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Regular Paper

KDM: Kyoto Software Design Mentor

Y OSHIHIRO MATSUMOTO'

The software design mentor called Kyoto software design mentor (KDM) furnishes a discipline for
transforming software requirements to program systems using a unified semantic model. The
proposed model makes the semantic elements in the unified domain mappable not only to the logical
elements included in the requirements, but also to the logical elements included in the target-program
system. In the KDM, the target-program system is assumed to apply an agent-based concurrent
architecture. A set consisting of : (1) semantic domain, (2 ) abstract grammar used to describe
semantic models, ( 3) unified model, and (4 ) logic of the target-program system is called “design
set”. Through the KDM steps, requirements are transformed to the design set, and then the design
set is transformed to the target-program system.

between terms in the requirements
specifications and those in the target-
program systems.

% The lack of traceability made us find
difficulties in revising target-program sys-
tems in case of requrements changes, and in
updating requirement specifications in case
of program changes.

1. Imntroduction

The Kyoto software design mentor (KDM) is
a discipline taught to the students in the Infor-
mation Systems Engineering Laboratory,
Department of Information Science at Kyoto
University. It aims to transfer to the students the
real software factory technologies and experi-

ences which the author acquired in the software (2) The KDM is based on the semantics-
factory described in Ref. 12)~19) and 20). centered transformation. It is based on
The key features of the KDM are summarized our observation that the semantic model
as follows : which satisfies the requirements logic can
(1) Most of the existing design methods, such be homomorphically transformed to the
as structured design Ref. 29), focus their semantic model which satisfies the logic

major attentions on the logic-centered of the target-program system. Therefore
transformation which means the trans- both semantic models are unifiable. The
formation in which the software require- traceability between the requirements and

ments are transformed to the program target-program system can be maintained
systems using the insight into the logic through the unification homomorphisms.
implied in the requirements (e.g. data (3) The unification of semantic models which

structures, functional structures, logical
relationships between inputs, functions
and outputs). The logic-centered trans-
formation was not always successful in
the aforementioned software factory
because of the following reasons :
% Existing methods did not furnish the for-
mal definition of what traces are, nor indi-
cate the concrete way how to define traces
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(4)

can satisfy not only the logic of require-
ments but also the logic of the implemen-
tation is the central issue in the KDM.
The target-program systems can be
produced from the unified semantic
model.

The KDM enforces designers first to iden-
tify semantic models. It is not necessary
to define the requirements logic precisely.
While the model creation is in progress,
the member, who is responsible for the
semantic models, confirm that the seman-
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tic models satisfy the requirements logic.

(5) The semantic models, if identified, are
described from various aspects using
abstract grammars, each suitable for de-
scribing each aspect. As a result, several
different descriptions will be produced,
which are called semantic sub-models in
KDM. In order to create the target-
program system, these submodels should
be integrated. We need a single unified
model, with which all these submodels
can be integrated. In the KDM, the
unified model is called the “conceptual
model”. There is no necessity for the
conceptual model to be universal for all
kinds of applications, but only for the
class of target applications.

(6) After the conceptual model is construct-
ed, the logic of the implementation (i.e.
logical structure, configuration of
program-system, module connections,
and execution mechanism) is designed so
that the logic can be satisfied by the
conceptual model. The conceptual model
may be revised so as to adjust itself to
satisfy the designed logic, as well as to
satisfy the logic of the requirements.

(7) A set consisting of the descriptions of
(a) semantic domain, (b) abstract
grammar used to describe semantic
models, (¢) conceptual model, and (d)
logic of the target-program system is
called “design set”.

(8) The KDM enforces designers to formu-
late design sets assuming that major logi-
cal elements in the target-program system
are concurrent objects called “agents”,
procedural subsystems, and data abstrac-
tions.

(9) The KDM can adapt itself to the varieties
of the existing object oriented/based
design methods (which are substantially
based on the semantics-centered transfor-
mation) in the following manner :

% Object models, functional models, or state
diagrams in Ref. 23), 25) can be assumed as
the semantic submodels in the KDM.

% The object diagrams in Ref.2), and the
OODLE diagrams in Ref 25) can be
assumed as the conceptual model in the
KDM.
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% Procedural data abstraction, class/meta
hierarchy, and message-passings can be
assumed as the logic of the target-program
system.

(10) Existing object oriented/based design
methods do not support concurrency.
The KDM agents enable to incorporate
concurrency.

The paper addresses the KDM through the
following sections :

Section 2: The fundamental issues, such as
semantic domain, model, semantic submodel
and conceptual model are discussed.

Section 3: Principles applied in KDM, such
as the notion of a design set, are described.

Section 4: Major logical components to
configurate the target-program systems are
introduced.

Section 5: An example is presented in order
to show how the KDM can be used to solve real
problems.

2. Fundamental Issues

The meaning of the words “logical expres-
sion”, “semantics”, and “semantic model” are
intuitively defined in the following example :
{Example>

[logical expression]

A logical expression L is given as follows:

L: H(x,y)AG(x,z)
where logical elements are H, x, y, G and z.

[semantic domain ]

A semantic domain S, which is a set of
classified values, is given as follows:

S:
NATION —type of data
consists of (only a part is shown) :
SWEDEN -—value of the type
NATION
NORWAY —value of the type
NATION
FINLAND —value of the type
NATION
IS-ADJACENT-TO —type of relation-
ship

consists of (only a part is shown) :
IS-WEST-ADJACENT-TO
-—value of the type IS-ADJACENT-
TO
IS-EAST-ADJACENT-TO
—value of the type ISSADJACENT-
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TO.

[mapping]

The mappings between the logical elements in
L and the semantic values in S, which result the
evaluation of the logical expression L true, are
as follows :

x —> SWEDEN, y —> NORWAY, 2z
— > FINLAND,

H — > IS-WEST-ADJACENT-TO, G
— > IS-EAST-ADJACENT-TO.

[semantic model]

The semantic domain, described above, which
makes the given logical expression true by the
shown mapping is called a semantic model of the
logical expression.

A set consisting of I, S and the shown
mapping is called “institution” by J. A,
Goguen®.

The semantic domain is an ordered collection
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of classified values. An example of domain is
the “Scott’s domain”, developed by D. Scott?¥,
used for proving partial correctness of recursive
programs.

Sets of semantic elements and their relation-
ships between semantic elements are described
using abstract syntactic notations or abstract
grammars. For example, we have various gram-
mars to draw E-R (entity-relationship) dia-
grams. In computer-aided software engineering
(CASE) environments, we have STL (semantic
transfer language)?®, CDIF (CASE data inter-
change format)®, IRD/schema (information
retrieval dictionary schema)?, and PCTE/SDS
(portable common tool environment schema
definition set)??. These languages and systems
are used to describe domains for data, and are
used to manage the semantic integrity of the data
which is exchanged between software tools.

world constrained
by syntactic rules

requirements system design program design program
specification specification specification description
SR Dp
N y
fogic La logicLp
o =
£ 5. &
% z 2 3
& H 8 s
mappling Fg mapping Fp

semantic domain M \

semantic
sub-models

object

dynamic
sub-model
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{ sub-model
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Fig. 1 The conceptual model and the related software

descriptions.
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The precise semantic of software products
have often been described using mathematics
such as specification algebra® and order-sorted
algebra®. By H. Ehrig, specifications are consid-
ered as objects of a category together with suit-
able morphisms called specification morphisms.
J. A. Goguen proposed the order-sorted algebra
for describing semantics of parameterized pro-
gramming, which provides a subsort partial
ordering among sorts and interprets it
semantically as subset inclusion.

Formal engineering approaches to construct
large correct specifications?®19 also use alge-
bras for describing precise semantics of specified
items.

The description of the specification-part of an
Ada-package is represented by a category of
vocabularies in Ref. 21). If package A uses
package B, the category of vocabularies for B is
homomorphically inclusive in the category of
vocabularies for A. Specifications for larger
Ada packages are constructed step by step using
functors for each inclusion morphism of
vocabulary-categories.

The logic of requirements, design, program
and test produced by the particular project can
be satisfied by one unified semantic model. In
other words, all logical properties included in
the descriptions of requirements, design, pro-
gram, and test specifications produced in the
same project can be satisfied by the single unified
semantic model (the conceptual model) when
the mappings from the unified semantic domain
to each logical description are made.

Figure 1 shows the relationships between four
selected product ' descriptions (requirements
specification, system design specification, pro-
gram design specification and program descrip-
tion) and a conceptual model. The conceptual
model integrates four semantic submodels:
object - submodel, dynamic submodel, func-
tional submodel and scenario, where relation-
ships between semantic ‘elements included in
each submodel are described using abstract
grammars.

Fach semantic element included in the con-
ceptual model should be mappable to each logi-
cal element included in the requirements
specification and satisfies its logic. Simultane-
ously, the coceptual model should satisfy the
logic of the target-program system as well as the

KDM : Kyoto Software Design Mentor 2555

logic of the requirements.
3. Principles

Let us assume that we have existing docu-
ments produced by the project that was already
successfully finished. The following documents
are available :.

semantic model M
requrements specification Sk
the logic of Se Ler
program description Dp
the logic of Dp Lr

mapping of M to Sk to make Ly true Fp
mapping of M to Dp to make Lp true Fp

Assume that a new project is organized. In
this project, the semantic model M’ is identified
through the requirements analysis. And it is
found that the " belongs to the same class as
the one that the M belongs to. If the semantic
model M’ of the requirements specification Sk,
which we will have for the new. project, is
homomorphically inclusive to the semantic
model M of the former specification Sg, the
program description Dy’ can be produced auto-
matically. Using this principle, the application
generators for various types of applications such
as office automation, industrial direct digital
control, supervisory control, and elctric power
generation control have been developed and
commercially used.

These program generators generally provided
the languages for describing the semantic models
and the logic of the program descriptions, and
they generated target-program systems using M,
Lp, and the library which accommodated reus-
able program modules.

An example program gererator called the
COPOS (Computerized Optimum Plant Opera-
tion System)?” developed in the software factory
referred to in Section 1, has been practically used
for generating the target-program systems of
thermal/nuclear power generation plant control
systems using the following principle :

The COPOS semantic model is described
using a hierarchical state system in which the
following conditions, called “state hierarchy”,
must hold.

(1) L;is alogical expression consisting of
logical operations between atomic vari-
ables each of which has a truth value
called “heuristic value”'®. A heuristic
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value represents a result of heuristic
decision about an input value. For
example, the fact that the heuristic
value of x becomes true means that the
human decision about the input x is:
“The event, which should be taken
measures, has happened about z”.

(2) 1In S, the logical expression L; must
always be satisfied by the mapping
from the model M.

(3) 1In S.,, a sub-state of S, the logical
expression ;A L; must always be
satisfied by the mapping from the
model M.

(4) In the sub-state S;,.... the logical
expression L;AL;A...AL, must
always be satisfied by the mapping
from the model M.

(5) An action is an atomic execution of a
program module. An activity is a
automatic concatenation of the same
action which continues until the stop-
ping condition becomes true.

(6) Actions and activities are allowed to
take place only for the specified state.
If the state should change, the action or
activity currently taking place in that
state must be stopped or aborted.

The logical expression associated with each
state, mentioned in (1), (2), and (3), are
computed at each designated period. The length
of the computation period, which is generally
very short, is defined for each state. If the
specified logical expression should become false
in the computation, all activities being allowed
for execution in that state and its sub-states are
stopped or aborted. If any new state is met and
identified, the new action or activity which are
allowed to take place in the new state can be
started.

The action or activity which are allowed to
take place in a certain state, can only be started
when the designated starting conditions (precon-
ditions) are satisfied. Activities can continue
until stopping conditions become true. When an
action or activity successfully stops, its post-
condition must be satisfied.

Each action or activity is defined using a set of
descriptions consisting of the elements shown as
follows :

(1) Name of the action (or activity).
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(2) Name of the state in which the action
(or activity) is allowed to act.

(3) Definition of the state (the definition
consists of a logical expression called
the state-condition, the semantic
domain, and the mapping to make the
expression true).

(4) Sampling time-interval at which the
state-condition is periodically comput-
ed. .

(5) Starting condition (the set consisting of
a logical expression, semantic domain,
and the mapping for enabling evalua-
tion of the expression). —If the con-
Jjunction between the designated state-
condition and starting condition
becomes true, the action (or activity)
can be started. The starting condition,
which is generally complicated, is sep-
arated from the state-condition in order
to make state-conditions, which should
be computed very often, simpler.

(6) Stopping condition (a logical expres-
sion which is used to stop activities
when it becomes true).

(7) Postcondition (the condition that must
be satisfied when the action or activity
stops).

(8) Action or activity (the designation of
the subordinated program modules
which should be executed to accom-
plish the required action or activity).

The timing relationships between states, con-
ditions, actions and activities are explained in
Fig. 2. The state S is defined as the concatena-
tion of the event £ which is periodically obser-
ved at every 7". The one action and two activ-
ities, which are allowed to start when the con-
junction between the state S and starting condi-
tion becomes true, are shown. The activity A
stops when the shown stopping condition
becomes true. The activity B stops only when
the state S becomes false.

Assume that we have the project N. The
semantic model /", which is produced by the
project N, is the design set which satisfies the
requirements specification Sg”. Major program
components which cofigurate the program
description D" are: the state identifier, the
action/activity controller, the database which
maintains the design sets, the interpreter which
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Fig.2 Timing of the events, conditions, action, and

activities.

interprets the design sets, and the subordinated
program modules.

The logic L/ is roughly explained as fol-
lows : The state identifier scans the inputs from
external industrial environments at every
designated period of time, and then identifies the
state in which the industrial environment are
stationed. The action/activity controller reads
the current state periodically at every designed
period of time, and creates or deletes tasks.
Each task reads the necessary conditions from
the corresponding design set, and controls the
execution of subordinated program modules.

If the project NV is responsible for a medium-
size application program system, nearly one
thousand design sets will be developed. The
COPOS, in the software factory, reads these sets,
descriptions of the LV, and F§", and generates
the program description Dy*. The major pro-
gram descriptions being generated are device
modules (the modules for interfacing external

devices) and the scheduler which control actions

and activities. Actions and activities are im-

plemented using reusable modules.

The mapping F3" is straightforward. The
design sets in the M"Y are mapped to the
database which can be accessed by the scheduler
and device modules which are described in the
D

Based on these experiences, the KDM adopts
the notion called the “design set”. A design set
is a set of data which cosists of the items listed
as follows :

(a) the logic (logical expressions included in
the logic) and logical elements with
which the given problem or requirements
is formulated ; —This corresponds to the
Lr mentioned above.

(b) the unified semantic domain which can
satisfy both the logic of the requirements
and the logic of the target-program sys-
tem; —This corresponds to the M
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mentioned above.

(c¢) the abstract grammars which are used to
describe semantic submodels and the
coceptual model ; —This corresponds to
the grammar with which state-transition
diagrams, timing charts, sequential con-
trol logic diagrams, and action/activity
sets are described.

(d) the conceptual model which is an integra-
tion of semantic sub-models ; —This cor-
responds to the model which defines
action/activity sets together with the
mappings : the Fy and Fp.

(e) the logic and logical elements with which
the target-program system is based on.—
This corresponds to the [, mentioned
above.

Among these items in the design set, the Lz
and the semantic submodels should readily be
identified during requirements analysis conduct-
ed in the preceding stage. The conceptual model
should include the semantic submodels
homomorphically, and should satisfy the Lg
which will be interrogated through meetings
between customers and designers. The Lp
should be designed so that each semantic ele-
ment in the conceptual model can be mapped to
each respective logical element in the Lp in
satisfaction.

The problem how to design an unified concep-
tual model:is called “model unification”.

4. Target Program Systems

Major components which configurate target-
program systems are agents, sets of data abstrac-
tion (which represent states, conditions and
data), and procedural subsystems (procedural
executable descriptions). The agents are concur-
rent objects with the following properties :

(1) An agent capsulates concurrent opera-
tions which act on a set of data internal to itself.
(2) “Holon”, a system by A. Kostler!V, is
considered as a harmony of Holos (whole) and
On (individual). A holonic system is a world
organized by a set of autonomous elements
communicating with one another. Each element
in the holonic system, the holoic element, acts to
seek for its own profit, while it cooperates with
other elements to accomplish the common objec-
tives. Each KDM agent should be designed so
that the target-program system can behave like a
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holonic system.

(3) Each agent, as a client, activates proce-
dural subsystems and data abstractions, creates
and manages a sequential or concurrent transac-
tion in response to the request from the external
world. Each transaction created and managed
by the agent should be atomic, consistent, iso-
lated and durable.

As shown in Fig. 3, an agent instance is
composed of one scheduler, one storage for
accommodating the commonly accessible data,
light-weight processes, one real-time clock, input
ports, output ports and utilities for managing the
agent’s resources and execution. Communica-
tions between agents are accomplished by con-
current passings of messages. The semantics of
“unacknowledged-type message passing” and
“mailback-wanted-type message passing”1828)
are applied. When two messages are sent, from
the agent P through the different output ports of
the P, to the input port I of the agent A, the time
ordering of the two messages (determined by the
P’s clock) is preserved in the time ordering in
the / when the messages are received.

In the unacknowledged-type message passing,
the sender of a message does not wait the acknowl-
edgement (or answer) of that message from the
receiver. In the mailback-wanted-type message
passing, the names of the agents to which the
answer is to be sent (which is called continuing
object), are included in the message being sent.
The sender does not wait the answers from the
receiver after it has sent messages, but, if neces-
sary, it receives new messages sent from the
continuing object.

The scheduler starts action at the moment
when the agent is created. It can create messages
and send them to other agents. It can receive
solicited inputs (answers from the agents to
which -the scheduler has sent a request in
advance) through input ports, and activates
necessary light-weight processes. It can also
receive unsolicited inputs through input ports
and activates the necessary light-weight proces-
ses. The light-weight processes can access the
common data in concurrence. The serialization
is accomplished by the service provided by the
utilities provided inside the agent. Concurrent
transactions can be allowed, where a transaction
means a locus of control to connect light-weight
processes accommodated in. the different agents.
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Fig. 3 Pattern representing the feature of an agent.

The atomicity, cosistency, isolation and durabil-
ity in every transaction should be maintained.
The Ada package called “BANK” shown in
Appendix, a toy model of banking service, simu-
lates the signature of an agent. The package
“BANK?”, includes the following components :
(1) input ports: RECEPTIONIST INPUT
__PORT,
REQUEST SERVICE _
INPUT PORT.
output ports : RECEPTIONIST OUT-
PUT _PORT,
REQUEST SERVICE _
OUTPUT _PORT.
scheduler : RECEPTIONIST.
processes : TELLER 1, TELLER 2,
TELLER 3.
common data: CHG OPER.
utility : MONITOR.
(Task “MONITOR” serializes
the accesses to package “CHG _
OPER".)

(2)

(7) real-time clock.

Task “CUSTOMER 17, “CUSTOMER 27,
and “CUSTOMER _3” simulate clients who
request banking functions: “DEPOSIT”,
“WITHDRAW”, “CHECK ACCOUNT”, and
“PAY BILL”. N

5. Example Use of the KDM

The model unification, which indicates the
step for designing an unified conceptual model
coping with its dependence on Lg, Lp and
semantic submodels, is discussed in this section.
The unification means that the semantic models
which satisfiy Lg, Lp and all semantic sub-
models are unified. The Lz, Lpr and submodels
are homorphically included in the unified model
through the unification.

The following list presents major items which
configurate our conceptual model of the example
mentioned later in this section.

(1) Event:
An event is defined as a truth value obtained
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as a result of computation of a logical expression
in which all atomic units are what we call
heuristic values. A heuristic value is a result of
heuristic decision about an input value, which
indicates if the input value matches the preset
condition or not. For example, the fact that the
heuristic value of #; is true means the decision
that the temperature value denoted by the sym-
bol #; matches the preset truth value. The input
measurement and computation for heuristic
decisions are activated periodically.

(2) State:

A state is defined as a concatenated set of an
event. For example, state S is defined as:

S=[E %] —“E*” means a concatena-
tion of the event £,

where E is an event observed repeatedly at

period 7.

(3) State structure :

The state S; is said superior to the substate
S;+1 if the target object in the substase S;,; is
allowed to exist only while it is also in the state
S:. If the target object gets out of the state S;, all
actions and activities performed under the state
S:+1 must be stopped or aborted.

(4) Condition :

A condition is an event observed at a designat-
ed timing. Conditions includes preconditions
for triggering actions or activities, intermediate-
conditions which are checked during execution
of actions or activities, stopping conditions for
stopping activities, and postconditions which are
checked when actions or activities stop.

Our toy example aims to control a car-engine
speed. We have the external devices shown as
follows :

(1) Engine switch includes: two not-self-
holding type push button = switches
labeled “IN” and “OFF”.

(2) Engine mode switch includes: four not-
self-holding type push button switches
labeled “PARK”, “REVERSE”, “NEU-
TRAL”, and “DRIVE”.

(3) Speed mode switch includes: four not-
self-holding type push button switches
labeled “IDLING”, “FIRST”, “SEC-
OND”, and “THIRD”. '

4) Speed setter is an analog type positioner.
(5) Engine/speed control actuator is an

actuator to accept the engine-in/off and
speed-control signals (results of propor-
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tional/integral/differential (PID) com-
putation for the difference between
current-speed and set-speed), and to gen-
erate outputs to each car device.

The KDM recommends designers to follow

the following steps :

(1) Identify external devices, and design a
device agent for interfacing each external
device.

(2) Identify the sets of common data (or
files), and design a data agent for each
identified data set.

(3) Identify data abstractions, and design a
computation agent for each data abstraction.
(4) Build the conceptual model, using the
design set format, by going through the follow-
ing substeps :

(4a) Define events (E), states ([E%*r]).
and period 7. -

(4b) Describe state-diagrams.

(4b)  Define every action to be performed for
each respective state, the condition to
trigger each action/activity, and the con-
dition to stop each activity.

(4c) For all actions, define computation
and the data to be computed, and com-
plete action and activity sets as explained
in Section 4.

(5) Design precisely the device, data and
computation agents which were identified in the
step (1), (2) and (3). Each agent should be
designed so that each element included in the
conceptual model can be mapped to the corre-
sponding element in each agent straightforward-
ly.

(6 Describe data flow models, and then
design message patterns.

(7) Describe scenario, and then adjust agents
so that the dynamic behaviour of the agent
system is consistent with the described scenario.

The design sets for the car-engine problem can

be organized in the following manner. At the
beginning of the sub-step (4a), the state-
diagrams, of which a simple example is shown in
Fig. 4, is drawn using the diagrammatic gram-
mar of Ref. 7) with some extension. The
extended properties are obvious from the follow-
ing explanation :

(1) The state “Engine/speed” shown in Fig.
4 is defined as [Normal * ] where event “Nor-
mal” indicates that all devices which implement
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( Engine/speed

Switch_off

( Switch_in

range3 J J

Fig. 4 State diagram of car engine transmission.

the engine/speed control system are in the nor-
mal condition. The event “Normal” is im-
plemented by the conjunctions of the heuristic
values, each of which represents the heuristic
decision that the observed device is in the nor-
mal condition.
(2) The state “Switch off” is defined as
[(Normal AOFF) % ] where the event “OFF”
indicates that the push button OFF has been
pushed.
(3) Every sub-state is defined in the manner
explained in Section 4. For example, the state
“Idling” is defined as:

[(Normal AIN A ((PARK VREVERSE

VNEUTRAL)V(DRIVE

AIDLING))) * ]
where the terms written in capital letters repre-
sent the events that the respective push buttons
have been pushed.
(4) When a new state is entered, the sub-state
pointed by a blackrooted arrow is automatically
selected. Assume that the target system is in the
state “Switch off” and the push button IN has
been pushed. The target system automatically
goes into the state “Switch-in/Park/Idling”.

Figure 5 shows a rough sketch of the target-

program system architecture of the car-engine
example. For each external device shown in the
figure, each specified device agent is assigned.

The process “scheduler” in the computation
agent reads necessary input-values from every
device agent, computes heuristic values, com-

. putes events, and identifies the current state.

Using the action/activity sets which are stored in
the common data set, the scheduler selects and
activates necessary light-weight processes for
serving control, display, or alarm. The
scheduler may also activate other processes such
as event-identification or state-identification.
The schedular updates periodically the data in
the common data storage, and maintains “cur-
rent events”, which will be accessed by other
light-weight processes. The outputs from every
light-weight process are sent to output devices
through the “output port”.

6. Concluding Remarks

A poet usually organizes his own semantic
domain while observing the real world objects,
and maps each semantic element in that domain
to the respective real world object for under-
standing what happens there. Then, the poet
creates the poem which can be satisfied by the
same semantic domain. The syntactic logic for
composing the poem, such as rhyme, often gives
some hard constraints (for example, the
Japanese type poems called “haiku” must follow
a very strict logic called “5-7-5”). This logic
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corresponds to the logic for implementing the
target-program system in case of software design.
The logic of the real world phenomena is quite
different from the logic of the poem, so is the
logic of the requirements different from the logic
of the target-program systems. However the
semantic domain to satisfy these different logics
are completely the same, and all semantic
models can be inclusive. The KDM does not
enforce logic-centered design. Instead, the KDM
enforces first to create a unified semantic model
which can satisfy both the logic of the require-
ments and logic of the target-program system.
Through the KDM steps, the target-program

Fig. 5

input_
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Agents for the car-engine control example.

system can be produced from the unified seman-
tic model. The KDM applies the agent-based
architecture for the target-program system,
because the semantics of the agent-based system
can be made homorphical-inclusive in the
semantics of the real world problem.

Agents described using Ada, shown in the
example, still do not provide the features of the
holonic system. These are our future research
items.
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Appendix An example of the KDM agent

A toy model representing the functions of a
bank is simulated by the KDM agent described
using Ada.
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Fig. 6 The target-program system architecture for the

BANK.
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package BANK is
type T.TYPE is (DEPOSIT, WITHDRAW, CHECK_ACCOUNT, PAY_BILL);
subtype TE_NAME is INTEGER range 1..3;
subtype CU_NAME is INTEGER range 1..3;

task RECEPTIONIST_INPUT_PORT is
entry REQUEST_TELLER(CUSTOM_NAME: in CU_NAME);
entry TAKE_CUSTOMER_NAME(CUSTOM_NAME: out CU_NAME);
end RECEPTIONIST_INPUT_PORT;
task REQUEST_SERVICE_INPUT_PORT is
entry REQUEST_SERVICE(CUSTOMER.NAME: in CU.NAME; TELLER_NAME: in TE_NAME; REQUEST: in out T.TYPE);
end REQUEST_SERVICE_INPUT_PORT;
end BANK;

with BANK;
package CUSTOMER is
use BANK;
task CUSTOMER_1 is
entry INFORM_TELLER_NAME(TELLER_NAME: in TE_NAME);
entry SERVICE_REPORT(SERVICE: in T_TYPE);
end CUSTOMER_1;
task CUSTOMER_2 is
entry INFORM_TELLER_NAME(TELLER_NAME: in TE_NAME);
entry SERVICE_REPORT(SERVICE: in T_TYPE);
end CUSTOMER_2;
task CUSTOMER.3 is
entry INFORM_TELLER_NAME(TELLER_NAME: in TE_NAME);
entry SERVICE_REPQRT(SERVICE: in T_TYPE);
end CUSTOMER.3;
end CUSTOMER;

with CUSTOMER;
package body BANK is
use CUSTOMER;
CUSTOMER_KUM : INTEGER;
type CUSTOMER_DATA is
record
HAME: STRING(1..10);
ID_KO: STRING(1..10);
MONEY: INTEGER;
end record;
CUSTOMER_REC: array(1..CUSTOMER_NUM) of CUSTOMER_DATA;
TELLER_NAME: TE_NAME;

task TELLER1 is
entry REQUEST_SERVICE(CUSTOMER_NAME: in CU_NAME; TRANSACTION: in out T_TYPE);
end TELLER%;
task TELLER2 is
entry REQUEST_SERVICE(CUSTOMER_NAME: in CU_NAME; TRANSACTION: in out T_TYPE);
end TELLER2;
task TELLER3 is
entry REQUEST_SERVICE(CUSTOMER_NAME: in CU_NAME; TRANSACTION: in out T_TYPE);
end TELLER3;

task RECEPTIONIST is
entry READY(TELLER_NAME: in TE_NAME);
end RECEPTIOKIST;

task RECEPTIONIST_OUTPUT_PORT is
entry REPLY.TO..CUSTOMER(CUSTOMER_NAME: in CU_NAME; TELLER_NAME: in TE_NAME) ;
end RECEPTIONIST.OUTPUT_PORT;

task REQUEST_SERVICE_OUTPUT_PORT is
entry SERVICE_CUSTOMER(CUSTOMER_NAME: in CU_NAME; SERVICE: in T.TYPE);
end REQUEST_SERVICE_.OUTPUT_PORT;

task MONITOR is
entry ACCESS_SEIZE;
entry ACCESS_RELEASE;
end MOKITOR;

Fig. 7 Ada program for the example of Fig. 6.
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package CHG_OPER is
procedure DEPOSIT(CUSTOMER_NAME: CU_NAME; MONEY: INTEGER);
procedure WITHDRAW(CUSTOMER_NAME: CU_NAME; MONEY: out INTEGER);
procedure CHECK_ACCOUNT(CUSTOMER_NAME: CU_NAME; MONEY: out INTEGER);
procedure PAY_BILL(CUSTOMER_NAME: CU_NAME; MONEY: in INTEGER);

end CHG_OPER;

task body RECEPTIONIST_IKPUT_PORT is
begin
loop
select
accept REQUEST_TELLER(CUSTOM_NAME: in CU_NAME);
or
accept TAKE_CUSTOMER_NAME(CUSTOM_NAME: out CU_NAME);
end select;
end loop;
end RECEPTIONIST.IKPUT_PORT;

task body TELLER1 is
TELLER_NAME: TE_NAME:=1;
CUSTOMER_NAME: CU_NAME;
MONEY: INTEGER;
begin
loop
RECEPTIONIST.READY(TELLER_NAME) ;
accept REQUEST_SERVICE(CUSTOMER_NAME: in CU_NAME; TRANSACTION: in out T_TYPE) do
HONITOR.ACCESS_SEIZE;
case TRANSACTION is
when DEPOSIT => CHG_OPER.DEPOSIT(CUSTOMER_NAME,MONEY);
when WITHDRAW => CHG_OPER.WITHDRAW(CUSTOMER_NAME ,MONEY) ;
when CHECK_ACCOUNT =>CHG_OPER.CHECK_ACCOUNT(CUSTOMER_NAME,MONEY);
vhen PAY_BILL => CHG_OPER.PAY_BILL(CUSTOMER_NAME,MOKEY) ;
end case;
HONITOR.ACCESS_RELEASE;
end REQUEST_SERVICE;
REQUEST_SERVICE_OUTPUT_PORT.SERVICE_CUSTOMER(CUSTOMER_NAME ,TRANSACTION);
end loop;
end TELLER1;

task body TELLER2 is
begin
null; -= the same as TELLER1
end TELLER2;
task body TELLER3 is
begin
null; -= the same as TELLER1
end TELLER3;

task body RECEPTIONIST_OUTPUT_PORT is
begin
loop
accept REPLY_TO_CUSTOMER(CUSTOMER_NAME: in CU_NAME; TELLER_NAME: in TE_NAME) do
case CUSTOMER_NAME is
when 1=> CUSTOMER.1.INFORM_TELLER_NAME(TELLER_NAME);
when 2=> CUSTOMER_2.INFORM_TELLER_NKAME(TELLER_NAME);
when 3=> CUSTOMER.3.INFORM_TELLER_NAME(TELLER_NAME);
end case;
end REPLY_TO_CUSTOMER;
end loop;
end RECEPTIOKIST_OUTPUT_PORT;

task body RECEPTIONIST is
TELLER_NAME: TE_NAME;
CUSTOMER_.KAME: CU_NAME;
begin
loop
accept READY(TELLER_NAME: in TE_NAME);
RECEPTIONIST_INPUT_PORT.TAKE_CUSTOMER_NAME (CUSTOMER_NAME) ;
RECEPTIONIST_OUTPUT_PORT.REPLY_TO_CUSTOMER (CUSTOMER _KAME, TELLER_NAME);
end loop;
end RECEPTIDKIST;

Fig. 7 (Continued)

. 1993
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task body MONITOR is
type STATE is (IDLE, BUSY);
PRESENT_STATE: STATE:=IDLE;
begin
loop
select
when PRESEET_STATE=IDLE =>
accept ACCESS_SEIZE do
PRESENT_STATE:=BUSY;
end ACCESS_SEIZE;
or
accept ACCESS_RELEASE do
PRESENT_STATE:=IDLE;
end ACCESS_RELEASE;
end select;
end loop;
end MONITOR;

task body REQUEST_SERVICE_INPUT_PORT is
REQUEST: T_TYPE;
begin
loop

2567

accept REQUEST_SERVICE(CUSTOMER_NAME: in CU_NAME; TELLER_NAME: in TE_NAME; REQUEST: in out T_TYPE) do

case TELLER_NAME is
when 1 => TELLER1.REQUEST_SERVICE(CUSTOMER_NAME,REQUEST);
when 2 => TELLERZ.REQUEST_SERVICE(CUSTOMER_NAME,REQUEST);
when 3 => TELLER3.REQUEST_SERVICE(CUSTOMER_NAME,REQUEST);
end case;
end loop;
end REQUEST_SERVICE_INPUT_PORT;

task body REQUEST_SERVICE_OUTPUT_PORT is
begin
loop
accept SERVICE_CUSTOMER(CUSTOMER_NAME: in CU_NAME; SERVICE: in T_TYPE) do
case CUSTOMER_NAME is
when 1=>CUSTOMER_1.SERVICE_REPORT(SERVICE);
when 2=>CUSTOMER_2.SERVICE_REPORT(SERVICE);
when 3=>CUSTOMER_3.SERVICE_REPORT(SERVICE);
end case;
end SERVICE_CUSTOMER;
end loop;
end REQUEST_SERVICE_OUTPUT_PORT;

package body CHG_OPER is
procedure DEPOSIT(CUSTOMER_NAME: CU_NAME; MONEY: INTEGER) is
begin
null; -~ the function to add money to CUSTOMER_DATA.MONEY
end DEPOSIT;
procedure WITHDRAW(CUSTOMER_NAME: CU_NAME; MONEY:out INTEGER) is
begin
null; -- the function to subtract money from CUSTOMER_DATA.MOKEY
end WITHDRAW;
procedure CHECK_ACCOUNT(CUSTOMER_NAME: CU_NAME; MONEY: out INTEGER) is
begin
null; -~ the function to read CUSTOMER_DATA
end CHECK_ACCOUNT;
procedure PAY_BILL(CUSTOMER_NAME: CU_NAME; MONEY: in INTEGER) is
begin
null; == the function to print out the pay bill
end PAY_BILL;
end CHG_OPER;

end BAEK;

Fig.7 (Continued)
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