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An Algorithm for Detecting XSLT Rules Affected by
Schema Updates
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Abstract: Schemas of XML documents are continuously updated according to changes in the real world. Moreover,
XSLT stylesheets are also affected by schema updates if its underlying schema is updated. In order to maintain the
consistencies of XSLT stylesheets with updated schemas, we have to detect the XSLT rules affected by schema up-
dates. However, detecting such XSLT rules manually is a difficult and time-consuming task, since recent DTDs and
XSLT stylesheets are becoming more complex and users do not always fully understand the dependencies between
XSLT stylesheets and DTDs. In this paper, we consider three subclasses of XSLT based on unranked tree transducer,
and consider an algorithm and complexity for detecting XSLT rules affected by a DTD update for the classes.
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1. Introduction
In general, schemas of XML documents are continuously up-

dated according to changes in the real world. If a schema is
updated, then XSLT stylesheets are also affected by the schema
update. To maintain the consistencies of XSLT stylesheets with
updated schemas, we have to detect the XSLT rules affected by
schema updates in order to determine whether the XSLT rules
need to be updated accordingly. However, detecting such XSLT
rules manually is a difficult and time-consuming task, since re-
cent DTDs and XSLT stylesheets are becoming larger and more
complex and users do not always fully understand the dependen-
cies between XSLT stylesheets and old/updated schemas. In this
paper, we consider an algorithm for detecting XSLT rules affected
by a DTD update automatically.

Let us give a small example of XSLT rules affected by a DTD
update. Consider the fragments of old/new DTDs and an XSLT
stylesheet shown in Fig. 1. DTD old has two meta elements: one
is a child of book and the other is a child of info. The first XSLT
rule is applied to the former meta element, while the second rule
is applied to the latter meta element. Here, suppose that the info
element is unnested, i.e., info in the content model of music is
replaced by “meta,description?” (DTD new). Then the first
XSLT rule is now applied to the latter meta element as well as
the former, and we have no meta element to which the second
XSLT rule is applied. These two XSLT rules are affected by the
DTD update.

In this paper, we propose an algorithm for detecting XSLT
rules affected by a DTD update. We consider three subclasses
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DTD_old:

<!ELEMENT items (book*,music*)>

<!ELEMENT book (meta,title,authors)>

<!ELEMENT music (info,title,artist)>

<!ELEMENT meta (id,date,(pages|length),format?)>

<!ELEMENT info (meta,description?)>

DTD_new:

<!ELEMENT items (book*,music*)>

<!ELEMENT book (meta,title,authors)>

<!ELEMENT music (meta,description?,title,artist)>

<!ELEMENT meta (id,date,(pages|length),format?)>

XSLT:

<xsl:template match="meta">

...

</xsl:template>

<xsl:template match="info/meta">

...

</xsl:template>

Fig. 1 Fragments of DTDs and XSLT

of XSLT: UTT, UTTpat, and UTTpat,sel. UTT coincides with the
standard unranked tree transducer [7], and UTTpat and UTTpat,sel

are extensions of UTT, where pat denotes XSLT pattern and
sel denotes select of apply-templates. We first give a
polynomial-time algorithm for detecting XSLT rules affected by
a DTD update assuming UTT/UTTpat as XSLT. We next show
that the problem becomes undecidable if UTTpat,sel is assumed as
XSLT. We also made an experiment on the algorithm.

Related Work
[3] proposes an algorithm for transforming XPath expressions

according to a schema update. Although XPath expressions are
used as XSLT patterns, their algorithm cannot be applied to our
problem since XSLT rules affected by a schema update cannot
be detected by checking each XSLT pattern independently. To
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Fig. 2 Tree structure of r

the best of our knowledge, there is no study on detecting XSLT
rules affected by a schema update. On the other hand, there are
several studies dealing with XML schema updates. For exam-
ple, [4], [6] propose algorithms for extracting “diff” between two
schemas. [2], [9] propose update operations that assures any up-
dated schema contains its original schema. [8] introduces a tax-
onomy of possible problems for XQuery induced by a schema up-
date, and gives an algorithm to detect such problems. [5] studies
query-update independence analysis, and shows that the perfor-
mance of [1] can be drastically enhanced in the use of µ-calculus.

This paper is organized as follows. Section 2 defines DTD, tree
transducer, and some related notions. Section 3 presents an algo-
rithm for detecting XSLT rules affected by schema updates. Sec-
tion 4 shows the undecidability of the problem. Section 5 briefly
gives the result of an experimentation. Section 6 summarizes this
paper.

2. Preliminaries
In this section, we give some definitions related to DTD and

tree transducer.

2.1 DTD and Update Operations to DTDs
Let Σ be a set of labels. For a node v in a tree t, by l(v) we mean

the label of v. The language specified by a regular expression r is
denoted L(r). A DTD is a tuple D = (d, sl), where d is a mapping
from Σ to the set of regular expressions over Σ, and sl ∈ Σ is the
start label. For a label a ∈ Σ, d(a) is the content model of a. A
tree t is valid against D = (d, sl) if l(v) = sl for the root v of t and
for any node n in t, l(v1) · · · l(vn) ∈ L(d(l(v)), where v1, · · · , vn are
the child nodes of v.

Example 1 Consider the following DTD, where book is
the start label. Then this DTD is denoted (d, book), where
d(book) = title chapter+, d(chapter) = title section+ bib?,
d(title) = d(section) = d(bib) = ϵ.
<!ELEMENT book (title,chapter+)>

<!ELEMENT chapter (title, section+, bib?)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT section (#PCDATA)>

<!ELEMENT bib (#PCDATA)>

To define update operations to DTDs, we need to define the
positions of elements/operators in a content model. Thus, we
represent a content model as a tree and specify the position of
each node by Dewey order. For example, Fig. 2 shows the tree
structure of r = (a|b)(ca)∗, where each node is associated with its
position. For a regular expression r, the label at position u in r
is denoted l(r, u) and the subexpression at position u of r is de-
noted sub(r, u). For example, in Fig. 2, l(r, 1) = ‘|’, l(r, 1.1) = a,
sub(r, 2.1) = ca.

Let D = (d, sl) be a DTD. Update operations to D are defined
as follows.
• ins elm(a, b, u): inserts a label b at position u in d(a).
• del elm(a, u): deletes the label at position u in d(a).
• nest(a, b, u): nests the subexpression at u in d(a) by b. This

operation replaces the subexpression at u in d(a) by b and
sets d(b) = sub(d(a), u).

• unnest(a, u): this is the inverse operation of nest, and re-
places the label l′ = l(d(a), u) at u in d(a) by regular expres-
sion d(l′).

By op(D) we mean the DTD obtained by applying an update
operation op to D. An update script is a sequence of update
operations. For an update script s = op1op2 · · · opn, we define
s(D) = opn(· · · (op2(op1(D)))).

2.2 Classes UTT and UTTpat of Tree Transducers
A pattern is defined as pat = ls1/ · · · /lsn, where lsi = axi ::

li, axi ∈ {↓, ↓∗}, and li ∈ Σ. ↓ and ↓∗ denote child and descendant-
or-self axes, respectively. Let t be a tree and v be a node of t. We
say that v matches pat if there is a sequence v1, · · · , vn of nodes in
t such that vn = v, l(vi) = li (1 ≤ i ≤ n), and that for any 2 ≤ i ≤ n,
if axi =↓, then t has edge vi−1 → vi, otherwise (i.e., axi =↓∗) there
is a path from vi−1 to vi in t.

A hedge is a finite sequence of trees. The set of hedges is de-
noted by HΣ. For a set Q, by HΣ(Q) we mean the set of Σ-hedges
such that leaf nodes can be labeled with elements from Q. A tree
transducer is a quadruple (Q,Σ, q0,R), where Q is a finite set of
states, q0∈Q is the initial state, and R is a finite set of rules of the
form (q, pat)→ h, where q∈Q, pat is a pattern, and h∈HΣ(Q). For
example, (q, a/b/c) → c(p) corresponds to the following XSLT
template.
<xsl:template match="a/b/c" mode="q">

<c>

<xsl:apply-templates mode="p" />

</c>

</xsl:template>

Let v be a node in a tree t. The translation defined by a tree
transducer Tr = (Q,Σ, q0,R) at v in state q, denoted by Trq(t, v),
is inductively defined as follows.
R1: If there is a rule (q, pat) → h ∈ R such that v matches pat,

then Trq(t, v) is obtained from h as follows: for each leaf
node u in h, if l(u) is a state, say p, then replace u with hedge
Trp(t, v1) · · · Trp(t, vn), where v1, · · · , vn are the children of v.

R2: Otherwise, Trq(t, v) = ϵ.
The transformation of t by Tr, denoted by Tr(t), is defined as
Tr(t) = Trq0 (t, v0), where v0 is the root node of t. The class of the
tree transducers defined above is denoted UTTpat. In particular,
if for every rule (q, pat) → h ∈ R pat is a single label, then the
restricted class is denoted UTT, which coincides with that of the
standard unranked tree transducer[7].

2.3 Class UTTpat,sel

We first show the definitions of XPath location paths used in
select. A relative location path is defined as ls1/ · · · /lsn, where
lsi = axi :: li, axi ∈ {↓, ↑, ↓∗}, li is a label, and ↑ is a parent axis.
An absolute location path consists of‘ / ’optionally followed
by a relative location path. The set of relative location paths and
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Fig. 3 Tree t and its subscripted tree t#

absolute location paths is denoted by S EL. By HΣ(Q × S EL) we
mean the set of hedges such that leaf nodes can be labeled with
elements from (q, sel) ∈ Q × S EL.

A tree transducer in UTTpat,sel can also be defined as a quadru-
ple (Q,Σ, q0,R′). The rules of transformation are extended as fol-
lows: for every transformation rule (q, pat) → h in R′, h belongs
to HΣ(Q×S EL). The other definitions remain the same as defined
in UTTpat. For a relative location path sel, by S (t, v, sel) we mean
the set of nodes reachable from v via sel in t. In the same way,
for an absolute location path sel, by S (t, sel) we mean the set of
nodes reachable from the root of t via sel.

Let t be a tree and v be a node of t. The translation defined by
a tree transducer Tr = (Q,Σ, q0,R′) on node v of tree t in state q,
denoted by Trq(t, v), is defined as follows.
• The case where there is a rule (q, pat)→h∈R′ such that

Mpat(t, v, pat) , ∅:
– If sel is a relative location path, then Trq(t, v) is obtained

from h as follows:
∗ for each leaf node u in h, if l(u) = (p, sel) ∈ Q × S EL,

then replace u with hedge Trp(t, v1) · · · Trp(t, vn),
where S (t, v, sel) = {v1, · · · , vn}.

– If sel is an absolute location path, then Trq(t, v) is obtained
from h as follows:
∗ for each leaf node u in h, if l(u) = (p, sel) ∈ Q × S EL,

then replace u with hedge Trp(t, v1) · · · Trp(t, vn),
where S (t, sel) = {v1, · · · , vn}.

• The case where there is no rule (q, pat)→h∈R′ such that
Mpat(t, v, pat) , ∅:

– Trq(t, v) = ϵ.
The transformation of t by Tr, denoted by Tr(t), is defined as

Trq0(t, v0), where v0 is the root node of t. The class of the tree
transducers defined above is denoted UTTpat,sel.

2.4 Rules Affected by DTD Updates
A DTD may contain more than one element having the same

name, and we have to distinguish such elements when detecting
the rules affected by DTD updates. By ab,u we mean the element
a at position u in d(b). We say that ab,u is a subscripted label. If
a is the root element, then the corresponding subscripted labels is
aroot,λ. By D# we mean the DTD obtained from D by replacing
each label in a content model with its corresponding subscripted
label. For a tree t valid against D, t# is a subscripted tree of t if
t# is obtained by replacing each label in t with its corresponding
subscripted label so that t# is valid against D# (see Fig. 3).

Let D = (d, sl) be a DTD, s be an update script to D, and

Fig. 4 Dependency graphs

s(D) = (d′, sl). For a subscripted label ab,u in D#, if ab,u is not
deleted by s, then ab,u also appears in s(D)# (its parent b and po-
sition u may change). Thus, this element in s(D)# can be denoted
by ab′ ,u′ for some element b′ and position u′, and we say that ab,u

corresponds to ab′ ,u′ *
1.

Let Tr = (Q,Σ, q0,R) be a tree transducer. For a subscripted
label ab,u and a rule rl ∈ R, rl is applicable to ab,u in a tree t if for
some node v in t, (1) rl is applied to v during the transformation
of Tr(t), and, (2) for some subscripted tree t# of t, the label of v is
ab,u in t#.

Let ab′ ,u′ be a subscripted label in s(D)# and ab,u be its corre-
sponding element in D#. We define two sets of rules affected by
s at ab′ ,u′ , denoted R+(ab′ ,u′ ) and R−(ab′ ,u′ ), as follows.
• R+(ab′ ,u′ ) is the set of rules rl ∈ R such that rl is not applica-

ble to ab,u in D# but becomes applicable to ab′ ,u′ in s(D)#.
• R−(ab′ ,u′ ) is the set of rules rl ∈ R such that rl is applicable to

ab,u in D# but not applicable to ab′ ,u′ in s(D)#. In particular,
if D# has no subscripted label corresponding to ab′ ,u′ , then
R−(ab′ ,u′ ) = ∅.

3. Algorithm
In this section, we present an algorithm for computing

R+(ab′ ,u′ ) and R−(ab′ ,u′ ) for every ab′ ,u′ , assuming a tree transducer
belongs to UTT/UTTpat.

To compute these sets, we have to find the rules applicable to
each element. To do this, we use label-state pairs and find depen-
dencies of such pairs. In short, pair (a, q) means that a rule can
be applied to a in state q. Consider the rule R1 in the definition
of UTT/UTTpat, and suppose that the antecedent of the rule R1
holds. This means that a rule (q, pat) → h is applied to a node
v in state q, and thus we have a pair (a, q) with l(v) = a. Then
consider the consequence of the rule R1. Each state p in h is re-
placed by Trp(t, v1) · · · Trp(t, vn). Let b = l(vi). Then Trp(t, vi)
means that a rule is (possibly) applied to b in state p, thus we
obtain (b, p). Since (b, p) is obtained by (a, q), we denote this
dependency by an edge (b, p) → (a, q). A dependency graph is a
graph GD = (VD, ED) consisting of such nodes and edges.

Example 2 Let D = (d, a) be a DTD, where d(a) = bc,
d(b) = e, d(c) = d(e) = ϵ. Let Tr = (Q,Σ, q,R) be a tree trans-
ducer, where Q = {p, q, r}, Σ = {a, b, c, e}, and R = {(q, a) →
a(q), (q, c) → c, (q, b) → b(pq), (q, b/a/b) → b(r)}. Since
the root element is a and the initial state is q, we obtain (a, q).
Since d(a) = bc and (q, a) → a(q) can be applied to a in state
q, we obtain nodes (b, q), (c, q) and edges (b, q) → (a, q) and
(c, q) → (a, q). By applying rules in R similarly, we obtain the
dependency graph in Fig. 4(a).

*1 In some cases the update script between old and new DTDs is not given
explicitly. In such cases, the algorithms in [4], [6] can generate update
scripts between DTDs.
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To define the algorithm formally, we need some definitions.
By S t(h) we mean the set of states in a hedge h. For example, if
h = a(pq), then S t(h) = {p, q}. Let pat = ax1 :: l1/ · · · /axn :: ln
be a pattern. A rule (q, pat) → h is applicable to (a, q) in
GD if there is a sequence (a1, q1), · · · , (an, qn) such that (M1)
(a, q) = (an, qn), (M2) ai = li (1 ≤ i ≤ n), and that (M3) for
every 2 ≤ i ≤ n, if axisi =↓, then (ai, qi)→ (ai−1, qi−1) ∈ ED, oth-
erwise (i.e., axisi =↓∗) there is a path from (ai, qi) to (ai−1, qi−1)
in GD.

We present algorithm FindDep for constructing a dependency
graph. R(a, q) denotes the set of rules applied to (a, q) so far. S
maintains a set of label-state pairs that should be examined, which
is initially {(sl, q0)} (line 3). Then the following is repeated until
S becomes empty. First, the algorithm chooses an arbitrary pair
(a, q) from S (line 5), then finds a rule rl = (q, pat) → h such
that rl is applicable to (a, q) in GD and that rl is not applied to
(a, q) so far (line 6). According to rl and the consequence of the
rule R1, for every q′ ∈ S t(h) and every child element b of a, if
(b, q′) is a newly found pair, then (b, q′) is added to VD (and S )
and (b, q′) → (a, q) is added to ED (lines 9 to 13). On the other
hand, if (b, q′) is already in VD, only (b, q′) → (a, q) is added to
ED (lines 14 to 15). Due to this edge addition, some rule may be-
come applicable to a pair (c, q′′) if (a, q) becomes reachable from
(c, q′′) via (b, q′) → (a, q) (see Example 3 below). Thus we find
such pairs and add to S (lines 16 to 18).

Algorithm FindDep

Input: DTD D = (d, sl), tree transducer Tr = (Q,Σ, q0,R).
Output: Dependency graph GD = (VD, ED).
( 1 ) VD ← {(sl, q0)}; ED ← ∅
( 2 ) R(sl, q0)← ∅
( 3 ) S ← {(sl, q0)};
( 4 ) while S , ∅ do
( 5 ) Choose a pair (a, q) ∈ S . Delete (a, q) from S .
( 6 ) if there is a rule rl = (q, pat)→ h ∈ R such that rl is

applicable to (a, q) in GD and that rl < R(a, q) then
( 7 ) R(a, q)← R(a, q) ∪ {rl}
( 8 ) for each element b appearing in d(a) and each state

q′ ∈ S t(h) do
( 9 ) if (b, q′) < VD then
( 10 ) VD ← VD ∪ {(b, q′)}
( 11 ) ED ← ED ∪ {(b, q′)→ (a, q)}
( 12 ) R(b, q′)← ∅
( 13 ) S ← S ∪ {(b, q′)}
( 14 ) else if (b, q′)→ (a, q) < ED then
( 15 ) ED ← ED ∪ {(b, q′)→ (a, q)}
( 16 ) for each (c, q′′) ∈ VD such that (a, q) becomes

reachable from (c, q′′) via (b, q′)→ (a, q) do
( 17 ) if there is a rule rl ∈ R such that rl is applicable

to (c, q′′) in GD and that rl < R(b, q′) then
( 18 ) S ← S ∪ {(c, q′′)};
( 19 )return GD = (VD, ED)

Example 3 Consider the DTD and the tree transducer in Ex-
ample 2. Then suppose that D is slightly modified so that d(b) =
ea instead of d(b) = e. Since element a is now a child of b, by
rule (q, b) → b(pq) we obtain a new node (a, p) and new edges
(a, p) → (b, q) and (a, q) → (b, q) (Fig. 4(b)). Moreover, since
rule (q, b/a/b) → b(r) is now applicable to (b, q) due to path
(b, q) → (a, q) → (b, q), we obtain new node (e, r) and new edge
(e, r)→ (b, q).

To present an algorithm for computing R+(ab′ ,u′ ) and R−(ab′ ,u′ ),

we need a definition. A rule (q, pat) → h is applicable to (a, q)
with parent b in GD if there is a sequence (a1, q1), · · · , (an, qn) that
satisfies the following condition as well as the conditions M1 to
M3.
M4)If axisn =↓, then an−1 = b. Otherwise (i.e., axisn =↓∗),

there is a path from (an, qn) to (an−1, qn−1) whose first edge
is (an, qn)→ (b, q′) for some q′ ∈ Q.

The following algorithm computes R−(ab′ ,u′ ) for every ab′ ,u′

(R+(ab′ ,u′ ) can be obtained similarly). This algorithm constructs
dependency graphs GD and G′D for old/new DTDs, and then takes
“diff” between GD and G′D to obtain R−(ab′ ,u′ ).

Algorithm Main

Input: DTD D = (d, sl), update script s to D, tree transducer
Tr = (Q,Σ, q0,R).
Output: R−(ab′ ,u′ ) for every ab′ ,u′ in s(D).
( 1 ) GD ← FindDep(D,Tr)
( 2 ) G′D ← FindDep(s(D), Tr)
( 3 ) for each subscripted element ab′ ,u′ in s(D) do
( 4 ) R−(ab′ ,u′ )← ∅
( 5 ) if D has a subscripted element ab,u corresponding

to ab′ ,u′ then
( 6 ) M ← {rl∈R | rl is applicable to (a, q) with parent b

in GD, q ∈ Q}
( 7 ) M′ ← {rl∈R | rl is applicable to (a,q) with parent b′

in G′D, q ∈ Q}
( 8 ) R−(ab′ ,u′ )← M \ M′

( 9 ) return {R−(ab′ ,u′ ) |ab′ ,u′ is a subscripted element in s(D)}

Let Mc = maxa∈Σ |d(a)| and Ms = max(q,pat)→h∈R |S t(h)|, where
|d(a)| denotes the number of labels appearing in d(a). Then algo-
rithm Main runs in O(|R|5(McMs)3). In particular, assuming a tree
transducer belongs to UTT, the algorithm runs in O(|R|2(McMs)).
We also have the following.

Theorem 1 Let D be a DTD, s be an update script to D,
Tr = (Q,Σ, q0,R) be a tree transducer belonging to UTT/UTTpat,
and ab,u be a subscripted element in s(D). Then rl ∈ R−(ab′ ,u′ ) iff
rl ∈ R′−(ab′ ,u′ ), where R′− is the result of Main.
Proof (sketch): Let GD be the dependency graph obtained by
FindDep(D,TR). It suffices to show that rl is applicable to (a, q)
with parent b in GD if and only if rl is applicable to ab,u in D.

If part: Suppose that rl is applicable to ab,u in D. Then there is
a tree valid against D containing a path n0 → n1 → · · · → nn and
a sequence of n + 1 states q0, q1, · · · , qn such that
• l(n0) = s, l(ni) is contained in d(l(ni−1)) (1 ≤ i ≤ n),

l(nn−1) = b, and l(nn) = a, and that
• there is a rule (qi, pati) → hi ∈ R such that ni matches pati

and that hi contains qi+1 (0 ≤ i ≤ n).
This implies that GD contains a path (a0, q0)← (a1, q1)← · · · ←
(an, qn) such that a0 = s, an−1 = b, and that an = a. Thus the if
part holds.

Only if part: Suppose that rl is applicable to (a, q) with parent
b in GD. Then it is easy to show that we can construct a tree t
valid against D such that rl is applicable to ab,u in D. □

4. Undecidability
In this section, we show that if UTTpat,sel is assumed as XSLT,

then deciding whether there is a rule affected by a schema update
is undecidable.
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Theorem 2 The following problem is undecidable even if s
is of length one.
• Instance: DTD D, Tree transducer Tr in UTTpat,sel, edit script s

to D, subscripted element ab,u in s(D)
• Problem: Determine whether there is a rule of Tr affected by s

at ab,u.
Proof: It is known that the halting problem of Turing machine is
undecidable. We reduce this halting problem to the above prob-
lem. Without loss of generality, we assume that a Turing machine
has a one-way infinite tape.

Let M = (Q,Σ,Γ, δ, q0, B, F) be a Turing machine, where Q is
a set of states, Σ is a set of input symbols, Γ is a set of tape sym-
bols (Σ ⊆ Γ), δ is a transition function, q0 ∈ Q is the initial state,
B is the blank symbol, and F is a set of accepting states (F ⊆ Q).
δ(q, a) is either defined or undefined. If δ(q, a) is defined, then the
value is denoted (p, b,D), where
• p is the state in which M enters after the transition,
• b ∈ Γ is the symbol written into the current cell, and
• D ∈ {L,R} is the move direction (L and R stand for “left” and

“right”, respectively).
That is, if δ(q, a) = (p, b,D), then the state of M changes from q
to p, the content of the current cell changes from a to b, and the
head moves in direction D.

We define a tree transducer Tr so that Tr simulates M. In
addition, we add “extra states” to M so that a rule of Tr is af-
fected by an update to DTD D if and only if M halts. Let
a[1], a[2], · · · , a[n] be the initial content of the tape of M. From
the tape and M = (Q,Σ,Γ, δ, q0, B, F), we define a DTD D, a tree
transducer Tr, and an edit operation op, as follows.

Firstly, DTD D = (d, s) is defined as follows.

d(s) = b1

d(bi) = bi+1 (1 ≤ i ≤ n − 1)

d(bn) = B

d(B) = B|ϵ

where s, b1, · · · , bn, B < Σ. B is a label representing the blank
symbol. Figure 5(a) shows a tree valid against D.

We next define a tree transducer Tr = (Q ∪ Q′ ∪ {q′0, r, u},Σ ∪
B′, q′0,R

′ ∪ RM). First, Q′ = {q1, · · · , qn+1} and B′ =
{b1, · · · , bn, B}. R′ consists of the following rules.

(q′0, s) → s(q1, b1)

(q1, b1) → a[1](q2, b2)
...

(qn−1, bn−1) → a[n − 1](qn, bn)

(qn, bn) → a[n](qn+1, B)

(qn+1, B) → B(q0, /s/a[1])

Intuitively, R′ constructs the “input tape” a[1], · · · , a[n] from
b1, · · · , bn and then moves to the child a[1] of the root s. On
the other hand, RM is a set of rules to simulate M. For any state
q ∈ Q and any symbol a ∈ Σ, RM contains the following rule
corresponding to δ(q, a).
( 1 ) The case where δ(q, a) = (p, b, L): (q, a) → b((p, ↑:: ∗)) ∈

Fig. 5 Trees valid against D and op(D).

RM*2. That is, if a node labeled by a is matched in state q, a
node b is created and the current node is moved to its parent
in state p.

( 2 ) The case where δ(q, a) = (p, b,R): (q, a) → b((p, ↓:: ∗)) ∈
RM . That is, if a node labeled by a is matched in state q, a
node labeled by b is created and the current node is moved
to its child in state p.

( 3 ) The case where δ(q, a) is undefined: (q, a) → a(r, /)) ∈ RM .
Since δ(q, a) is undefined, M halts. In this case, Tr moves to
the root in state r, where r is a new state not in Q.

Besides the above rules, RM has the following two rules. These
rules mean that if Tr moves to the root s in state r, then child c of
s is replaced by e.
( 4 ) (r, s)→ s((u, ↓:: c))
( 5 ) (u, c)→ e

Finally, let op = ins elm(d(s), 2, c). Figure 5(b) shows a tree
valid against op(D).

By the definition of Tr, we have the following.
• If M halts, then rules 4 and 5 are affected by op by the fol-

lowing (1) and (2).
( 1 ) In the update tree, child c of s is replaced by e by rules

4 and 5.
( 2 ) On the other hand, the rules are not applied anywhere

in the original tree since s does not have a child labeled
by c.

• If M does not halt, then rule 3 is never applied. Thus, Tr

does not enter state r and thus rule 4 is not applied either.
Therefore, no rule is affected by op.

Consequently, M halts if and only if there is a rule affected by op
at cs,2. □

Table 1 shows the summary of the result obtained in this paper.

Table 1 Summary of the Result

Class Complexity
UTT O(|R|2(MC MS ))

UTTpat O(|R|5(MC MS )3)
UTTpat,sel undecidable

*2 (q, a)→ b((p, ↑:: ∗)) denotes k rules (q, a)→ b((p, ↑:: a1)), · · · , (q, a)→
b((p, ↑:: ak)), where Σ = {a1, · · · , ak}.
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Table 2 Update operations between D and s(D)

ins elm del elm nest unnest Total
68 11 27 0 106

5. Evaluation Experiment
We implemented our algorithm in Java and conducted a prelim-

inary experiment. The DTDs used in our experiment are version
2.1.1 and version 2.2.2 of MSRMEDOC*3. We denote the former
as D and the later as s(D), respectively. MSRMEDOC is a format
for information interchange in the development process of pro-
duction and supply. The numbers of elements in D and s(D) are
183 and 204, respectively. Table 2 shows the number of update
operations between D and s(D).

Since we didn’t find any XSLT stylesheet for the DTDs, we
made an XSLT stylesheet for XML to HTML transformation.
The stylesheet has 10 rules and the average length of the patterns
is 4. In the experiment, we have two examinees who are both
graduate students and are familiar with DTD and XSLT. We ex-
plained the definitions of the DTDs, R+ rule, and R− rule, and re-
lated examples to the examinees in advance. Then, we presented
the stylesheet to the examinees and asked them to find R+/R−

rules manually. For both examinees 18 minutes was required to
find all the R+/R− rules. On the other hand, the execution time
of our algorithm is 2135ms under a mobile PC with Intel Core i3
2.60GHz. This result suggests that our algorithm can save much
time to maintain the consistencies of XSLT stylesheets.

In this preliminary experiment, we used a relatively small
XSLT stylesheet. However, we expect that it will take even
more time to detect the R+/R− rules manually in larger XSLT
stylesheets. We will investigate this further.

6. Conclusion
In this paper, we considered three subclasses of XSLT, UTT,

UTTpat, and UTTpat,sel. We proposed a polynomial-time algo-
rithm for detecting XSLT rules affected by a DTD update for UTT
and UTTpat. We also showed that the problem is undecidable as-
suming UTTpat,sel as XSLT.

As a future work, we would like to conduct more experiments
by using more DTDs and XSLT stylesheets.
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