly tends to detecting the largest dust
storms. Nevertheless, perfect detection of all dust storms is quite
a difficult task. This is because some dust storms have only small
differences with Martian surfaces. Figure 4 shows the data that
the proposed method detects incorrectly. Figure 4 (a) shows an
example of overdetection, and Fig. 4 (b) shows an example of
misdetection. Dust storm detection is quite a difficult task since it
has only small characteristics. Nevertheless, since the proposed
method can detect them more accurately than the comparative
methods, its effectiveness can be verified.

4. Conclusions

This paper has presented automatic Martian dust storm detec-
tion from multiple wavelength data. In order to improve detection
performance, we introduce the decision level fusion integrating
multiple results obtained from heterogeneous data into the pro-
posed method. The experimental results show its effectiveness
and verify that the proposed method realizes successful detection
of Martian dust storms.

When the performances of multiple classifiers are different
from each other, the decision level fusion shown in this paper
enables successful integration in not only Martian data but also
other different data. It will be reported in subsequent work.

Acknowledgments In this research, we utilized Martian data
that was kindly provided by JAXA. We would also like to sin-
cerely thank Kazunori Ogohara and Japan Aerospace eXploration
Agency (JAXA), for providing Martian data as well as invaluable
advice. This work was partly supported by Grant-in-Aid for Sci-
entific Research (B) 25280036 from JSPS.

References

[1] Shang, C. and Barnes, D.: Fuzzy-rough feature selection aided support
vector machines for mars image classification, Comput. Vision Image
Understand, Vol.117, No.3, pp.202–213 (2013).

[2] Wang, H., Richardson, M.I., Wilson, R.J., Ingersoll, A.P., Toigo, A.D.
and Zurek, R.W.: Cyclones, tides, and the origin of a cross-equatorial
dust storm on Mars, Geophys. Res. Lett, Vol.30, no.9, 1488, DOI:
10.1029/2002GL016828 (2003).

[3] Strausberg, M.J., Wang, H., Richardson, M.I., Ewald, S.P. and
Toigo, A.D.: Observations of the initiation and evolution of the 2001

c© 2015 Information Processing Society of Japan 82



IPSJ Transactions on Computer Vision and Applications Vol.7 79–83 (July 2015)

Mars global dust storm, Journal of Geophysical Research, Vol.110,
No.E02006 (2005).

[4] Cantor, B.A., James, P.B., Caplinger, M. and Wolff, M.J.: Martian dust
storms: 1999 Mars Orbiter Camera observations, Journal of Geophys-
ical Research, Vol.106, No.E10, pp.23653–23687 (2001).

[5] Edgett, K.S. and Malin, M.C.: New views of Mars eolian activity, ma-
terials, and surface properties: Three vignettes from the Mars Global
Surveyor Mars Orbiter Camera, Journal of Geophysical Research:
Planets (1991–2012), Vol.105, No.E1, pp.1623–1650 (2000).

[6] Malin, M.C. and Edgett, K.S.: Mars global surveyor Mars or-
biter camera: interplanetary cruise through primary mission, Jour-
nal of Geophysical Research: Planets (1991–2012), Vol.106, No.E10,
pp.23429–23570 (2001).

[7] Li, R., Di, K. and Xu, F.: Automatic Mars landing site mapping us-
ing surface-based images, ISPRS WG IV/9: Extraterrestrial Mapping
Workshop on Advances in Planetary Mapping, Vol.22 (2003).

[8] Castano, A., Fukunaga, A., Biesiadecki, J., Neakrase, L., Whelley,
P., Greeley, R., Lemmon, M., Castano, R. and Chien, S.: Automatic
detection of dust devils and clouds on Mars, Machine Vision and Ap-
plications, Vol.19, No.5-6, pp.467–482 (2008).

[9] Raykar, V.C., Yu, S., Zhao, L.H., Jerebko, A., Florin, C., Valadez,
G.H., Bogoni, L. and Moy, L.: Supervised learning from multiple
experts: whom to trust when everyone lies a bit, Proc. 26th Annual
International Conference on Machine Learning, pp.889–896 (2009).

[10] Kawakami, T., Ogawa, T. and Haseyama, M.: Vocal segment esti-
mation in music pieces based on collaborative use of EEG and audio
features, Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp.1197–1201 (2013).

[11] Kawakami, T., Ogawa, T. and Haseyama, M.: Novel image classifica-
tion based on decision-level fusion of EEG and visual features, Proc.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pp.5915–5919 (2014).

[12] Ishihara, K., Ogawa, T. and Haseyama, M.: Helicobacter pylori in-
fection detection from multiple X-ray images based on decision level
fusion, IEEE International Conf. Image Processing (ICIP), pp.2769–
2773 (2014).

[13] Peng, H., Long, F. and Ding, C.: Feature selection based on mu-
tual information criteria of max-dependency, max-relevance, and min-
redundancy, IEEE Trans. Pattern Analysis and Machine Intelligence,
Vol. 27, No.8, pp.1226–1238 (2005).

[14] Cortes, C. and Vapnik, V.: Suppor-Vector Networks, Machine Learn-
ing, Vol.20, pp.273–297 (1995).

[15] Wang, H. and Ingersoll, A.P.: Martian clouds observed by Mars
Global Surveyor Mars Orbiter Camera, J. Geophys, Res., Vol.107,
No.E10, pp.8-1–8-6, DOI: 10.1029/2001JE001815 (2002).

[16] Bandeira, L., Marques, J.S., Saraiva, J. and Pina, P.: Automated detec-
tion of Martian dune fields, Geoscience and Remote Sensing Letters,
IEEE, Vol.8, No.4, pp.626–630 (2011).

[17] Lin, Y., Bunte, M., Saripalli, S., Bell, J. and Greeley, R.: Autonomous
volcanic plume detection on planetary bodies, Acta Astronautica,
Vol.97, pp.151–163 (2014).

[18] Dempster, A.P., Laird, N.M. and Rubin, D.B.: Maximum likelihood
from incomplete data via the EM algorithm, Journal of the Royal Sta-
tistical Society, Series B, Vol.39, No.1, pp.1–38 (1977).

[19] Israel, A.B.: A Newton-Raphson method for the solution of systems
of equations, Journal of Mathematical Analysis and Applications,
Vol.15, No.2, pp.243–252.

[20] Hsu, C.W., Chang, C.C. and Lin, C.J.: A practical guide to support
vector classification, Technical Report, Department of Computer Sci-
ence, National Taiwan University (2003).

(Communicated by Takeshi Masuda)

c© 2015 Information Processing Society of Japan 83


