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on the FX10 supercomputer with JVM Reuse
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Abstract:
Hadoop is known as the most popular open-source MapReduce implementation that is used widely in practice to pro-
cess large datasets. In the aspects of productivity and maturity, it is a good choice to run MapReduce on supercomputers
that are urgently dealing with data-intensive problems. Our examination reveals that in iterative MapReduce computa-
tion, such as PageRank and K-means clustering, the start-up and initializing time is relatively long in comparison with
overall execution time. Furthermore, on the FX10 supercomputer, MPI is the de facto communication and required for
high-speed communication, but MPI is not available over Hadoop processes due to the FX10’s specification. In this
work, we propose JVM Reuse and its implementation, a process pool, for the sake of Hadoop avoiding the overhead
of JVM start-up time and enabling MPI communication. We also present a MPI-based shuffling engine as a proof to
show MPI advantage. Our performance evaluation demonstrates that JVM Reuse helps reduce job completion time up
to 35%.

1. Introduction
A supercomputer is a very expensive cluster consisting of iden-

tical computers equipped with multi-core processors and large ca-
pacity of main memory and connected to each other through high-
speed networks. It is typically employed for scientific compu-
tation. So far, supercomputing has focused mainly on compute-
intensive applications, but many data-intensive workloads, for ex-
ample, graph processing and pre-processing of simulation data,
are emerging as supercomputing problems that supercomputers
need to tackle for the sake of leveraging their high-performance
hardware. MapReduce [1] is a programming paradigm used
widely to process large-scale datasets and it comes as a relevant
solution to deal with data-intensive problems on supercomputers.
It provides an easy-to-use and scalable computation model into
which naturally many scientific algorithms can fit. MapReduce
implementation often makes parallelization and communication
(file I/O and data exchange) hidden from users that helps run ap-
plications on hundreds and thousands of nodes more easily.

Hadoop [2] is known as the most popular open-source MapRe-
duce implementation that is used widely in practice and by lead-
ing companies including Yahoo! and Facebook. Hadoop is a bet-
ter choice to run MapReduce on supercomputers in the aspects of
productivity and maturity rather than developing a new MapRe-
duce framework from scratch that is time-consuming.

Although Hadoop is a good adoption, but it does not support
directly iterative computation [3][4] that is used by a broad class
of scientific algorithms including graph ranking (PageRank [5]),
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clustering (K-Means), and machine learning training. In order to
deploy iterative MapReduce computation on Hadoop, each iter-
ation is considered as a small MapReduce job and run consec-
utively in a loop. A job often consists of lots of MapTask and
ReduceTask processes that are newly started every iteration. It
leads to a problem that many processes are created during the it-
erative program running. Hadoop MapReduce is written in Java
and its process (the JVM) is considered to have high start-up cost.
Supercomputers are naturally expensive, and thus it is very costly
to run an iterative job whose duration can be several hours or a
day. Long start-up time of processes is waste of resources.

Contemporary supercomputers have been equipped with high-
speed network infrastructure, such as 3D-Torus [6] or Tofu [7]
interconnection and InfiniBand, on which MPI is optimized
and considered as the de facto communication. Unfortunately,
Hadoop is designed to rely mainly on TCP/IP-based communi-
cation that prevents it from taking advantage of high bandwidth
and low latency of supercomputer networks. On our supercom-
puter at the University of Tokyo (FX10) [8], the throughput dif-
ference between MPI and TCP is tenfold. However, MPI is not
available among Hadoop processes on the FX10 since Hadoop
requires dynamic process creation to start new MapTask and Re-
duceTask processes, but dynamically created processes on FX10
cannot use MPI. That is the specification existing on the FX10.
Note that MPI-Spawn command [9] can be used, but it is only
possible to spawn a new process on a totally new node on which
there is no process running.

In order to address the problem of long start-up time and the
need of using MPI over Hadoop processes, we propose an idea
of reusing, called JVM Reuse, for the sake of Hadoop avoiding
the overhead of JVM start-up and enabling MPI communication.
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To avoid starting and terminating processes, JVM Reuse keeps a
process running and when it is free, a new program’s instruction
is loaded on top of its. Also, since the process is kept running
without terminating, Hadoop does not need dynamic process cre-
ation; instead, Map or Reduce tasks can be created and executed
on top of that process. MPI is of course always available among
processes started at the beginning when their job is submitted.
JVM Reuse can be integrated with any Hadoop version 2.x and
resource managers, such as Mesos [10] and YARN [11], since its
implementation, our proposed process pool, provides a mecha-
nism to allocate and de-allocate process slots that can work inde-
pendently. Compared to other JVM Reuse implementation, our
design considers optimization including Reflection and Clean-up.

Overall, we have made four contributions as follows:
• We have revealed iterative MapReduce computation on

Hadoop has long start-up time.
• We have designed and implemented JVM Reuse to avoid

long start-up time and enable MPI over Hadoop processes
on the FX10 supercomputer.

• We have carried out evaluation of JVM Reuse on PageRank
computation.

• We have designed a MPI shuffling engine to show MPI ad-
vantage on Hadoop MapReduce workloads.

In the following, firstly we present our motivation and describe
problems in Section 2. We then discuss the idea of reusing and its
implementation in Section 3. Section 4 is dedicated to providing
experimental results including JVM Reuse and MPI shuffling. Fi-
nally, Section 5 provides a review of related work and is followed
by brief discussion and conclusion in Section 6.

2. Motivation
In this section, we present why Hadoop is a good choice to run

MapReduce on supercomputers and then describe in details prob-
lems associated when running Hadoop MapReduce on the FX10
supercomputer.

2.1 Hadoop MapReduce on supercomputers
MapReduce [1] is a programming model used widely to pro-

cess large datasets. It is a paradigm that makes parallelization
easier and communication among processing tasks hidden to pro-
grammers to develop applications running on hundreds to thou-
sands of nodes. MapReduce computation is split into two main
phases: Mapping and Reducing. Firstly, the Mappers read and
filter input data, and then write key-value pairs sorted as outputs.
The output pairs of Mappers are passed to appropriate Reducers
(known as shuffle phase). Finally, the Reducers sort and merge
these values and apply a reducing function to obtain the final re-
sults:
• Map defines how to split data into a couple of (key, value):

input data→ list(key, value)
• Reduce defines what results will be obtained:

(key, list(value))→ desired results
Hadoop [12] is the standard of MapReduce implementation

that provides easy-to-use MapReduce APIs being used widely in
practice and by a large developer community. It is written in Java
and TCP is its main communication protocol. Hadoop is a bet-

ter choice to run MapReduce on supercomputers in the aspects of
productivity and maturity rather than developing a MapReduce
framework from scratch that is time-consuming. Users can reuse
MapReduce source code to run on their commodity clusters or
vice versa. In aspect of performance tuning, there are a lot of
parameters that users can optimize, for example, cpu cores and
memory of each process, spilling thresholds, and number of shuf-
fling threads. Wu [13] provided a self-tuning model to find the
best parameters on a certain cluster. Moreover, there is an ecosys-
tem of related projects that supports Hadoop in the aspects of dis-
tributed programming [14], scheduling [15], and benchmarking
[16].

2.2 Long start-up time of processes in iterative jobs
Hadoop provides an easy-to-use framework that is good and fit

for most of MapReduce algorithms, but it does not support di-
rectly iterative computation. There are several approaches to im-
prove iterative job performance, for example HaLoop [3], Spark
[17] and Twister [18], which we discuss in Section 5.

There is a broad class of scientific algorithms that can be solved
using iterative MapReduce computation, including graph rank-
ing, clustering, and machine learning training. An iterative job
is run consecutively until it meets a condition or its value con-
verges. Figure 1 describes how an iterative job works. The results
of previous MapReduce iteration is used as inputs to the next one.
PageRank, a graph algorithm to rank linked documents, is a com-
mon example of iteration computation. At the initial iteration,
each document has an equal rank value, rankD = 1. On each
next iteration at the mapping step, each document emits its rank
contribution ( r

n ) to each outbound link, where r is its current rank
and n is the number of out-links. At the reducing step, the new
rank of a document is sum of all rank contribution that it received,
new rankD =

∑
ci where ci is the rank contribution from an in-

bound link i. The set of new rank values is kept for next iteration
computation.

In order to deploy an iterative MapReduce program on
Hadoop, an iteration is considered as a small MapReduce job and
run consecutively in a loop manually. A MapReduce job often
consists of lots of mapping processes (Mapper) and several re-
ducing processes (Reducer) that are newly started on distributed
nodes for each job. It comes with a problem that too many pro-
cesses are created during the iterative program running. Hadoop
MapReduce is written in Java and its process (the JVM) is con-
sidered to have high start-up cost. Supercomputers are naturally
expensive, and thus it is very costly to run iterative jobs whose
duration can be several hours or a day. Long start-up time of pro-
cesses is waste of resources. To examine the problem, we run
PageRank program in three iterations and its execution is illus-
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Fig. 1 Iterative job workflow
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Fig. 2 PageRank with three iterations: the blue part denotes the start-up
time of a process.

trated in Figure 2 that reveals that the start-up time measured from
requesting process creation to starting computation is relatively
long in comparison with overall execution time (up to 30%).

The JVM stands for Java Virtual Machine and its instance
works the same as a process that executes a computer program
compiled in Java bytecode. When users run a command, for
example ”java A”, the process is initialized at operating system
level first. Then, a class loader subsystem including class load-
ing and linking (verification & static field initializing) is called to
invoke main() method of the A program. Finally, execution en-
gine of the JVM often optimized by a JIT compiler executes A
instructions. Figure 3 shows the working flow.

2.3 MPI communication on the FX10 supercomputer
MPI is the de facto communication on our supercomputer

(FX10) and required for high-speed communication. However,
MPI is not available over Hadoop processes on the FX10 su-
percomputer. The reason comes from Hadoop architecture that
requires dynamic process creation to start MapTask and Reduc-
eTask processes, but dynamically created processes on FX10 can-
not use MPI. That is the specification existing on the FX10 that
makes only slow TCP/IP available among newly created pro-
cesses.

The FX10 [8] is a supercomputer at the University of Tokyo
and developed by Fujitsu. Its compute nodes consist of 50 racks
of PRIMEHPC FX10 with a peak of 1.13 PFLOPS. One rack
contains 96 computing nodes equipped with SPARC64 IXfx pro-
cessors [19]. K supercomputer [20] at RIKEN is also using the
PRIMEHPC FX10 rack, but its processor is SPARC64 VIIIfx, a
predecessor of IXfx.

MPI stands for Message Passing Interface that is used widely
on supercomputer environment rather than TCP/IP. Figure 4
shows the throughput between MPI and TCP on the FX10 whose
difference is tenfold. Figure 2 also shows bottlenecks at the shuf-
fling phase and writing MapOutput in which:
• Long shuffling (fetching data) that can be improved by being

Fig. 3 JVM start-up flow of a program A
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Fig. 4 TCP Throughput (left) and MPI Throughput (right) on the FX10 su-
percomputer

replaced with MPI data exchange.
• Slow MapOutput writing to disks that can be speeded up us-

ing parallel MPI I/O.

3. JVM Reuse
The above-mentioned iterative jobs often consist of many short

running processes whose start-up time is relatively long. To avoid
starting and terminating processes, the JVM keeps a process run-
ning and when it is free, a new program’s instruction is loaded on
top of its. In this section, we firstly describe the idea of reusing
and show how JVM Reuse addresses the discussed problems.
Section 3.2 illustrates implementation’s features in details.

3.1 Idea of Reusing
In the Hadoop version 2.x [11], YARN is used for resource

managing and task scheduling that consists of Resource and Node
Manager running on master and slave nodes, respectively. A
Hadoop cluster often has one master node and many slave nodes.
When Node Manager receives a MapTask or ReduceTask request,
it creates a totally new JVM process to run that task by using the
process builder of Java. The creation flow is described in Figure
5 (left): firstly, a process builder is used to call a shell script cre-
ated in advance; after exporting environment variables in the shell
script, the Java program that contains a MapTask or ReduceTask
class is executed. When computation finishes, the MapTask and
ReduceTask processes (Mapper and Reducer) are terminated.

Instead of creating newly a process and terminating it after fin-
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Fig. 5 Process builder vs. JVM Reuse workflow
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Fig. 6 JVM Reuse of a program B

ishing, we create a pool of empty JVM processes in advance and
do allocation and de-allocation, respectively. Figure 5 (right) il-
lustrates how JVM Reuse is used in Hadoop MapReduce work-
flow. Node Manager sends a request containing the shell script
path to the pool of JVM processes and a slot in the pool is dele-
gated to run the shell script file and invoke the Java program of
Mapper or Reducer. When it completes, the slot is cleaned and
given back to the pool. By virtue of reusing the JVM, not only
start-up time but also MPI communication can be achieved.
3.1.1 JVM Reuse shortens start-up time

As discussed in the previous section, the JVM start-up flow
is divided into four main steps: OS-level creation, class loading,
main() invoking, and instruction execution. JVM Reuse skips the
first two step since the process does not need to be created newly
and related classes are already loaded and linked together. Figure
6 illustrates our description. When A program finishes, its JVM
process will be kept running to invoke main() method of another
program called B.

If A and B instructions are identical, JVM Reuse might take
advantage of compilation technology, such as Just-in-time (JIT)
compilation and adaptive optimization that are designed to im-
prove execution performance. In this paper, however, we do not
evaluate effectiveness of JIT compilation on Hadoop MapReduce
performance.
3.1.2 JVM Reuse enables MPI communication on the FX10

MPI communication is established among processes started at
the beginning when their job is submitted. JVM Reuse keeps
those processes running without terminating, so MPI connection
is always available during job execution time. When a new pro-
cess is spawned on a node, MPI connection is not created between
the new process and the running processes that is discussed in the
previous section.

To avoid the requirement of dynamic process creation, the
Mapper and Reducer JVM processes should be started in ad-
vance, but we cannot create too many processes and the number
of required processes is unknown. Our JVM Reuse creates a lim-
ited number of JVM processes in advance, keeps it, and provides
a mechanism to invoke a new program on top of the existing JVM
processes.

3.2 Process pool
To implement JVM Reuse, we create a process pool running on

each node at the beginning when Hadoop cluster is started. The
pool is initialized with empty JVM processes. Figure 7 shows
the architecture of the pool inside one node. Pool Manager is an
independent process and responsible for slot allocation and deal-
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Fig. 7 Pool architecture in a node

location in the pool. Process creation requests in Node Manager
are forwarded to Pool Manager (Mgr) instead of calling a process
builder. Pool Mgr uses a flag array to store which JVM process
slot in the pool is busy and free and chooses an empty slot based
on round-robin scheduling. In the Fig. 7, one denotes the oc-
cupied state and zero represents the empty state. MPI is used as
inter-process communication.

When a process slot is allocated, its flag is set one and then en-
vironment variable exporting, creation of a new class loader, and
main() method invoking are executed consecutively. When the
Mapper or Reducer occupied on the slot is finished, de-allocation
including static field clean-up and busy-flag reseting is called.

3.3 Technical issues
To make allocation and de-allocation possible, we employ Re-

flection and run clean-up before de-allocating.
3.3.1 Reflection

Reflection is used to solve the problem of class loading that
happens when a user submits a MapReduce job to the Hadoop
cluster. In the original flow of process creation using a process
builder, at the step of exporting environment variables, CLASS-
PATH that contains the user’s MapReduce classes is declared, so
Mapper or Reducer process can find and load such classes. By
contrast, JVM processes in the pool are started before the above
CLASSPATH is exported and thus the user’s defined classes are
not found during execution time.

Refection is a technique that allows to examine and modify
a program at runtime. Java reflection makes it possible to load
and invoke classes and methods at runtime whose name is un-
known at compile time. At the step of slot allocation in JVM
Reuse workflow, a new class loader is created to load the user’s
MapReduce classes before invoking its main() method. Since a
new class loader is used to load the user’s MapReduce classes,
although the user submits the same class and package that exists
in the previous job, an error will not happen.

An iterative application consists of many small MapReduce
jobs and the class loader is created newly for each job (chang-
ing in job context). Note that we do not reload all Hadoop classes
and only the user’s classes is reloaded.
3.3.2 Clean-up

The JVM Reuse may have a problem of security due to reusing
the JVM in which static fields for the previous job are already
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set. For instance, a UserGroup static field is initialized when a
user submits a job, and it is kept unchanged whenever its value is
not null. Therefore, the later users will use the same key as the
first one who set it. Although the Hadoop cluster is used by only
one user on supercomputer environment, but clean-up of all static
fields is necessary in general. At the current design, we only do
a simple clean-up by reseting only static fields containing user
information and job configuration.
3.3.3 Number of slots in the pool

The pool containing many slots may affect node performance
since empty JVM processes consume too much CPU time and
memory. On the contrary, the pool with a few slots causes in-
efficient resource utilization. We set number of slots equal to
maximum containers defined in the Hadoop Yarn configuration
file by default. If that parameter is not declared, we set it equal to
number of processor cores.

4. Experimental Evaluation
All our experiments are conducted on the FX10 supercom-

puter. A FX10 node is equipped with SPARC64 IXfx 1.848
GHz processor (16 cores) and 32GB main memory. The FX10
does not have a local disk for each computing node, conversely a
central storage used. Computing nodes are connected with each
other through Tofu interconnection [21] on which MPI’s maxi-
mum throughput is 5 GB/s, and they access the central storage
through InfiniBand network.

JVM Reuse can be integrated with any Hadoop version 2.x, but
we use Hadoop v2.2.0 (a stable version) in our evaluation. In or-
der to adapt to JVM Reuse, Hadoop source code is changed with
the below ratio:
• Line of code / total of Hadoop: 1100 / 1,851,473
• Number of classes / total of Hadoop: 9 / 35142
In all our experiments, one node (master) is dedicated to run

both Resource Manager and NameNode of Hadoop Distributed
File System (HDFS). On other nodes (slaves), we also run both
Node Manager and DataNode of HDFS. The maximum Map-
Tasks and ReduceTasks can be run simultaneously on a node is
six. Since the local disk on each node does not exist, HDFS is run
on the central storage. Although it is possible to make Hadoop
access directly the central storage (Lustre-based file system), but
it is not our evaluation target.

We use OpenJDK 7 and OpenMPI 1.6 optimized by Fujitsu.
For the sake of using MPI from Java, we use a MPI binding [22]
that has been included in OpenMPI 1.7.5 or later. We made a
minor modification to integrate this MPI binding with OpenMPI
on the FX10. All experiments are run with the MCA parame-
ter plm ple cpu affinity = 0 to disable CPU binding on each MPI
process.

To evaluate JVM Reuse performance, we compare start-up
time of our JVM Reuse and the original Hadoop. In order to
show that MPI is fast on Hadoop, we design a MPI shuffle en-
gine and show shuffling speed between MPI- and TCP/IP-based
communication.

4.1 Start-up time
We run PageRank algorithm on 8 FX10 nodes (1 master and 7
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Fig. 8 JVM Reuse shortens start-up time (PageRank with three iterations)

slaves) to evaluate start-up reduction performance and a dataset
of 400 GB en-wiki is employed. Wiki data is parsed to build an
adjacency list first and then its iteration is executed. A 6-slot pool
is configured to run on each slave node and the maximum heap
memory is 4GB (-Xmx4096m) for each JVM process. HDFS file
block size is 128MB.
4.1.1 PageRank performance

Figure 8 illustrates PageRank execution time in three iterations.
The blue part denotes the start-up time of Mapper and Reducer
including the JVM start-up itself and initialization of user infor-
mation. In this experiment, we do not reset static fields. The
longer running time represents Reducer processes. Each iteration
is divided into two batch of running since the maximum slot is 42.
At JVM Reuse chart (bottom), the start-up time starts decreasing
from the second batch and is reduced much from the second it-
eration. After three iteration, total execution time is shortened
25%.

With more iterations, overall execution and start-up time is
shown in Figure 9. When the number of iterations increases, JVM
Reuse approach shows more reduction. In Fig. 9a, contrary to
the start-up time of the original Hadoop increasing linearly with
number of iterations, one of JVM Reuse-based Hadoop is a little
changed. Regarding overall execution time (Fig. 9b), at the 8-
iteration job, performance improvement is 35%. Moreover, Fig.
9c reveals the ratio of start-up time in comparison with overall
execution time is small in case of JVM Reuse Hadoop.

We do not provide evaluation of static file clean-up impact and
different number of slots in the process pool. They are considered
as our future work.
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Fig. 9 PageRank with more iterations

4.2 MPI versus TCP/IP shuffling
As discussed in Section 2.3, shuffling in Hadoop MapReduce

is slow in jobs having high volume of data exchange, such as tera-
sort and self-join, and its performance can be improved by using
MPI instead of TCP. In order to show benefit of MPI communica-
tion, first we present a MPI shuffling engine to bypass using the
original shuffling based on TCP communication. Our evaluation
on the tera-sort workload shows proofs of MPI advantage.
4.2.1 MPI shuffling design

Shuffle engine of the original Hadoop MapReduce is removed,
and we replace its HTTP servlet server with our Shuffle Manager
to handle receiving requests and sending MapOutput data. Fig-
ure 10 shows comparison between the Hadoop shuffle engine and
ours. There are three main phases in Hadoop MapReduce: map-
ping, shuffling, and reducing. Mapping and reducing run users’
MapTask and ReduceTask, respectively. The shuffling phase is
located in the middle in which a Reducer fetches MapOutput data
from MapTasks that is written to local disk through HTTP servlet
servers (Fig. 10a). Each slave node has one HTTP servlet server
that can handle multiple HTTPURLConnections from Reducers
at once (nonblocking type). HTTPURLConnection is a library
based on TCP/IP.

In the same way, our shuffle engine does receive requests from
Reducers, then read map MapOutput files, and send back to
the Reducers. Nevertheless, we use MPI connection instead of
HTTPURLConnection. Since number of requests is unknown
and the requesting timestamp of each Reducer is different, it is
impossible to use nonblocking MPI. Therefore, our shuffle en-
gine can only handle one request at once (blocking type).
4.2.2 MPI shuffling performance

Tera-sort is a common MapReduce benchmark to measure
shuffling performance since amount of exchange data is big and
almost equal to its input size. We run Tera-sort on 32 FX10 nodes
with a 4-slot pool, -Xmx4096m heap memory for each JVM pro-
cess, and 256MB of HDFS file block size. Since OpenMPI on
FX10 does not support multiple thread-safe communication, we
set number of fetcher threads running on each Reducer to one
(mapreduce.reduce.shuffle.parallelcopies = 1).

Figure 11 shows that improvement from MPI shuffling is up to

5% and 10% in comparison with nonblocking and blocking TCP
one respectively. During the experiment, we notice that when in-
put size is less than 4GB, advantage of MPI shuffling is unclear.
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5. Related work
JVM Reuse. M3R [4] proposed a Hadoop MapReduce (HMR)

engine written in X10 language [23] that proved that significant
performance gain can be obtained by totally implementing HMR
APIs in a main-memory implementation using JVM Reuse. Ex-
periments of their implementation of M3R showed advantages
of in-memory implementation in aspects of proportion of remote
shuffle and running time. Although one of M3R’s contribution
that we are aware of is to identify the sources of performance gain
in main-memory implementation including input/output cache
and avoiding disk-based out-of-core shuffling and JVM start-up,
they do not provide any specific evaluation of JVM start-up time
reduction by using JVM Reuse. Also, there was no optimization
for JVM Reuse provided. In this paper, we provide a mechanism
to employ JVM Reuse more efficiently and evaluation in details
on how the original HMR engine benefits from JVM Reuse that
M3R omitted. Moreover, our approach keeps the original HMR
engine with minimum changes.

In the Hadoop v1, users can set number of tasks that
are executed in a JVM process in sequence (mapre-
duce.job.jvm.numtasks) [24]. This parameter is useful to
avoid overheads of JVM start-up in a single job, but the JVM
itself will be terminated after its job completed. Hadoop v1 does
not provide any mechanism to keep that JVM running to execute
tasks of other jobs.

Data shuffle. JVM-Bypass [25] has the same purpose of
speeding up shuffling phase. They figured out JVM-based shuf-
fling engine is slow because of its deep stack of transport pro-
tocols, so they implemented their own C-based shuffling engine
that also supported RDMA. While their main objective is to eval-
uate effectiveness of bypassing JVM, we focus on using MPI over
Hadoop processes and how fast MPI data exchange speeds up
fetching of MapOutput files.

Iterative computation. For the sake of improving iterative
MapReduce computation performance, HaLoop [3] provides a
mechanism to cache and reuse mapper and reducer input data,
and reducer outputs. HaLoop helps make all iterations running
in only one MapReduce job, but MapTask and ReduceTask pro-
cesses still need to be created newly. Spark [17] is designed
to benefit iterative algorithms by using resilient distributed im-
mutable datasets (RDD) in which parallel operators (map, filter,
reduce, and collect) can be performed. It uses Mesos resource
manager to allocate new containers with which our JVM Reuse
can be also integrated.

MapReduce on supercomputers. Regarding MapReduce im-
plementation on the supercomputer environment, it is often de-
signed to a certain specific type of supercomputers. For exam-
ple, K MapReduce [26] from Riken is developed to exploit the K
supercomputer, and MapReduce MPI’s experiments from Sandia
[27] had been done on the Cray supercomputer. Both of them are
written in C and using MPI in order to gain benefit from beneath
supercomputer hardware where Tofu and 3D-Torus interconnec-
tion are setup respectively. However, in aspects of productivity
and maturity, Hadoop MapReduce takes more advantage.

6. Discussion and Conclusion
We propose JVM Reuse approach to improve Hadoop MapRe-

duce performance on the FX10 supercomputer to run iterative
jobs, such as PageRank and K-Means, more efficiently. JVM
Reuse helps shorten start-up time and enable MPI communica-
tion among Hadoop processes on the FX10. Compared to other
JVM Reuse implementation, our design considers optimization
including Reflection and Clean-up. Moreover, our approach only
makes minimum changes of the original Hadoop. Our evaluation
shows effectiveness of JVM Reuse with improvement up to 35%
obtaining from both start-up time reduction and MPI shuffling.

JVM Reuse Drawbacks. Performance of long running and
CPU-bound tasks in a reused JVM process can be affected since
we do not carry out a full clean-up including garbage collection,
reseting all static fields, and checking nonstop running threads.
Thus, it comes to slow down the JVM process. Furthermore, idle
JVM processes in the pool might also consume a certain amount
of CPU time that we will examine in the future work.

JVM Reuse for other frameworks. JVM Reuse idea is not
limited to Hadoop. In addition, its design can be applied to other
frameworks, for instance, Spark [17] using Mesos resource man-
ager. Our implementation of JVM Reuse, the process pool, can
work independently, so it is easy to integrated with outside com-
ponents in the way of allocation and de-allocation.

Our future work is to add improvement for JVM Reuse, such
as full clean-up including static fields and heap memory.

References
[1] Dean, J. and Ghemawat, S.: MapReduce: simplified data processing

on large clusters, Communications of the ACM, Vol. 51, No. 1, pp.
107–113 (2008).

[2] White, T.: Hadoop: The definitive guide, ” O’Reilly Media, Inc.”
(2012).

[3] Bu, Y., Howe, B., Balazinska, M. and Ernst, M. D.: HaLoop: efficient
iterative data processing on large clusters, Proceedings of the VLDB
Endowment, Vol. 3, No. 1-2, pp. 285–296 (2010).

[4] Shinnar, A., Cunningham, D., Saraswat, V. and Herta, B.: M3R: in-
creased performance for in-memory Hadoop jobs, Proceedings of the
VLDB Endowment, Vol. 5, No. 12, pp. 1736–1747 (2012).

[5] Page, L., Brin, S., Motwani, R. and Winograd, T.: The PageRank cita-
tion ranking: Bringing order to the web. (1999).

[6] Gara, A., Giampapa, M., Heidelberger, P., Singh, S., Steinmacher-
Burow, B., Takken, T., Tsao, M. and Vranas, P.: Blue Gene/L torus
interconnection network (2005).

[7] Ajima, Y., Takagi, Y., Inoue, T., Hiramoto, S. and Shimizu, T.:
The tofu interconnect, High Performance Interconnects (HOTI), 2011
IEEE 19th Annual Symposium on, IEEE, pp. 87–94 (2011).

[8] FX10: http://www.cc.u-tokyo.ac.jp/system/fx10/index-e.html (2015).
[9] MPISpawn: https://www.open-mpi.org/doc/v1.8/man3/MPI Comm

spawn.3.php (2015).
[10] Hindman, B., Konwinski, A., Zaharia, M., Ghodsi, A., Joseph, A. D.,

Katz, R. H., Shenker, S. and Stoica, I.: Mesos: A Platform for Fine-
Grained Resource Sharing in the Data Center., NSDI, Vol. 11, pp. 22–
22 (2011).

[11] Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar,
M., Evans, R., Graves, T., Lowe, J., Shah, H., Seth, S. et al.: Apache
hadoop yarn: Yet another resource negotiator, Proceedings of the 4th
annual Symposium on Cloud Computing, ACM, p. 5 (2013).

[12] White, T.: Hadoop: the definitive guide: the definitive guide, ”
O’Reilly Media, Inc.” (2009).

[13] Wu, D. and Gokhale, A.: A self-tuning system based on application
Profiling and Performance Analysis for optimizing Hadoop MapRe-
duce cluster configuration, High Performance Computing (HiPC),
2013 20th International Conference on, IEEE, pp. 89–98 (2013).

[14] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S.,
Liu, H., Wyckoff, P. and Murthy, R.: Hive: a warehousing solution

c© 2015 Information Processing Society of Japan 7

Vol.2015-HPC-150 No.10
2015/8/4



IPSJ SIG Technical Report

over a map-reduce framework, Proceedings of the VLDB Endowment,
Vol. 2, No. 2, pp. 1626–1629 (2009).

[15] Islam, M., Huang, A. K., Battisha, M., Chiang, M., Srinivasan, S.,
Peters, C., Neumann, A. and Abdelnur, A.: Oozie: towards a scal-
able workflow management system for hadoop, Proceedings of the 1st
ACM SIGMOD Workshop on Scalable Workflow Execution Engines
and Technologies, ACM, p. 4 (2012).

[16] Ahmad, F., Lee, S., Thottethodi, M. and Vijaykumar, T.: Puma: Pur-
due mapreduce benchmarks suite (2012).

[17] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S. and Stoica,
I.: Spark: cluster computing with working sets, Proceedings of the
2nd USENIX conference on Hot topics in cloud computing, pp. 10–10
(2010).

[18] Ekanayake, J., Li, H., Zhang, B., Gunarathne, T., Bae, S.-H., Qiu, J.
and Fox, G.: Twister: a runtime for iterative mapreduce, Proceedings
of the 19th ACM International Symposium on High Performance Dis-
tributed Computing, ACM, pp. 810–818 (2010).

[19] Yoshida, T., Maruyama, T., Akizuki, Y., Kan, R., Kiyota, N., Ikenishi,
K., Itou, S., Watahiki, T. and Okano, H.: Sparc64 X: Fujitsu’s New-
Generation 16-Core Processor for Unix Servers, Micro, IEEE, Vol. 33,
No. 6, pp. 16–24 (2013).

[20] Yokokawa, M., Shoji, F., Uno, A., Kurokawa, M. and Watanabe, T.:
The K computer: Japanese next-generation supercomputer develop-
ment project, Proceedings of the 17th IEEE/ACM international sympo-
sium on Low-power electronics and design, IEEE Press, pp. 371–372
(2011).

[21] Ajima, Y., Sumimoto, S. and Shimizu, T.: Tofu: A 6D mesh/torus
interconnect for exascale computers, Computer, Vol. 11, No. 42, pp.
36–40 (2009).

[22] Vega-Gisbert, O., Roman, J. E. and Squyres, J. M.: Design and imple-
mentation of Java bindings in Open MPI (2014).

[23] Saraswat, V., Bloom, B., Peshansky, I., Tardieu, O. and Grove, D.:
X10 language specification (2011).

[24] Stewart, R. and Singer, J.: Comparing fork/join and MapReduce,
Technical report, Citeseer (2012).

[25] Wang, Y., Xu, C., Li, X. and Yu, W.: Jvm-bypass for efficient hadoop
shuffling, Parallel & Distributed Processing (IPDPS), 2013 IEEE 27th
International Symposium on, IEEE, pp. 569–578 (2013).

[26] Matsuda, M., Maruyama, N. and Takizawa, S.: K MapReduce: A
scalable tool for data-processing and search/ensemble applications
on large-scale supercomputers, Cluster Computing (CLUSTER), 2013
IEEE International Conference on, IEEE, pp. 1–8 (2013).

[27] Plimpton, S. J. and Devine, K. D.: MapReduce in MPI for large-scale
graph algorithms, Parallel Computing, Vol. 37, No. 9, pp. 610–632
(2011).

c© 2015 Information Processing Society of Japan 8

Vol.2015-HPC-150 No.10
2015/8/4


