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DAG Visualization∗
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Abstract: Task parallel programming models are conceived as a promising paradigm that brings intricate
parallel programming techniques to a larger audience of programmers because of its high programmability.
Programmers just need to expose parallelism in their programs by creating “task”, which is a lightweight
work unit that can execute in parallel with the rest, at arbitrary places in their code, then all other low-level
burdens in the parallel execution of these tasks such as thread management, task scheduling, and load bal-
ancing are handled automatically by runtime systems. However, this dependence on runtime systems also
hides execution mechanisms of a task parallel program from programmers, making it difficult for them to
understand the cause of suboptimal performance of their programs. As an effort to tackle this problem,
we have developed tools that capture and visualize the trace of an execution of a task parallel program in
the form of a directed acyclic graph (DAG) which is augmented with relevant performance information on
the execution. Each node of the DAG is an interval of a serial code segment in the program. Each edge
represents a dependency between two nodes. This DAG visualization provides a task-centric view of the
program, which is different from other popular visualizations such as thread-centric timeline visualization
and code-centric hotspots analysis. Our tool (DAGViz) displays a DAG in a hierarchical manner, expands to
more detailed views on demand which helps users view aggregate performance information at various levels of
detail. Beside DAG view, DAGViz also provides a timeline visualization which is coordinated with the DAG.
This coordination helps users relate interesting points between thread-centric timeline and task-centric DAG
structure. DAGViz is expected to support effectively the process of analyzing task parallel performance and
developing scheduling algorithms for task parallel schedulers.
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1. Introduction

Nowadays computer processors have increasingly many

cores, from several ones in a commodity PC up to dozens or

hundreds of them in a high performance computing server.

The emerging Many Integrated Core (MIC) architecture of

Intel, which combines many smaller lower-performance cores

on the same chip area, has promised a highly parallel era

of computer hardware. This highly parallel hardware would

make it harder for programmers to program parallel software

using common parallel programming models such as SPMD

(MPI) and native threading libraries (POSIX Threads [1])

which involve programmers in dealing with low-level details

of thread management, task scheduling, load balancing, etc.

Task parallel programming models release programmers

from such low-level concerns by shifting these burdens to
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the runtime systems. In task parallel programming, pro-

grammers just need to expose parallelism in their programs

by creating tasks. These tasks are scheduled to execute

in parallel dynamically by the runtime system. A task is

a lightweight work unit that can be executed in parallel

with the rest of the code. Besides, task-based parallelism

allows programmers to create tasks at arbitrary places in

their code. This flexibility enables programmers better to

express various kinds of parallelism existing in their code.

However, the fact that most scheduling aspects in task par-

allelism are done dynamically at runtime and automatically

by the runtime system leads to the consequence that a great

deal of performance is out of the programmer’s control. The

same task parallel program executed by different task par-

allel runtimes could possibly present significantly different

performance. And programmers often lack clues to under-

stand why their programs perform badly.

Common analysis methods such as hotspots analysis and

timeline visualization are not sufficient for task parallel pro-

grams. Hotspots analysis which shows functions that con-

sume the most CPU time is useful in analyzing sequential ex-

ecution but fails to pinpoint concurrency bottlenecks in par-

allel execution. Timeline visualization (Gantt chart) which

displays thread activities in the course of the execution is
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thread-centric and not really appropriate for task parallel

programs which have dynamic scheduling nature and inde-

terminism in where tasks are executed. Comparing task

parallel executions is more thorough when we compare them

based on their logical task structures. Our approach is that

we measure and extract the computation directed acyclic

graph (DAG) of a task parallel execution and visualize it

to analyze the performance. In a task parallel DAG, nodes

represent sequential computation and edges represent task

parallel dependency among nodes. The measurement part is

called DAG Recorder which records the DAG into data file

and the visualization part is called DAGViz which visual-

izes the DAG and provides visual supports for performance

analysis.

In order to extract the DAG we build a simple wrap-

per around task parallel primitives of underlying runtimes

such as task creation and synchronization primitives. We in-

strument at appropriate positions in this wrapper to invoke

the measure code at the boundary of application code and

task parallel runtime. The DAG is structured hierarchically

so that higher-level collective nodes hold aggregate perfor-

mance information of their inner subgraphs. These aggre-

gate information can be viewed before expanding nodes into

their subgraphs. This hierarchical DAG structure is useful

for DAGViz to avoid loading the whole big DAG file into

memory at once. DAGViz can load only a fraction of DAG

file corresponding to the visible part of the DAG on screen.

Our DAG visualization provides a quick grasp of task struc-

ture of the program and other performance information such

as cores on which tasks were executed by node color. Users

can also get the original code positions of individual nodes of

interest. Via case studies of Sort and SparseLU programs we

have demonstrated the usefulness of DAGViz in analyzing

task parallel performance.

The rest of this paper is structured as following: section 2

discusses the generic task parallel computation model that

our toolset supports, section 3 talks about the hierarchical

DAG structure, then in section 4 we describe our DAG visu-

alization techniques. We demonstrate usefulness of DAGViz

through some case studies in section 5. Finally, related work

is discussed in section 6 and conclusions is in section 7.

2. Computation Model

There are various task parallel programming models in

existance. They offer some kinds of API that are slightly

different from each others. We propose a generic model that

our toolset supports. This model does not cover all distinct

differences between existing task parallel API(s) but it is

generic enough for analyzing necessary applications to our

knowledge. DAG Recorder and DAGViz can record and vi-

sualize computation DAG of any task parallel programming

model that conforms to this generic one. Currently we have

applied our techniques to five separate systems: OpenMP

[2], Cilk Plus [3], Intel TBB [4], Qthreads [5]. and Mas-

siveThreads [6] [7].

In our generic model, a program starts as a single task

CreateTask WaitTasks
OpenMP #pragma omp task #pragma omp taskwait

Cilk Plus cilk spawn cilk sync

Intel TBB task group::run() task group::wait()

Qthreads
pthread create() pthread join()

MassiveThreads

Table 1: Correspondance of five task parallel API(s) with

our generic model

performing its main function. A task can execute ordinary

user computation which does not change the parallelism of

the program and additionally other task parallel primitives

which can change the program’s parallelism. These primi-

tives are following three semantics:

CreateTask : The current task creates a new child task.

WaitTasks : The current task waits for all tasks in cur-

rent section, explained below, to finish. This primitive also

terminates the current section.

MakeSection : This primitive is used to mark the cre-

ation of a section inside a task or another section. A section

is defined as a synchronization scope which is ended by a

WaitTasks primitive and all tasks created inside it get syn-

chronized all together by that WaitTasks. The purpose of

section notion is to support a task that waits for a subset

of its children. Our model supports sections that are either

nested or disjoint, but must not intersect.

Task parallel primitives of OpenMP and Cilk Plus mod-

els can be translated to our model straightforwardly. The

task and taskwait pragmas in OpenMP are replaced by

CreateTask and WaitTasks respectively. The spawn

and sync operations in Cilk Plus are also replaced by

CreateTask and WaitTasks respectively (Table 1). In

addition, however, a task pragma and a spawn operation

perform an additional MakeSection operation if the cur-

rent task has no open section.

Intel TBB model is more flexible than our generic one.

The section notion is represented by task group class in Intel

TBB. A task is created by calling runmethod of a task group

object, and a call to a task group object’s waitmethod would

synchronize all tasks created by that object’s run method.

One can choose an arbitrary subset of children of a task to

synchronize in Intel TBB by creating these children with

the same task group object, whereas our generic model does

not allow intersected task subsets, and a new section is

opened only when the previous section has been closed. Ex-

cept this restriction, Intel TBB code can be translated into

our model by replacing task group.run with CreateTask,

task group.wait with WaitTasks, and task group object’s

declaration with MakeSection.

There are two more task parallel libraries that our sys-

tem currently supports. They are Qthreads and Mas-

siveThreads. These two are both lightweight thread libraries

that expose a POSIX Threads-like interface: one function

call to create a task and one function call to synchronize a

task. They are as flexible as Intel TBB and translating them

to our generic model is imposed with the same restriction.
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3. DAG Structure

Although an execution interval of a task parallel program

between two task parallel primitives always happens entirely

on a single worker (core), two consecutive intervals separated

by a task parallel primitive may take place on two different

workers. This is because the execution control is always

given back to the runtime system at task parallel primitives

where a task migration, among other runtime mechanisms,

may happen and change the worker that executes the next

interval.

We model an execution of a task parallel program as a

DAG consisting of a set of nodes and a set of edges. Each

node represents a sequential execution interval of the pro-

gram, a node is associated with a seamless code segment

in the program’s code which is enclosed by two task par-

allel primitives and does not contain any primitive in it.

Each edge represents the “task parallel” dependency be-

tween two nodes that it connects, or in other words each

edge is a reflection of a task parallel primitive in the pro-

gram’s code. There are three kinds of dependencies that

an edge can represent: creation, continuation and synchro-

nization. An interval ended by a CreateTask primitive

has a creation dependency with the first interval of the new

task. Two nodes of two contiguous code segments in the

program’s code, one of which precedes and the other follows

one same task parallel primitive, have continuation depen-

dency. This continuation dependency can be divided further

into create cont. and wait cont. based on the task parallel

primitive intermediating the two intervals. The last interval

of a task has synchronization dependency with the inter-

val of the code segment following the WaitTasks primitive

that synchronizes that task.

A node starts either by the first instruction of a task

or an instruction immediately following CreateTask or

WaitTasks, and it ends either by the last instruction of

a task or an instruction immediately before CreateTask

or WaitTasks. We classify nodes into three kinds by the

ways how they end. A node ends by calling CreateTask

primitive is of create kind, ends by calling WaitTasks

primitive is of wait kind, and ends by the last instruction of

a task is of end kind. Fig. 1 shows an example task parallel

program and the corresponding DAG of its execution.

DAG’s structure is hierarchical. Beside three leaf node

kinds of create, wait and end, there are two collective node

kinds of section and task that comprise subgraphs of the

DAG. The section node kind corresponds to the section no-

tion in the task parallel programming models. A section

node contains one or more create nodes and other section

nodes before ending by one wait node. In Fig. 1, rounded

square shapes that represent section(s) are illustrated to

also cover tasks that its child create nodes created. The

task node kind corresponds to the task entity in task par-

allel runtime systems. A task node contains zero or more

section nodes before ending by one end node. In Fig. 1, the

E
C

create

wait

end

B

E
C

B

create cont.

create

wait cont.

sync

task

section

D()

D()

A() {

  for(i=0;i<2;i++) {

    task_group tg;

    tg.run(B);

    tg.run(C);

    D();

    tg.wait();

  }

}

D() {

  task_group tg;

  tg.run(E);

  tg.wait(); 

}

Fig. 1: An example of a task parallel program execution

visualized as a DAG

whole execution of the program is originally the only task

node. This original task node is expanded into two section

nodes and one end node. The two section nodes are further

expanded into two similar inner topologies as they are two

iterations of the for loop. If a DAG is expanded completely,

it has only leaf node kinds of create, wait and end.

Each node v in DAG is augmented with performance

data of its corresponding execution interval such as start

time (v.start), end time (v.end) of the interval, the worker

(v.worker) on which the interval took place, start and

end code positions (file names, lines) of the corresponding

code segment of the interval. In case of collective nodes,

these data items hold aggregate performance data about the

node’s inner subgraphs.

Recording DAG

DAG Recorder instruments code in the process through

which a task parallel primitive in our generic model gets

translated into a specific task parallel API so that the mea-

surement can get called at appropriate positions during the

execution of a task parallel program to record the DAG. In

order to capture the DAG structure as described in the pre-

vious section, DAG Recorder instruments measure code at

following seven positions:

• before and after CreateTask primitive

• before and after WaitTasks primitive

• at start and end of a task

• at start of a section

The positions after CreateTask, after WaitTasks and

the start of a task are where an interval (a node) begins.

The positions before CreateTask, before WaitTasks and

the end of a task are where an interval ends.
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4. DAG Visualization

Capturing all relevant events then visualizing them is a

comprehensive strategy to analyze thoroughly the cause of

performance bottlenecks. In the particular case of task par-

allelism, all the indeterministics and dynamics which are the

cause of performance problems happen inside task parallel

primitives, so breaking down the entire execution into se-

quential segments separated by the primitives is a validly

practical approach. Being able to manipulate these sequen-

tial pieces (DAG’s nodes) which are the building blocks of

task parallel performance allows us to boil down to the root

cause of the problem.

Moreover, different from code-centric hotspots analysis

and thread-centric timeline visualization, DAG visualiza-

tion provides a task-centric view of the execution which is

the logical task structure of the program. This logical task

structure is more relevant and familiar from the program-

mers’ perspective. As well, there is a need to compare task

parallel executions to clarify the subtle differences among

runtimes or among scheduling policies for the purpose of

developing appropriate scheduling algorithms. Due to the

freedom in assigning which workers execute which tasks it is

more meaningful when comparing executions task by task.

4.1 Hierarchical Layout Algorithm

Because the DAG structure is hierarchical beginning with

a single task node representing the whole original applica-

tion, we can traverse all DAG’s nodes recursively beginning

from this root task.

A node holds such coordinate variables that x, y are abso-

lute coordinates of the node, xpre is the relative x coordinate

based on its predecessor node, xp is the relative x coordi-

nate based on its parent node. lw, rw and dw which stand

for left width, right width and down width (distances from

point x, y to the left, right and down) describe the bounding

box covering itself and all its inner children. link lw, link rw

and link dw describes the bounding box covering itself, its

subgraph and all successor nodes reached when traversing

along the links, and their subgraphs too. The layout algo-

rithm traverses the DAG recursively and sets values to these

variables of each node. The algorithm consists of two phases.

In the first phase, it sets values for each node’s xpre, y, lw,

rw, dw and link lw, link rw, link dw. In the second phase,

it sets values for xp and absolute x coordinate of every node.

Fig. 2 shows the DAG extracted from an execution of Sort

program. The DAG is originally only one node (left most),

from left to right it shows the DAG’s hierarchial expansion.

The original node gets expanded into three sections and

one end. Next the first section gets expanded, then the sec-

ond section and the third section. When users click on a

node, DAGViz displays a box showing detailed information

that DAG Recorder has recorded about that interval. Node

color represents for the worker that has executed the node.

The mixed color (of orange, yellow and cyan) represents for

the subgraphs that have been executed by multiple workers

Fig. 2: Sort’s DAG(s) at depth 0 (first), 1 (second) and 2

(later 3). Node color represents the worker that executed the

node, the mixed color (of orange, yellow and cyan) indicates

the node’s subgraph was executed collectively by multiple

workers.
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Fig. 4: Sort’s timeline is the lower part consisting of 32

rows. Sort’s parallelism profile is the upper part consisting

of a red area (actual parallelism) and stacked-up areas of

other colors (different kinds of available parallelisms).

rather than a single one. Fig. 3 shows the same DAG that

has been expanded to depth 6 while the full DAG has max

depth of 66 and contains dozens of thousands of nodes.

4.2 Timeline View with Parallelism Profile

The layout algorithm of the DAG can be modified a little

to produce timeline view of the execution. In timeline view

the x-axis is the time flow and y-axis consists of a number of

rows each of which corresponds to one worker thread. The

rows contain boxes representing works that a worker was

doing at specific points in time during the program’s execu-

tion. Each node of the DAG becomes a box in the timeline,

so its y coordinate is fixed based on its worker number. The

node’s x coordinate is calculated based on its start time,

and its length is based on its work time (= v.end−v.start).

Therefore, the timeline layout algorithm is somewhat easier

than that of the DAG. Besides, DAGViz also draws a paral-

lelism profile along with and above the timeline (Fig. 4). In

Fig. 4, the lower part consisting of 32 rows is the timeline,

the upper part (from red area upward) is the parallelism

profile of the execution which is the time series of actual

and available parallelisms of the execution:

• Time series of actual parallelism (red part): is the num-
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Fig. 3: Sort’s DAG expanded to depth 6 (max depth is 66)

ber of tasks actually running at every point in time.

Actual parallelism at time t, denoted by Pactual(t), can

be obtained by:

Pactual(t) =
∑
v∈V

running(v, t)

where V is the set of all nodes in DAG, running(v, t) is

1 if v is running at time t and 0 otherwise. Formally,

running(v, t) =

{
1 if v.start ≤ t ≤ v.end

0 otherwise

• Time series of available parallelism (upper parts of other

colors): is the number of tasks ready to run but not

actually running at every point in time. Available par-

allelism at time t, Pavail(t), can be obtained by:

Pavail(t) =
∑
v∈V

ready(v, t)

where ready(v, t) is 1 if all of v’s predecessors have been

finished at time t but v has not been started; and 0 oth-

erwise. Formally,

ready(v, t) =


1 if u.end < t < v.start for all

u → v

0 otherwise

5. Case Studies

We have measured and recorded DAG(s) of all ten pro-

grams in the Barcelona OpenMP Task Suite (BOTS) bench-

mark suite [8] with five task parallel runtime systems DAG

Recorder currently supports; OpenMP, Cilk Plus, Intel

TBB, MassiveThreads and Qthreads. The experimental en-

vironment is shown in Table 2, and parameters for each

benchmark described in Table 3. The overhead of DAG

Compiler Intel Compiler 14.0.2
OS CentOS 6.4 (Linux 2.6.32-x86 64)
CPU AMD Opteron 6380 2.5GHz

16 cores (8 modules) per socket
# Sockets 4 sockets (64 cores or 32 modules in total)
Runtimes OpenMP, Cilk Plus,

Intel TBB, MassiveThreads, Qthreads

Table 2: Experiment environment

App stack cut off other args
Alignment 220 - -f prot.100.aa

FFT 215 - -n 224

Fib 215 manual -n 47 -x 19

Floorplan 217 manual -f input.20 -x 7

Health 214 manual -f medium.input -x 3

Nqueens 214 manual -n 14 -x 7

Sort 215 manual -n 227 -a 512 -y 512

Sparse LU 214 - -n 120 -m 40

Strassen 214 manual -n 4096 -x 7 -y 32

UTS 214 - -f tiny.input

Table 3: Summary of benchmarks settings

Recorder is shown in Fig. 5. Except for particular cases

of Health and UTS programs which have many fine-grained

tasks, DAG Recorder is feasible for all other programs with

overhead within 10% of the original program’s runtime.

We have summarized the experimental results in Fig. 6,

which plots the utilization (= speedup/cores) of all ten pro-

grams with all five systems, using 32 cores. Each dot rep-

resents the utilization of an execution of a program by a

system; the higher it is, the better. Among many cases of

our interest, we look into two of them here. First, Sort’s

speedup is poor in all systems, which suggests that the pro-

gram’s code is the cause of performance bottleneck. The

other case is SparseLU, as it is a peculiar case in which Cilk

Plus’s scalability is poorer than other systems, when Cilk

Plus performs well in most other benchmarks.
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Fig. 5: DAG Recorder’s overhead in running programs in

BOTS with MassiveThreads on 32 cores
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Fig. 6: Utilizations of BOTS run by 5 systems on 32 cores

Sort

Sort program sorts a random permutation of n 32-bit

numbers with a parallel variation of mergesort [8]. The input

array is divided into smaller parts which are sorted recur-

sively before being merged, also recursively, to become the

sorted result array. The recursive parallel merge is turned

to simple sequential memory copy when the smaller array is

empty. This trivial condition itself causes the lack of avail-

able parallelism accompanied with many long-running tasks

at the stage near the end of the execution in Fig. 4. It is be-

cause the condition that the smaller array is empty does not

guarantee the larger array is sufficiently small, but contrarily

the larger array might be very large making the sequential

memory copy costly. By replacing this sequential memory

copy with a version of parallel memory copy, the lack of

parallelism in merging phase was fixed.

Similar to Sort, Strassen is another example where perfor-

mance suffers from the lack of parallelism. The timeline of

Strassen program in Fig. 7 shows that the program’s paral-

lelism is very low near the start. By zooming in and relating

the long running box with DAG structure, we identified the

code segment which enforced this low parallelism situation.

SparseLU

SparseLU program computes an LU matrix factorization

over sparse matrices [8]. DAG visualization of SparseLU

(Fig. 8) and also its source code show that it has a serial

loop creating very many tasks, none of which recursively cre-

ates further tasks. Therefore, the program’s parallelism in-
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Fig. 7: Strassen’s case study: top node of the DAG (first

interval of the execution) is actually a too-long-running one

demonstrated by the timeline view.

Fig. 8: (Head part of) SparseLU’s DAG by Cilk Plus

Fig. 9: (Head parts of) SparseLU’s DAG(s) by Intel TBB

(left) and Cilk Plus (right)

crements one only after each iteration of the loop. The com-

parison of DAG(s) from Cilk Plus and Intel TBB in Fig. 9

expresses a noticeable difference between two systems. All

nodes along the spine in Intel TBB’s DAG (left one) are exe-

cuted together by the same worker (of orange color), whereas

in Cilk Plus’s DAG (right one) these spinal nodes are exe-

cuted separately by different workers (of different colors).

This is because in Intel TBB when a worker creates a new
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Fig. 11: Distribution of work stealing delay in SparseLU

task it pushes the new task into its work queue and con-

tinues executing the current one, whereas in Cilk Plus the

worker would pause the current task to switch to executing

the new task. So, every parallelism increment requires a

work stealing operation in Cilk Plus’s execution. It is un-

derstandable that systems with help-first policy (OpenMP,

Intel TBB, Qthreads) would execute SparseLU better than

systems with work-first policy (Cilk Plus, MassiveThreads).

However, MassiveThreads still has significantly better uti-

lization than Cilk Plus. Fig. 10 shows parallelism profiles

of MassiveThreads and Cilk Plus on 32 cores. It is notice-

able that Cilk Plus exposes a low parallelism (around 25,

as opposed to nearly 32 with MassiveThreads). The reason

why MassiveThreads performs better than Cilk Plus can

be explained by the expensive work stealing of Cilk Plus.

Figure 11 compares the distribution of time gaps between

two consecutive nodes on the spine. Cilk Plus takes much

longer to advance a computation along it, implying that it

takes longer to steal a task. In our previous microbench-

mark, we have confirmed that work stealing operation in

MassiveThreads is more than an order of magnitude faster

than in Cilk Plus [9].

6. Related Work

Tallent et al. [10] categorized parallel execution time of

a multithreaded program into 3 categories: work, parallel

idleness, and parallel overhead. They use sampling method

that interrupts workers regularly after a fixed period of time

to record a sample of where workers are working on. They

proposed techniques to measure and attribute parallel idle-

ness and parallel overhead back to application-level code

based on an additional binary analysis process of the exe-

cutable to re-construct the program’s user-level call path.

Their approach has been implemented in the HPCToolkit

performance tool of the Rice University. They claim that

these two parallel idleness and parallel overhead metrics can

help to pinpoints areas in a program’s code where concur-

rency should be increased (to reduce idleness), or decreased

(to reduce overhead).

Olivier et al. [11] had taken a step further than [10] by

identifying that the inflation in work is in some cases more

critical than parallel idleness or parallel overhead factors in

task parallelism. They systemize the contributions of the 3

factors of work inflation, idlness and overhead in the per-

formance loss of applications in BOTS. They demonstrated

that work inflation accounted for a dominant part and pro-

posed a locality-aware scheduler which mitigated this factor.

The TAU performance system [12] is an open source sys-

tem that has a powerful automatic instrumentation toolset.

Intel VTune Amplifier software [13] uses sampling method

and does not need to instrument the executable. These tools

focus on the analysis of only one single execution of the ap-

plication. They can pinpoint the most costly code blocks in

the application-level code which consume most of the exe-

cution time. To analyze the work inflation factor we need

to compare a pair of executions on fewer and more numbers

of cores, which these tools do not support.

Liu et al. [14] has built a NUMA profiler for multithreaded

programs. It can assess the severity of remote access bot-

tleneck and provide optimization guidance of redistribut-

ing data based on memory access patterns of threads. But

for task-parallel applications, when tasks are distributed dy-

namically, the solution needs to take into account the struc-

ture of the DAG.

Vampir [15] visualizes trace files of an MPI program. Its

main visualization is a timeline view (Gantt chart) with

edges pointing from box to box to represent communication

among processes. It simultaneously shows a statistical view

that displays aggregate information of a chosen time inter-

val in the timeline. Iwainsky et al. [16] have used Vampir

to visulize remote socket traffic on the Intel Nehalem-EX.

Jumpshot [17] is a more general timeline visualizer. It vi-

sualizes data from text files of its own format. Jumpshot is

not very flexible. It can only display up to 10 different cate-

gories which have 10 different colors. Jedule [18] is a tool to

visualize schedules of parallel applications in timeline style.

Olivier et al. in [11] has used Jedule to visualize a timeline

view for analyzing the locality of a scheduling policy.

Wheeler and Thain [19] in their work of ThreadScope have

demonstrated that visualizing a graph of dependent execu-

tion blocks and memory objects can enable identification of

synchronization and structural problems. They use existing

tracing tools to instrument multithreaded applications, then

transform result traces to dot-attributed graphs which are

rendered by GraphViz [20]. GraphViz tool is scalable up to

only hundreds of nodes and slow with large graphs of more

than a thousand nodes because its algorithm [21] focuses on

the aesthetic aspect of graphs rather than rendering speed.

And most of all, GraphViz is not interactive.

Aftermath [22] is a graphical tool that visualize traces

of an OpenStream [23] parallel programs in timeline style.

OpenStream is a dataflow, stream programming extension of

OpenMP. Although Aftermath is applied in a narrow con-

text of OpenStream (subset of OpenMP), it instead pro-

vides an extensive functionalities for filtering displayed data,

zooming into details and various interaction features with

users.

7. Conclusions & Future Work

We have built DAGViz - a tool that visualizes the DAG
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Fig. 10: SparseLU’s parallelism profiles by MassiveThreads and Cilk Plus. While MassiveThreads constantly reaches 32

parallelism, Cilk Plus mostly floats around 25.

extracted from an execution of a task parallel program and

provides interaction functionalities for the user to explore

the DAG. Through case studies, DAG visualization has

proved its usefulness in helping users to understand the

structure of task parallel programs. Along with DAG view,

DAGViz can also visualize timeline view with parallelism

profile of the DAG which provides a thread-centric view on

the execution.

In future work, we would like to implement and combine

the sampling method with current instrumentation measure-

ment to get a more complete observation of long running in-

tervals. DAG Recorder currently records only time metrics,

we intend to enhance it to record hardware performance

counters [24] as well in order to get more thorough mea-

sures to reason about the performance. DAGViz and DAG

view will be enhanced to convey performance insights to

the users. Besides, comparing isomorphic DAG(s) produced

by the same program running on different configurations to

analyze work stretch and performance difference among sys-

tems is a potential direction of DAGViz.
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