
Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

[DOI: 10.2197/ipsjjip.23.458]

Regular Paper

Dripcast – Architecture and Implementation of Server-less
Java Programming Framework for Billions of IoT Devices

Ikuo Nakagawa1,2,a) Masahiro Hiji3 Hiroshi Esaki4

Received: September 16, 2014, Accepted: December 3, 2014

Abstract: We propose “Dripcast,” a new server-less Java programming framework for billions of IoT (Internet of
Things) devices. The framework makes it easy to develop device applications working with a cloud, that is, scalable
computing resources on the Internet. The framework consists of two key technologies; (1) transparent remote pro-
cedure call (2) mechanism to read, write and process Java objects with scale-out style distributed datastore. A great
benefit of the framework is that there is no need to write a server-side program nor a database code. A very simple
client-side program is enough to work with the framework, to read, write or process Java objects on a cloud. The
mechanism is infinitely scalable since it works with scale-out technologies. In this paper, we describe the concept
and the architecture of the Dripcast framework. We also implement the framework and evaluate from two points of
views, 1) from the view point of scalability about cloud resources, 2) from the view point of method call encapsulation
overhead in client IoT devices.

Keywords: Internet of Things, Java programming framework, distributed computing

1. Introduction

Today, a huge amount of devices and sensors are connecting to
the Internet under the concept of IoT (Internet of Things). Some
expectations *1 said the number of IoT devices would be hundreds
of billions by 2020. There are many working sensors, in home
electric devices, healthcare devices, etc. A smartphone is a set
of various sensors and is also a useful IoT device. It has a GPS
receiver, an accelerometer, a thermometer, etc. There will be an
unlimited number of applications working with such IoT devices.

Most of these device applications work with cloud services,
that is highly scalable computer resources on the Internet. One
of the major computing models for such device applications is
‘cloud-ful.’ In the model, applications run on user-side devices
(smartphone, tablet, any small devices or gateways for sensors)
while they store and process data on a cloud.

On the other hand, programming such applications is still dif-
ficult. In general, we have to develop and deploy server side ap-
plications for such device applications which work with backend
databases. Many such applications are still designed as a 3 layer
model, where we need not only to develop the client side appli-
cation but also the server side programs and database code.

In this paper, we propose “Dripcast,” a new Java programming
framework which is suitable for device applications. The frame-
work provides a simple and easy framework for small devices to
operate data on a cloud environment, where, operate means any
set of reading, writing and processing data.

1 Intec, Inc., Takaoka, Toyama 933–8777, Japan
2 Osaka University, Suita, Osaka 565–0871, Japan
3 Tohoku University, Sendai, Miyagi 980–8579, Japan
4 The University of Tokyo, Bunkyo, Tokyo 113–8654, Japan
a) ikuo@inetcore.com

The Dripcast consists of two key technologies;
(1) transparent Java remote procedure call
(2) a mechanism to store, read and process Java objects with

scale-out style distributed datastore.
As a result, a very simple client-side programming is enough
for small devices to work with a highly scalable cloud platform.
There is no need to write a server-side program nor database code
for such devices to operate Java objects on a cloud.

A goal of this paper is to provide a simple and easy developing
model of “server-less.” In the server-less programming model,
developers need not take care about databases, server side ap-
plications nor communications between application components.
We need not to study SQL, server programming languages such
as php, perl, Ruby, etc. We need not care about REST or XML
definitions, ether. The Dripcast framework provides a highly scal-
able mechanism to operate process Java objects on a cloud envi-
ronment, with scale-out style computing technology, as well.

In this paper, we also implement a prototype of the Dripcast
framework and evaluate the framework from two points of view,
that is, from a view point of scalability about computer resources
on a cloud, and a view point of automatic method call encapsula-
tion overhead in client IoT devices.

We refer to existing technologies and researches in Section 2.
We summarize assumptions and objectives of this paper in Sec-
tion 3, and describe basic architecture in Section 4. We introduce
an example of Dripcast application in Section 5. In Section 6, we
implemente a prototype of the Dripcast framework and evaluate
the scalability of computing resources on a cloud, and encapsula-
tion overhead in client IoT devices. Finally, we discuss for further
understanding in Section 7 and conclude in Section 8.

*1 www.gartner.com, www.idc.com, www.cisco.com, etc.

c© 2015 Information Processing Society of Japan 458

Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

2. Related Works

The Dripcast framework consists of two key technologies, (1)
a transparent remote procedure call, and (2) a mechanism to oper-

ate Java object on scale-out style distributed datastore. We survey
related works from these points of view.

2.1 RPC & ORB
Several RPC (remote procedure call) and ORB (object request

broker) mechanisms have been discussed. Java RMI (Java Re-
mote Method Invocation) [1] is an application programming in-
terface for remote procedure calls. JRMP (Java Remote Method
Protocol) is categorized as ORB technology and defines the
protocol for remote procedure call from a JavaVM to another
JavaVM. CORBA (Common Object Request Broker Architec-
ture) [2] is also the mechanism for remote procedure calls which
works in non JavaVM context, and RMI-IIOP (RMI over IIOP)
is Java RMI interface in CORBA systems.

Interface definitions and method invocation mechanisms are
based on OOM (Object oriented modeling) in both RMI and
ORB. On the other hand, such technologies assume a client–
server programming model (and 3 layers of client–server–
database programming model, in general). Programmers need
to write both client and server side programs.

Dripcast assumes a new programming model, “server-less,” in
which programmers do not need to be concerned with server side
programming.

2.2 Distributed Datastore
The Dripcast framework provides a programming framework

which is working with scale-out style distributed datastore. From
the view of point of scale-out datastore, several services and tech-
nologies are available.

Some service providers have their own scalable datastore. For
example, Google App Engine (GAE) [3] is a programming envi-
ronment for the Google cloud. They published GFS (Google File
System) [4], BigTable [5] and MapReduce [6] as Google tech-
nologies. Windows Azure [7] provided by Microsoft, has a scal-
able storage service called ‘Azure Storage,’ SQL database called
‘Azure SQL database,’ analyzing engine using Hadoop called
‘Azure HDinsight’ and so on.

Although service providers have their own proprietary im-
plementation, there are various open source implementations.
Hadoop [8] is a famous open source project for a scalable cloud
computing platform. It provides scalable storage space (HDFS),
reliable database (hbase), parallel and distributed processing
model (MapReduce) and other many useful features. To handle a
Hadoop system effectively, developers have to develop complex
and efficient programs in the Hadoop manner.

Several distributed KVS (Key Value Store) and object
store mechanisms also exist. Cassandra [10], CouchBase [11],
Tokyo/Kyoto Cabinet [12], [13], Roma [14], Basho [15] and
many open sources exist for scale-out object management. All of
these datastore softwares provide a mechanism to read and write
data from/to a scale-out computer cluster. Providing a program-
ming framework is out-of-scope for such technologies.

Our research purpose in this paper is to provide a framework in
front of such a scale-out distribute datastore. Nakagawa proposed
Jobcast [16] which is an intuitive extension of KVS mechanism
in which we achieve a parallel and distributed processing mecha-
nism. Jobcast works in a very scalable environment and there is
no SPOF (Single Point Of Failure) by nature. The Jobcast might
be a part (as backend) of the Dripcast framework. We will denote
the relation of the Dripcast and Jobcast in Section 4.

3. Assumptions and Objectives

At first, we summarize the assumptions and objectives of
proposing the Dripcast framework.

3.1 Assumptions
We discuss IoT (Internet of Things) applications working on

small devices. In particular, we focus on developing device appli-
cations working with cloud platform on the Internet. We assume
some conditions for such device applications:
• Applications work on small devices, such as smartphones,

tablets, navigation systems, home gateways, etc. Such de-
vices have small and limited computer resources.

• Applications operate (read, write and process) data on the
cloud, while they provide graphical or non-graphical UI
(user interface) on devices.

• Applications might work on hundreds of billions devices at
the same time.

Note that, we focus on developing device applications on Java
based platform such as Android or OSGi. The Dripcast frame-
work is designed for the Java programming environment.

3.2 Objectives
The requirements for developing the device applications de-

scribed in the previous subsection are the scalability and trans-
parency of cloud-side objects from IoT devices. The objective
of this research is to provide the new framework which makes
device application programming easy.

We have three goals to achieve, as follows.
3.2.1 Server-less Programming Mechanism

The framework provides a very simple and easy mechanism
to operate (read, write and process) Java objects on a cloud. It
enables device applications to upload, refer or share data objects
on a cloud.

Any object on the cloud has its world unique identifier (UUID,
for example). The framework allows developers not only to read,
write data object via the identifier but also to invoke the Java
method transparently via standard Java interface.

Although a transparent Java method call is similar to RMI (Re-
mote Method Invocation) or related technologies, we propose
a more effective mechanism of ‘server-less,’ so that developers
need not write any server programming nor database code.
3.2.2 Unlimited Scalability for IoT Applications

Scalability is a strict requirement for IoT application platforms.
There will be hundreds of millions devices, and the number of
devices may grow infinitely. Thus, the cloud platform must be
designed in scale-out style.

The Dripcast framework works with scale-out style distributed

c© 2015 Information Processing Society of Japan 459

Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

datastore to achieve unlimited scalability. The backend datastore
should be designed by ‘shared nothing’ technology. It is really
suitable for most IoT applications. It can handle a huge amount
of simultaneous simple access, while it is not good for relational
management or transaction processes in legacy applications.
3.2.3 Reasonable Overhead for IoT Applications

The framework provides a seamless and transparent mecha-
nism for accessing cloud objects, by automatic method call en-
capsulation in client-side IoT devices. On the other hand, the
overhead of such encapsulation should be reasonable for the IoT
applications described above. We implement a prototype of the
framework and evaluate the overhead in a practical cases for IoT
applications.

4. Architecture

The Dripcast is a framework for storing and processing Java
objects. Any object has the world unique ID represented as UUID.
The Dripcast framework always takes ID as an argument to iden-
tify the object on the cloud.

The Dripcast framework consists of four components which
are Client, Relay, Engine and Store (Fig. 1).

4.1 Client
Client is a small Java library which works on user devices such

as smartphones, tablets, home gateways and so on. There are
two major roles: (1) managing transparent Java objects in client
devices, and (2) sending remote procedure call requests to the
Relay.

To realize a transparent Java object, we use the Proxy mech-
anism. For a given id and an interface class YourInterface,
we create a Proxy object (defined in standard JDK) which sup-
ports the YourInterface interface. The Dripcast framework has
attach method, to realize a transparent Java object in a simple
way, as:

Dripcast d = new Dripcast();

YourInterface v

= d.attach(id, YourInterface.class);

On a method call for the Proxy object, we would have method-

name, argument-classes and argument-objects by Proxy mecha-
nism. The client library creates a new Job instance which has
ID, method-name, argument-classes and argument-objects as its
instance variables. The library sends the Job instance to Relay as
a request. After getting the result of the request, the method call
returns it as the result.

Fig. 1 Architecture.

There is no need to be concerned with RPC nor communica-
tion flow in each method call since the Proxy object provides a
transparent method call mechanism. Developers may call inter-
face methods in the normal way.

The Client also supports a simple mechanism to send a CRE-
ATE request to the Relay. The client library supports the create
method for creating a new Java object on the cloud, as follows.

Dripcast d = new Dripcast();

d.create(id, YourClass.class);

4.2 Relay
Relay is a set of relay servers. A relay server is a distribution

gateway, which receives requests (Job instances) from clients and
delivers such requests to engine servers described in the next sub-
section.

A relay server knows the association of ID and engine
servers. The association is managed by Distributed Hash Table
(DHT) [17], [18]. There is only one engine server for an ID at the
same time so that the distribution gateway can select the unique
engine server for a request. Relay servers also deliver very simple
operations such as create and remove data in the same manner.

Relay servers are stateless so that the Relay mechanism would
be highly scalable.

We denote that the Jobcast is a parallel and distributed process-
ing mechanism which is suitable for implementing Relay, Engine
and Store mechanism in the Dripcast framework. Relay servers
correspond to clients in Jobcast architecture.

4.3 Engine
Engine is a set of engine servers. Each engine server has its

own key space assigned by DHT, so that it would read, write and
process Java objects in a consistent environment for authorized
key space. Each engine server runs JavaVM. In other words, the
engine is the distribute JavaVM for parallel and distributed pro-
cessing environment, managed by DHT.

The most important role of an engine server is executing the
Java method for remote procedure call requests encapsulated in
Job instances when an engine server receives a Job instance
which contains ID, method-name, argument-classes and
argument-objects. The server loads the Java object x with ID

as the key from the Store, and tries to invoke the method of x
specified by the method-name and argument-classes with given
argument-objects. If there is any change in x, the engine server
stores it back into the Store. Finally, the engine server returns the
result back to the relay server that sent the request.

Engine servers correspond to a part of backend servers in the
Jobcast architecture. The processing framework on Jobcast nodes
is suitable for engine servers to execute jobs.

4.4 Store
The Dripcast assumes there are highly scalable datastore in

backend. Any scale-out NoSQL described in Section 2 might
be applicable. Store should provide mechanisms for replication
management and automatic failover for resiliency.

The Dripcast may call the following method with ID as a key.
(1) GET – get a serialized Java object.

c© 2015 Information Processing Society of Japan 460

Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

(2) PUT – put (update) a serialized Java object.
(3) REMOVE – remove existing data.

Note that, Store might be separated from engine servers in the
Dripcast framework, while datastore is implemented as a part of
backend servers in the Jobcast architecture.

5. Example

In this section, we introduce a simple example of the Drip-
cast application. Let’s think of a meeting assistance application.
There are some (2 to 50 for example) members who will join the
meeting. For simplicity, we assume all members have Android
smartphones. Each smartphone collects GPS location informa-
tion and uploads the location into the cloud so that all members
can show members’ location map using Google Map or similar
geographical map service.

5.1 How to Use
We describe an example of Dripcast use case, briefly.

5.1.1 Preparation
At first, we assign uid which is a unique ID (identifier). We

also create an actual Java object on the cloud, associated with
uid. In this example, we use TreeMap object which is defined in
standard JDK.
Dripcast d = new Dripcast();

d.create(uid, TreeMap.class);

Here, d is a Dripcast instance, which enables users to use the
Dripcast framework. d.create creates a new Java object on the
cloud. In this example, it creates a new TreeMap object asso-
ciated with uid. Note that, it is easy to share the uid among all
members, by sending service URL (containing uid) or via e-mail,
for example.

Now, all members can access the Java object by uid, by creat-
ing a Dripcast enabled object.

NavigableMap map = d.attach(uid, NavigableMap.class);

d.attach generates a virtual object in a local device. It acts
as a Proxy object and a user can call remote method invocation
transparently (like, RMI). In this example, each user has the Drip-
cast enabled object map, which supports NavigableMap interface
(defined in standard JDK, as well).
5.1.2 Upload GPS Information

To upload his/her GPS information into the cloud, just put a
pair of phone number pn and location information x,y, into the
map.
map.put(pn, x + "," + y);

map.put method call causes transparent remote procedure
call. It communicates with the cloud to invoke put method on
the cloud.
5.1.3 Show Locations on a Map

It is easy to show locations on the map, as well.

Entry e = map.firstEntry();

while (e != null) {

String pn = (String)e.getKey();

String[] pos = ((String)e.getValue()).split(",");

// show location of with pn at (pos[0], pos[1]).

e = map.higherEntry(pn);

}

firstEntry and higherEntry (also defined as methods of
NavigableMap in standard JDK) method calls causes transpar-

Fig. 2 Meeting assist service.

ent remote procedure calls. It communicates with the cloud to
invoke firstEntry and higherEntry methods on the cloud.

5.2 Behaviors & Communications
We note more details about behaviors and communication flow

related to the Dripcast framework. Figure 2 shows a brief com-
munication flow in the given example.

In the example, there are two explicit calls related to the Drip-
cast, that is, d.create and d.attach. By calling d.create
(first red empty star, in Fig. 2), the Dripcast framework commu-
nicates with backend servers; the client sends a request to a relay,
the relay selects the authorized engine server by uid. the engine
creates a new Java object (red filled star) in the server, and stores
the object into backend store.

On the other hand, calling d.attach (second red empty and
dotted start) is just for a declaration. The Dripcast create a Proxy
object in the local-device, which is associated with uid and Java
interface (NavigableMap, in this example).

After these preparatory steps, all method calls for the Drip-
cast enabled object, map, cause Proxy method calls. For example,
map.put (blue empty star) causes Proxy method invocation as;
the client sends a request to a relay, the relay selects the autho-
rized engine server by uid, the engine loads the Java object for
uid if required, and invokes put method (blue filled star) for the
object.

All method calls for map work in similar ways.
Note that, after preparatory steps, in which we call only

d.create and d.attach methods, the client can access the Java
object via simple Java interface. There is no need to write a
server-side program nor database code.

5.3 Benefit of the Dripcast in the Example
There are several benefits of using the Dripcast. We describe

two key major benefits, in this section.
5.3.1 Server-less

All we need to implement the application are three steps de-
scribed in Sections 5.1.1, 5.1.2 and 5.1.3. All the developers need
to do is simply to write the client (Android) side logic. It is a very
simple development model and there is no need to;
• define database schema
• write SQL codes

c© 2015 Information Processing Society of Japan 461

Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

Fig. 3 Meeting assist service.

• implement server (cloud) side system.
• define REST over HTTP
• write codes to communicate with server (cloud)

The Dripcast framework takes care all of these steps instead of
developers. Developers need not study SQL/RDB, REST/HTTP
nor server side programming such as php, ruby, perl or others. All
the developers have to study is Java programming on Android de-
vices.
5.3.2 Intuitive Understanding

Note that, there is no special code that depends on the Dripcast.
All we do is, just call JDK standard method, as well.

Figure 3 shows the concept of the meeting assistance applica-
tion for the intuitive understanding.

There is the unique TreeMap object on the cloud and all mem-
bers (with Android devices) share the object. All that a member
needs to do to upload his/her location is to call map.put method.
A member also calls map.firstEntry and map.higherEntry
to list the location information for all members.
5.3.3 Reuse of Existing Libraries

If there is an application library written in really OOM style, it
is possible to reuse such libraries. The Dripcast requires a little
change (or no change) to operate Java objects on a cloud.

6. Evaluation

In this research, we implemented a prototype of the Dripcast
framework and evaluated the framework from two point of views.
From the view point of cloud resources, we evaluate the scala-
bility of the framework. Since we assume millions or billions
of IoT devices will connect to the Internet, the scalability of the
framework is very important. From the view point of the client,
that is IoT devices, we also evaluate the encapsulation overhead
of using the framework. The framework automatically encapsu-
lates method calls on IoT devices and invokes such method on
the cloud, we need additional encapsulation cost (serialization
and deserialization, in Java). We measured and discussed such
overhead for practical cases of IoT applications.

6.1 Scalability of Cloud Resources
As we described in Section 4, the Dripcast framework consists

of four components, which are, Client, Relay, Engine and Store.
The architecture is fully distributed and designed in the scale-out
computing model. The design has no single point of failure nor
bottleneck and it’s easy to expand and enlarge the computer re-
sources.

We examined the scale-out feature of the Dripcast framework.
We evaluated the performance (number of requests, processed on

Fig. 4 Scale-out feature of cloud resources.

Fig. 5 Encapsulation overhead in client access.

the cloud in a second), while we increase the number servers as
1, 2, 3,... and so on.

In Fig. 4, the Y-axis indicates the performance, the total num-
ber of requests the cloud processes in a second. We examined a
large number of operations simultaneously more than 60 seconds,
and calculate the average performance.

The X-axis is the number of servers (both relay and engine
servers). For example, “5” in the x-axis means that we have 5
Relay servers and 5 Engine servers in a cloud for the test. We use
small instances of virtual machines for each server with 2 core
and 2 GB memory, on a public cloud service.

There are two graphs in the figure. JOB[RO] and JOB[RW]
means, “Read only job (only refers existing object and calculate
without modification)” and “Read write job (need to store into
backend, after execution),” respectively. Both JOB[RO] and
JOB[RW], method calls are automatically encapsulated by the
Dripcast framework.

The figure shows that we can expand the total performance by
simply adding servers on the cloud. This is a simple and impor-
tant feature of scale-out style computing.

6.2 Encapsulation Overhead in IoT Devices
In this section, we discuss and evaluate the encapsulation over-

head of using the Dripcast framework.
The Dripcast framework requires additional overhead for en-

capsulating method calls for serialization and deserialization.
Figure 5 shows the average response time of standard GET and
PUT access for standard KVS, and JOB[RO] and JOB[RW] ac-
cess via the Dripcast framework. The average response times are
250-810 microseconds, depending on the type of operation, and it
is obvious that there is encapsulation overhead to use the Dripcast

c© 2015 Information Processing Society of Japan 462

Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

Fig. 6 Response time from various locations.

framework. Note that we measured the response time for clients
inside the same DC (data center), that is clients were located in
the same location with cloud resources.

On the other hand, in IoT applications, there are a large number
of IoT devices and various network conditions exist. Especially,
communication delay may vary depending on the location where
IoT devices exist or what network types such IoT devices use. For
example, it takes less than 5 milliseconds for communication in a
city, while we need 100 milliseconds or more for communication
over transocean circuits.

To understand the impact of encapsulation overhead of the
Dripcast framework, we measured the response time of the stan-
dard KVS interfaces (GET, PUT – without encapsulation) and the
Dripcast framework (JOB[RO], JOB[RW] – with encapsulation)
for practical cases in some different locations.

In Fig. 6, X-axis is the RTT (round trip time) between client
IoT device and the Dripcast cloud, and y-axis is the response time
for GET, PUT, JOB[RO] and JOB[RW] operations. We measured
the response time of client access as, dots around RTT=1 ms for
the communication in a city, dots around RTT=20 ms for na-
tion wide communication (between Sapporo and Tokyo), dots
around RTT=70 ms for LTE connected devices (via mobile en-
vironment), dots around RTT=135 ms for transocean communi-
cation (between Japan and United States).

As shown in the figure, geographical distance is the major fac-
tor for the response time. In the current implementation, we use
HTTP (Hyper Text Transfer Protocol) to transmit data, for any
operation (GET, PUT, JOB[RO] and JOB[RW]). Since HTTP re-
quires at least 2 round trip communications, that is, 1) TCP/IP
hand shake to establish the communication channel, and 2) proto-
col header processing and request/response communication, this
is why the response time is 2 times or more of RTT values.

The encapsulating overhead of the Dripcast is less than 1 mil-
lisecond for each operation (JOB[RO] or JOB[RW]) and it is rel-
atively small enough in practical cases of IoT applications.

7. Considerations

There are some challenges in developing and deploying the
Dripcast framework. In this section, we summarize the chal-
lenges from the view points of;
(1) Object oriented modeling on a cloud
(2) Infinite scalability
(3) Less development cost

Fig. 7 3 Layers Model.

Fig. 8 Dripcast Model.

7.1 Object Oriented Modeling with a Cloud
The Dripcast framework is based on Object Oriented Model-

ing. Any transparent Java object is tied with interface declaration
and handles remote procedure calls inside method calls. The key
technology of the Dripcast framework is providing fully compat-
ible interface with local-device programming. If developers write
their program based on interface definitions rather than accessing
instance or class variables, the source code is fully compatible
in both cases for local-device programming or for cloud-ful pro-
gramming.

7.2 Infinite Scalability
The Dripcast framework has the great benefit of scalability

since the framework supports the highly scalable cloud environ-
ment as the backend system. The framework may have billions of
Java objects on a huge scale cloud environment and deliver mil-
lions of simultaneous remote procedure call requests to thousands
or tens of thousands of computers in parallel.

7.3 Less Development Cost
The Dripcast framework provides a very simple programming

interface for IoT device applications. In the framework, devel-
opers have only to write their client-side programs. They do not
need to take care of server-side programs nor backend database.
This feature dramatically reduces the development cost especially
for IoT applications.

In the historical developing model, called 3 Layers Model, we
have to take care of at least three components, client-side appli-
cation, server-side application and database. As shown in Fig. 7,
developers need to write not only the client application logic but
also the server side programs, database programs with SQL and
the communication logic between client and server.

In the Dripcast model, developers only need to take care of ap-
plication logic. As shown in Fig. 8, cloud resources are provided
as platform service, and the Dripcast framework automatically
converts method calls to the associated remote procedure calls on
a cloud. There is no need to think of the server side. The frame-
work handles data persistency of associated Java objects in the
cloud environment as well.

Of course, such a development model dramatically reduces the
development cost for suitable IoT applications.

c© 2015 Information Processing Society of Japan 463

Journal of Information Processing Vol.23 No.4 458–464 (July 2015)

8. Conclusion

In this paper, we propose the Dripcast, a new server-less Java
programming framework. The Dripcast provides a simple and
easy way to write device applications which read, write and pro-
cess Java objects in a cloud. The framework consists of two key
technologies, (1) transparent remote procedure call, and (2) dis-
tributed JavaVM mechanism working with scale-out distributed
datastore. We describe a simple example of the GPS application
in which the Dripcast framework enables server-less device pro-
gramming.

We also implemented a prototype of the Dripcast framework
and evaluated this from two points of view. From the view point
of scalability about cloud resources, we described how the archi-
tecture is designed in scale-out computing model, and that it’s
easy to expand or enlarge the cloud computer resources, by sim-
ply adding servers. From the view point of client IoT devices,
we evaluated the encapsulation overhead in IoT devices. We also
described that the overhead is reasonable for practical IoT appli-
cations.

Acknowledgments We thank Associate Prof. Kondo in
Hiroshima University and all members of the Transparent Cloud
Computing Consortium for useful discussions about device ap-
plication models and their implementations. We also thank the
WIDE Project, The University of Tokyo, HOTnet, Smart Tech-
nologies, A.T.Works, ASTEM and Ehime CATV for operating
the Dripcast testbed.

References

[1] RMI Tutorial, available from 〈http://docs.oracle.com/javase/tutorial/
rmi/index.html〉.

[2] Brose, G., Vogel, A. and Duddy, K.: Java Programming with CORBA,
John Wiley & Sons, ISBN 0-471-37681-7 (2001).

[3] Google: Google App Engine, available from
〈https://developers.google.com/appengine/〉.

[4] Ghemawat, S., Gobioff, H. and Leung, S.-T.: The Google File System,
SOSP’03 (Oct. 2003).

[5] Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,
Burrows, M., Chandra, T., Fikes, A. and Gruber, R.E.: BigTable:
A Distributed Storage System for Structured Data, OSDI’06 (Nov.
2006).

[6] Dean, J. and Ghemawat, S.: MapReduce: Simplified Data Processing
on Large Clusters, OSDI’04 (Dec. 2004).

[7] Microsoft: Windows Azure, http://www.windowsazure.com/
[8] Hadoop Project: Hadoop, available from 〈http://hadoop.apache.org/〉.
[9] Memcached project: memcached – A distributed memory object

caching system, available from 〈http://memcached.org/〉.
[10] Cassandra project: The Apache Cassandra Project, available from

〈http://cassandra.apache.org/〉.
[11] CouchBase: Document-Oriented NoSQL Database, available from

〈http://www.couthbase.com/〉.
[12] FA Labs: Tokyo Cabinet: A modern implementation of DBM, avail-

able from 〈http://fallabs.com/tokyocabinet/index.html〉.
[13] FA Labs: Kyoto Cabinet: A straightforward implementation of DBM,

available from 〈http://fallabs.com/kyotocabinet/〉.
[14] ROMA project: A Distributed Key Value Store in Ruby, available from

〈http://code.google.com/p/roma-prj/〉.
[15] Basho: makers of the Riak distributed database, available from

〈http://basho.com〉.
[16] Nakagawa, I. and Nagami, K.: Jobcast – Parallel and distributed pro-

cessing framework, IPSJ Journal, Vol.21, No.3 (July 2013).
[17] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., and

Lewin, D.: Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the World Wide Web, Proc. 29th
Annual ACM Symposium on Theory of Computing, STOC’97, pp.654–
663, ACM Press (1997).

[18] Stoica, I., Morris, R., Karger, D., Kaashoek, M.F. and Balakrishnan,

H.: Chord: A scalable peer-to-peer lookup service for internet applica-
tions, Proc. 2001 Conference on Applications, Technologies, Architec-
tures, and Protocols For Computer Communications, SIGCOMM’01,
pp.149–160, ACM Press (2001).

Ikuo Nakagawa is the Executive Chief
Engineer at Intec, Inc. and an Invited As-
sociate Professor of Osaka University. He
received Ph.D. from The University of
Tokyo, Japan, in 2002. His research inter-
est is network, cloud computing and par-
allel and distributed computing technolo-
gies. He is a member of IPSJ.

Masahiro Hiji is a Professor in the Ac-
counting School at Tohoku University,
Japan. He works for Hitachi Solutions
East Japan, Ltd. as senior chief engineer.
He received his Ph.D. in information sci-
ence from Tohoku University in 1997. His
research expertise includes decision sup-
port system, distributed processing, simu-

lation and gaming, and sensing network platform. He is member
of IEEE, IPSJ, IEICE, and JSSST.

Hiroshi Esaki received his B.E. and
M.E. degrees from Kyushu University,
Fukuoka, Japan, in 1985 and 1987,
respectively. And, he received Ph.D.
from The University of Tokyo, Japan, in
1998. In 1987, he joined Research and
Development Center, Toshiba Corpore-
ation. From 1994 to 1996, he has been

at CTR (Center for Telecommunication Research) of Columbia
University in New York (USA). During his staying at Columbia
University, he has proposed the CSR architecture, that is the
origin of MPLS (Multi-Protocol Label Switching), to the IETF
and to the ATM Forum. Since 1998, he has served as a professor
at The University of Tokyo, and as a director of WIDE Project
(www.wide.ad.jp). He is a fellow of IPv6 Forum, a vice president
of JPNIC and a Board of Trustee for ISOC (Internet Society).

c© 2015 Information Processing Society of Japan 464

