ルーフラインモデルによる性能幅推定と ステンシル計算コードにおけるメモリレイアウト最適化 による性能最大化

佐藤 真平^{1,2,a)} 佐藤 幸紀^{1,2,b)} 遠藤 敏夫^{1,2,c)}

概要:大規模並列処理をおこなう場合においても CPU およびメモリに対するチューニングはアプリケー ション全体の性能を決める重要な要素である.本稿では,ステンシル計算コードを対象にルーフラインモ デルに基づいて到達可能な性能幅を推定し,性能を最大化するための戦略と実際に施したチューニングの 実例を報告する.性能最大化の戦略としてコードの最適化の余地を検証するために,CPU におけるハード ウェア性能カウンタや我々が開発を進めるアプリケーション性能解析ツール Exana を用いてコード実行の 性能解析と分析を行った.分析結果に基づき,メモリレイアウトに関する最適化をコードに適用した結果, 最適化を行わないコードと比較して3倍程度の性能向上を達成した.

1. はじめに

エクサスケール時代に向けた高性能計算システムにおい て,高速計算を実現するためには数千から数万に及ぶ並 列性を抽出する大規模並列処理が必要である.一方で,1 ノードもしくは CPU 単体におけるアプリケーションの性 能は,大規模並列化後の性能を決めるベースとなる要素で ある.例えば,1ノードあたりの性能を1割ほどしか引き 出せていないアプリケーションは,大規模並列化を行って も同程度しかシステム全体の性能を引き出せないという ことになる.今後の高性能計算機システムにおいても,1 ノードあたりの性能チューニングは重要な課題である.

近年の1ノードあたりの性能チューニングにおいては, メモリウォール問題のために複雑化するメモリ階層への対応,コア数の増加や SIMD を用いたプロセッサ内におけ る並列性の抽出が求められる.Intel では,CやC++で 単に書かれたコードとマルチコア,メニーコアプロセッサ 向けに最もチューニングされたコードの性能差を「Ninja Gap」と称し,コンパイラの支援などを利用したユーザフ レンドリーなチューニングでその性能差を縮める取り組み を進めている[1].

東京工業大学 学術国際情報センター Global Scientific Information and Computing Center, Tokyo Institute of Technology

- $^{a)}$ sato.s.ae@m.titech.ac.jp
- ^{b)} yukinori@el.gsic.titech.ac.jp
- $^{\rm c)} \quad {\rm endo@is.titech.ac.jp} \\$

本稿では,ステンシル計算コードを対象に,ルーフライ ンモデルによる性能幅推定とメモリレイアウトの最適化 による性能チューニングを行う.ステンシル計算は,流体 シミュレーションなどの分野の重要カーネルである.一般 に,シミュレーションする領域を格子で表し,それぞれの 格子点の値を隣接する格子点の値を用いて計算し更新する 処理を時間ステップとして繰り返し実行する.ステンシル 計算は,並列性が高く,その性能はメモリバンド幅に大き く影響されることが知られている.

ルーフラインモデル [2] は,アプリケーションの潜在的 なチューニングの可能性とボトルネック解析による性能限 界を視覚的に示す性能モデルである.この性能モデルは, 計算量と DRAM へのアクセス量を用いた抽象化で表現さ れており,メモリバンド幅に強く影響されるステンシル計 算の性能解析ツールとして有用である.

我々が開発を進めるアプリケーション性能解析ツール Exana [3], [4] は,実行時にアプリケーションの解析を行う ツールで,ハードウェアカウンタによる解析では得ること のできない詳細な性能解析が可能である.現在,メモリ階 層性能シミュレータとしてキャッシュの性能を解析する機 能の追加を進めている [5].

本稿では,ステンシル計算のベンチマークとして知られ る姫野ベンチマーク [6] を利用する.姫野ベンチマークを 対象に,ハードウェアカウンタを用いたアプリケーション の性能解析および,ルーフラインモデルに基づく到達可能 な性能幅を推定する.次に,Exana を用いたアプリケー

² JST CREST

プロセッサ	Intel Xeon E5-2650 v2 \times 2
コア数	8(16スレッド) × 2
動作周波数	2.60 GHz
単精度浮動小数点演算	$332.8 \text{ GFlops/s} \times 2$
ピーク性能 (AVX 命令)	
L1 データキャッシュ	32 KB, 8-way / core
L2 キャッシュ	256 KB, 8-way / core
L3 キャッシュ	20 MB, 20-way / CPU
メモリ	DDR3 (1866) 64 GB
コンパイラ	icc 14.0.2
HW カウンタ取得ツール	likwid 3.1.3

表 1 実験に使用する計算機環境

ションの解析で,キャッシュにおける競合ミスを解析し, メモリレイアウトに関する最適化を行う.

2. ルーフラインモデルを用いた性能幅推定

2.1 ルーフラインモデル

ステンシル計算は、メモリアクセスの量に対して演算が 少なく、その性能はメモリバンド幅に強く依存する.メモ リバンド幅を考慮した性能モデルとしてルーフライモデ ル [2] が知られている.このモデルでは、演算性能とメモ リバンド幅のどちらか一方がアプリケーションの性能を 律速すると仮定し、メモリバンド幅、ピーク演算性能、演 算強度(Operational Intensity)を用いてアプリケーショ ン性能を見積もる.演算強度は、アプリケーションにおけ る浮動小数点演算量と DRAM アクセスのデータ量の比 (Flops/Byte)である.仮定から、ルーフラインモデルに よる演算性能は次の式で表される.

演算性能 = min{ピーク演算性能,メモリバンド幅×演算強度} (1)

この式は,横軸に演算強度,縦軸に演算性能として図示 すると,メモリバンド幅に律速され演算強度が高くなるに つれて演算性能が向上する線と CPU ピーク性能に律速さ れ,演算強度にかかわらず演算性能が一定になる線で表現 される.

ルーフラインモデルにおけるメモリバンド幅とピーク演 算性能は,アプリケーションによって適切に設定する必 要がある.例えばメモリバンド幅については,実行するス レッド数やメモリ構成によって変わる.ピーク演算性能に ついても,アプリケーションの性質や SIMD 命令使用の有 無などによって変化する.

2.2 実験環境におけるルーフラインモデル

ここでは,本稿においてアプリケーションを実行する計 算機環境についてまとめ,その環境におけるルーフライン モデルを示す.

表1に実験で使用する計算機環境をまとめる.この計

図 1 実験に使用する計算機環境におけるルーフラインモデル

算機は Ivy Bridge 世代の CPU, Intel Xeon E5-2650 v2 を 2 基搭載する NUMA 型のマシンである. コア数は CPU あたり 8 コア, 16 スレッドとなっている. 実験で は, ハイパースレッディングは使用せずに, 1 コアに1 スレッドを割り当ててアプリケーションを実行する.動 作周波数は 2.6 GHz で,ターボブーストは不使用とす る.単精度の浮動小数点演算性能は,AVX 命令を使用し, さらに加算と乗算を同時実行する場合で, CPU あたり 8×2 inst. × 8 cores × 2.6 GHz = 332.8 GFlops/s とな る.キャッシュは L1, L2 がプライベート, L3 が共有と なっている.メモリは,8GBのモジュールを各 CPU に 4 枚ずつ搭載し,4 チャネル すべてを利用している.コン パイラはインテルコンパイラ 14.0.2 を使用する. 最適化 オプションはすべての実験で O3 を使用する.実験におい て,アプリケーション実行時のメモリバンド幅などはハー ドウェアカウンタを用いて計測する.ハードウェアカウン タの取得には likwid 3.1.3 [7] を利用する.

likwid は, ハードウェアカウンタの取得のみならず, ス レッド・アフィニティーの制御も行うことができるツール である.以降のすべての実験において, スレッドはコアに 固定で割り当ててアプリケーションを実行している.

図1に,実験で使用する計算機環境におけるルーフライ ンモデルを示す.モデルは,2CPU(16スレッド)実行時 のAVX,SSE,SIMD不使用(no-vec)の3つの場合につ いて図示している.ピーク性能は,単精度浮動小数点演算 で加算と乗算を同時実行したと仮定した場合の性能を用い ている.式1より,図中の斜線の傾きはメモリバンド幅と なる.メモリバンド幅はSTREAM ベンチマーク[8]で計 測した Triad の結果を用いている.

以降の議論において,1スレッド実行時のルーフライン モデルを用いるが,ピーク性能とバンド幅は図1と同様に 計測した結果を利用する.

2.3 姫野ベンチマークの性能幅推定

前述の計算機を用いて,姫野ベンチマークを実行しルー フラインモデルに基づき性能幅を推定する.姫野ベンチ

表	2	姫野ベン	チマー	クの 1	スレッ	ドでの性能
---	----------	------	-----	-------------	-----	-------

	MFlops/s	MB/s
S Original	1,140.6	1,799.8
S Padding	$1,\!634.2$	2,182.7
L Original	497.8	1,172.8
L Padding	$1,\!471.2$	$3,\!299.0$

マークは C + OMP, dynamic allocate version を利用す る.OpenMP による並列化が可能なバージョンではある が,ここでは並列化のオーバーヘッドを除いた性能幅推定 のために,1スレッドにて計測を行う.また,SIMD 化の オーバーヘッドも除くために,コンパイル時に -no-vec オ プションを使用し,SIMD 化を抑制する.

実験では,姫野ベンチマークのサイズSおよびサイズL を用いる.サイズSは使用する計算機において確保した メモリがすべてキャッシュにのるサイズで,サイズLは 確保したメモリがキャッシュにのらないサイズとなってい る.ルーフラインモデルでは計算強度としてDRAMアク セスの量を用いるため,データがキャッシュにのる場合は DRAMアクセスが発生せず,メモリバンド幅に律速され ない性能を示すと推測される.逆に,データがキャッシュ にのらないサイズでは,メモリバンド幅に律速される性能 を示すと推測できる.以降の実験においても同様の理由か らサイズSとサイズLの両方の性能を計測する.

性能幅推定にあたって, ソースコードにパディングによ る最適化を実施する.姫野ベンチマークの static allocate version では,宣言されている配列の各次元の要素数が1 要素ずつ余分に確保されており,パディングによる最適 化が行われている.パディングにより,キャッシュにお ける競合ミスを軽減し,性能向上が期待できる.しかし, dynamic allocate version では,パディングによるを行っ ていない.そのため,パディングを実施し,メモリ確保時 に static allocate version と同様に各次元の要素を1つ余 分に確保する.

姫野ベンチマークの性能幅推定では,ダウンロードした ままのコード(Original)とパディングを実施したコード (Padding)の2つについて性能を計測する.実行時のメ モリバンド幅は likwid を用いて計測し,アプリケーショ ンの性能は姫野ベンチマークが出力するスコアを用いる.

表 2 にサイズ S およびサイズ L の 1 スレッドの時の性 能とメモリバンド幅の計測結果を示す.いずれの場合も, Padding により性能向上が見られる.パディングの効果が サイズ S よりサイズ L の方が大きい理由としては,サイ ズ S ではほぼすべてのデータがキャッシュにのっているた め L1 でキャッシュミスが発生しても L3 までのアクセス で収まるのに対して,サイズ L では キャッシュミスによ り DRAM アクセスが発生してしまい,キャッシュミスの ペナルティが大きいことが考えられる.

次に,それぞれのサイズについてルーフラインモデルに

図 2 姫野ベンチマークの1スレッドでのルーフラインモデル

プロットし性能幅を推定する.図2にサイズSおよびサ イズLの1スレッド実行時の性能をルーフライモデルで 示す.ルーフラインの実線は加算と乗算を同時実行した場 合のピーク性能,破線は同時実行をしない場合のピーク性 能を示している.

図から,サイズSとサイズLのいずれの場合でもパディ ングの実施によりキャッシュミス率が改善し,Paddingの 演算強度が Original に対して右方向に移動していること が確認できる.

バイナリの解析から,姫野ベンチマークのカーネル部に は34の浮動小数点演算があり,そのうち13が乗算であっ た.13の乗算のうち加算と同時実行できる可能性のある 乗算は9であった.ここから,姫野ベンチマークはメモリ バンド幅に律速されない時は加算と乗算を同時実行しない 場合のピーク性能より高い性能を達成することが期待でき る.図2で,パディングを実施したコードの性能は加算と 乗算を同時実行しない場合のピーク性能の50%前後であ り,高速化の余地が残されていると考えられる.

3. Exana による性能解析とメモリレイアウ トの最適化

3.1 メモリ階層性能シミュレータによる競合ミスの計測

我々が開発を進める,アプリケーション性能解析ツー ル Exana [3], [4] を用いて姫野ベンチマークの解析を行う. Exana は,アプリケーションの実行時にループ構造や関 数呼び出しの情報などを解析するツールである.現在,メ モリ階層性能シミュレータとしてメモリアクセスに関する 性能を解析する機能を開発している [5].ここでは,性能 解析のために追加されたキャッシュシミュレータを用いて キャッシュ競合ミスを計測する.

メモリ階層性能シミュレータとして実装されているキャッ シュは,L1,L2,L3 キャッシュを搭載し,サイズ,ウェ イ数,ブロックサイズを指定することができる.ライトス ルー方式を採用し,置き換えアルゴリズムはLRUを用い ている.簡単のために,インクルーシプポリシーで実装さ れており,またプリフェッチは未実装となっている. 表 3 姫野ベンチマーク サイズ S の Exana によるキャッシュ競合 ミスの計測

	Original	Padding
Cache miss		
L1	37.15 %	2.68~%
L2	7.06 %	98.96~%
L3	80.11 %	82.26~%
Conflict miss		
L1	92.85~%	1.04~%
L2	11.06~%	11.21~%
L3	4.75 %	8.05~%

キャッシュにおける競合ミスは,キャッシュミスの1つ で複数のキャッシュラインが同じセットを使用し,ウェイ が不足するこで発生するミスである.競合ミスが多いアプ リケーションでは,確保しているメモリ領域に対してパ ディングを実施することで使用するセットをずらすことが でき,競合ミスを減らすことが期待できる.

シミュレータでは,次の手法[9]で競合ミスを判定して いる.

- (1) キャッシュのセットごとに 32 エントリの FIFO を用意し,アクセスしたキャッシュのタグを保持
- (2) LRU にてラインの置き換えが発生したときに,追い
 出されるラインのタグが FIFO に保持されていれば競
 合ミスと判定

表 3 に,前節で用いた姫野ベンチマークの Original と Padding について Exana のメモリ階層性能シミュレータ を用いてキャッシュ競合ミスを計測した結果を示す.ベン チマークのサイズは S である.

L1 のキャッシュミス率と競合ミス率に注目すると, Padding は Original に対して大幅に競合ミスが減少し, キャッシュミス率について改善されていることがわかる.

姫野ベンチマークでは 14 個の配列が宣言されており,計 算カーネルですべての配列を連続に参照している.8 ウェ イのキャッシュにおいて,連続にアクセスする 14 個の配 列を扱うと単純には競合ミスが発生すると考えられる.し かし,適切にパディングを実施することで競合ミスが軽減 し高速化が可能であることがわかる.

3.2 姫野ベンチマークのメモリレイアウトの最適化

ここでは, 姫野ベンチマークにパディングを実施することでさらなる高速化を目指す.

前節で実施したパディングは,配列の各次元の要素を1 つ余分に確保するという方法であった.しかし,この方法 は SIMD 化のためのアライメントを考慮すると適切とは 言えない.そこで,vallocを用いてすべての配列をページ 境界で確保し,その先頭にスペースを挿入しセットをずら すという方法でパディングを実施する.

姫野ベンチマークでは 14 個の配列が使用されているが,

ベースとして使用しているコードでは,係数として用いら れている 10 個の配列は 4 次元の配列としてメモリを確 保する実装になっている.確保したメモリ領域の先頭にス ペースを挿入する方法によるパディングでは,それらの配 列も個別の 3 次元配列として扱いたい.そこで,コードを 変更し 14 個の配列すべてが 3 次元の配列としてメモリを 確保するようにする.このコード変更で,すべての配列を ページ境界に配置した場合の性能は 1,180.0 MFlops/s で, 前節で使用した Original の性能 1,140.6 MFlops/s から大 きな変化はない.

実験で用いる計算機の CPU の L1 データキャッシュは サイズ 32 KB,ウェイ数 8,ラインサイズ 64 B なのでセッ ト数は 64 となる.ページ境界に配置されたデータは,L1 キャッシュに置かれるときにはセット 0 から格納される. パディングで挿入するスペースの大きさをラインサイズ × N(N は 0 から 63)とし,配列の先頭が格納されるセット をずらすことで競合ミスの軽減をねらう.

図 3 に, サイズ S の姫野ベンチマークで 14 個の配列に 挿入するパディングの大きさを乱数で決定し,1,000 パター ン実行したときの性能の分布を示す. 横軸は性能で単位は MFlops/s である. 例えば 1,300 MFlops/s の場合,性能 が 1,300 MFlops/s 以上 1,350 MFlops/s 未満のパディン グ挿入パターンが 15 個あることを意味する.

図から,95%近くのパターンの性能が2,050 MFlops/s 以上2,200 MFlops/s 未満の範囲に収まることがわかる. 前節において計測したサイズSのPaddingは1,634.2 MFlops/sであった.パディングのために実装の変更を 行ってはいるが,さらなる高速化を達成するメモリレイア ウトがあることがわかる.

表 4 に, サイズ S の実験において最も高い性能を示し た挿入パターン(Max)と最も低い性能を示したパター ン(Min)について, Exana による競合ミスの計測結果を 示す. Min については, すべての配列をページ境界に配置 した場合(挿入するスペースがすべて0の場合)が最も低 い性能となったため,実験した1,000 パターンには現れて いないパターンではあるが, このパターンを Min として

情報処理学会研究報告 IPSJ SIG Technical Report

表 4 パディングで挿入するスペースを乱数により決定した姫野ベ ンチマーク サイズ S の性能

	Min	Max
MFlops/s	1,180.0	2,173.9
Cache miss		
L1	39.78~%	2.43~%
L2	6.10~%	100.00~%
L3	87.47 %	87.47~%
Conflict miss		
L1	93.86~%	0.00~%
L2	12.44~%	12.44~%
L3	0.48~%	0.48~%

いる.

L1 キャッシュのミス率に注目すると, Max では競合ミ ス率が0% にまで減らすことができ, キャッシュミス率 2.43% となる.前節の Padding ではL1の競合ミス率が 1.04%, キャッシュミス率が2.43% であり, Max はさら なるミス率の改善を達成していることがわかる.

同様の実験をサイズ L でも行ったが,1,000 パターンす べての性能が 500 MFlops/s 以上 550 MFlops/s 未満の範 囲に収まる結果となった.これは,前節にける Original の 性能 497.8 MFlops/s とほぼ同等である.14 個の配列への パディングの挿入パターンは非常に多くの場合があり,サ イズ L ではパディングにより性能向上する場合が少なく, 前節における Padding の性能 1,471.2 MFlops/s のような 性能となるパターンが 1,000 パターンの実験では現れな かったと考えられる.

また,ステンシル計算の場合は隣接する格子を参照しな がら計算をすすめる.隣接する格子もまた連続で参照され ており,連続した参照それぞれを別の参照系列と見なすと, 姫野ベンチマークでは22個の参照系列があると見なすこ とができる.同じ配列の別の参照系列どうしで競合ミスが 発生している場合,確保したメモリ領域の先頭にスペース を挿入する方法によるパディングでは競合ミスを減らすこ とができない.サイズLでは,同じ配列の別の参照系列に よって競合ミスが発生していることが考えられる.

4. 評価

ここまでは,1スレッドかつ SIMD 化をせずに姫野ベ ンチマークの解析を行ってきた.ここでは,これまでの 最適化を実施したコードについて並列化を行い評価する. SIMD 化はこれまでと同様に行っていない.

評価対象は以下の通りである.

- Original:ダウロードした dynamic allocate version の コード
- Padding: static allocate version と同様のパディング を適用したコード
- Min: すべての配列をページ境界に配置したコード

図 4 姫野ベンチマーク サイズ S でスレッド数を変化させたときの 性能

図 5 姫野ベンチマーク サイズ S で 16 スレッド実行時のルーフラ インモデル

Max: 1,000 通りの実験で最も高い性能を示したパディングを適用したコード

実験に使用する計算機は NUMA 型のマシンのため, すべ てのコードでファーストタッチを実施している.また, 並 列実行時のスレッドは2つの CPU に均等に分配し, コア に固定して割り当てている.

図 4 に姫野ベンチマークのサイズ S でスレッド数を変化 させたときの性能を示す.すべてのコードで 16 スレッド 実行時の性能が最も高くなっている.Original と Min が 同等の性能を示している.1 スレッドの場合で最も高い性 能を示した Max は実行スレッド数を変えても最も高い性 能を示しており,16 スレッド実行の場合で Original に対 して約 1.8 倍の性能を達成する.

図 5 に, サイズ S で実行スレッド数 16 の性能をルーフ ラインモデルで示す.ルーフラインの実線は浮動小数点演 算の加算と乗算を同時実行した場合のピーク性能,破線は 同時実行しない場合のピーク性能である.サイズ S のデー タはすべてキャッシュにのるサイズのため,DRAM アク セスが少なく演算強度(Operational Intensity)は大きな 値になる.最も高い性能を示している Max は,浮動小数 点演算を同時実行しない場合のピーク性能の約 80 % の性 能となる.

図 6 に, サイズ L でスレッド数を変化させたときの性 能を示す.サイズ L の乱数を使用したパディングの挿入に

図 6 姫野ベンチマーク サイズ L でスレッド数を変化させたときの 性能

図 7 姫野ベンチマーク サイズ L で 16 スレッド実行時のルーフラ インモデル

おいて,1,000 通りの実験ではサイズ S の場合のような高い性能を示すパターンは現れなかった.ここでは,実験した1,000 パターンの中で最も性能が高いパターンを Max としている.

すべてのコードで 16 スレッド実行時が最も性能が高く なる.Original, Min, Max に大きな性能差はみられない. Padding が最も高い性能を示しており, 16 スレッドの場 合で Original に対して約3倍の性能を達成する.

図 7 にサイズ L の 16 スレッド実行時の性能をルーフ ラインモデルで示す.サイズ L は DRAM アクセスが多 く演算強度は小さな値となる.最も高い性能を示している Padding は,その演算強度の時のピーク性能の約 60 % の 性能となる.

5. まとめ

エクサスケール時代に向けた高性能計算システムにおい て,高速計算を実現するために大規模並列処理を行う場合 においても,1ノードあたりの性能チューニングはアプリ ケーション全体の性能を決める重要な要素である.

本稿ではステンシル計算コードを対象に,ルーフライン モデルに基づいた性能幅の推定を行い,姫野ベンチマーク に高速化の余地があることを確認した.次に,我々が開発 を進めるアプリケーション性能解析ツール Exana のメモ リ階層性能シミュレータを用いた解析を行った.解析から, 姫野ベンチマークが L1 キャッシュにおける競合ミスを軽 減することで高速化が可能であることを示した.L1 キャッ シュにおける競合ミスを軽減するためのメモリレイアウト を網羅的に調査し,最も性能が高いレイアウトにおいて大 幅に競合ミスを軽減できることがわかった.評価では,並 列化を行った場合においても競合ミスの少ないメモリレイ アウトのコードが高い性能を示すことを確認した.ルーフ ラインモデルに基づく性能の推定では,競合が少ないメモ リレイアウトの姫野ベンチマークのコードは,サイズ S の 場合でピーク性能の約 80 %,サイズ L の場合でピーク性 能の約 60 % の性能となった.競合ミスが多いメモリレイ アウトのコードに対しては,サイズ S で約 1.8 倍,サイズ L で約 3 倍の高速化を達成した.

今後の課題としては,サイズ L においてより競合ミスが 少ないメモリレイアウトを調査すること,メモリレイアウ トについて SIMD 化も考慮した最適化を検討すること,メ モリレイアウトの最適化についてプログラマへのフィード バック方法を検討することなどが挙げられる.

参考文献

- [1] Satish, N., Kim, C., Chhugani, J., Saito, H., Krishnaiyer, R., Smelyanskiy, M., Girkar, M. and Dubey, P.: Can Traditional Programming Bridge the Ninja Performance Gap for Parallel Computing Applications?, In Proceedings of the 39th Annual International Symposium on Computer Architecture (ISCA '12), pp. 440–451 (2012).
- [2] Williams, S., Waterman, A. and Patterson, D.: Roofline: An Insightful Visual Performance Model for Multicore Architectures, *Communications of the ACM*, Vol. 52, No. 4, p. 65 (2009).
- [3] Sato, Y., Inoguchi, Y. and Nakamura, T.: Whole Program Data Dependence Profiling to Unveil Parallel Regions in the Dynamic Execution, In Proceedings of the 2012 IEEE International Symposium on Workload Characterization (IISWC '12), pp. 69–80 (2012).
- [4] Sato, Y., Inoguchi, Y. and Nakamura, T.: Identifying Program Loop Nesting Structures during Execution of Machine Code, *IEICE TRANSACTIONS on Information* and Systems, Vol. E97-D, No. 9, pp. 2371–2385 (2014).
- [5] 佐藤幸紀,佐藤真平:メモリ階層性能シミュレータを用いた CPU 単体性能チューニング,ハイパフォーマンスコンピューティングと計算科学シンポジウム論文集(HPCS 2015), pp. 100–100 (2015).
- [6] Himeno Benchmark: http://accc.riken.jp/2444.htm.
- [7] Likwid: https://github.com/rrze-likwid/likwid.
- [8] STREAM Benchmark: https://www.cs.virginia.edu/stream/.
- [9] Jouppi, N. P.: Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-Associative Cache and Prefetch Buffers, In Proceedings of the 17th International Symposium on Computer Architecture (ISCA '90), pp. 364–373 (1990).