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Generated Moment Invariant Features by Cascaded Neural
Network for Pattern Classification

PARAMESRAN RAVEENDRAN' and SIGERU OMATU™

This paper presents a technique on how to improve the intraclass invariance of moment invariant
features of noisy images. Moment invariant features possess poor intraclass invariance in the
presence of noise. Instead of using computational techniques of extracting moment invariant features
from images, we use a trained feature extractor neural net to generate the second and third order
moments. The generated moments are used as inputs to a trained classifier neural net which identifies
the class the generated moments belong to. Noiseless and noisy binary images of numerals of 32 X
32 matrix which have been translated, scaled, and rotated are used to determine the feasibility of the
above technique. The zero-order regular moments are used in normalizing the binary images. The
quality of generalization of the feature extractor neural net on the intraclass invariance of an image
is examined. This is done by requiring each individually generated moments to fall within a
tolerance bandwidth for the given pattern to be correctly classified. In addition to this, computed
moments of normalized and unnormalized binary images are used as inputs to a single neural net to
compare the effectiveness of this technique with respect to using generated moments. Back-
propagation learning algorithm is used in the training of neural net. The number of hidden units
used in the hidden layer of the classifier neural net is between 10 and 100. The cascaded neural net
performs much better than using computed moments as inputs to a single neural net that functions
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as a classifier.

1. Introduction

The invariant properties of moments of 2D
and 3D shapes have received considerable atten-
tion in recent years. Hu? published the first
significant paper on the use of moment invari-
ants for two-dimensional pattern recognition
applications. He derived a set of invariants
based on combinations of regular moments
using algebraic invariants, which has the desir-
able properties of being invariant under image
translation, scaling, and rotation. Moments and
functions of moments have been utilized as
pattern features in a number of applications.D~%

The features used in any pattern classification
problems must posses large interclass separation
and small intraclass invariance-slightly different
shapes with similar general characteristics
should have numerically close values. Moment
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invariant features posses good interclass separa-
tion and intraclass invariance under noise-free
conditions. However, in the presence of noise
they become unreliable.®»” Conventional tech-
niques and computational methods are applied
to extract features in a preprocessing step, fol-
lowed by neural net pattern classification.?

In our technique using a caseaded neural net
as shown in Fig. 1, we are proposing the first
neural net to function as a feature extractor.
This net will be trained to generate second and
third order moment invariant features of noise-
less binary images. The feature extractor neural
net has to be trained with all possible combina-
tions of the input pattern to achieve generaliza-
tion. It is not possible to train a neural net to
recognise shapes at every possible positions in a
image plane, as the number of different patterns
rapidly exceeds the capacity of the net to store
exemplars. One approach to overcome this
problem is to normalize the binary images
before presenting to the network. The question
is how many training examples are needed to be
presented so that the network is able to properly
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Fig. 2 Single neural net as a classifier.

generalize to new cases. An initial arbitrary
value is used in training the feature extractor
neural net.

After the network has been trained, the six
outputs (generated moments) generated by the
feature extractor neural net are tested by 240
unseen binary images which are representative of
the data set for the quality of its generalization.
A new technique is used in classifying the un-
seen pattern. We calculate the tolerance ban-
dwidth for each generated moment and for a
pattern to be classified correctly all the outputs
must lie within the boundary of the lower and
upper target values of the class the unseen pat-
tern belongs to. If this number is less than a
threshold value then the feature extractor is
given more training examples.

Three sets of data sets are determined. The
first set consists of computed moment invariant
features of unnormalized binary images. The
-second set consists of moment invariant features
of normalized binary images. Their features are
used by a single classifier neural net, as shown in
Fig. 2, which is trained to classify them. The
third set consists of generated moment invariant
features which are used as inputs to the classifier

of the cascaded neural net. The performance of
both the single and the cascaded neural nets are
examined under different Signal to Noise Ratio
(SNR).

The organization of the paper is as follows.
Section 2 discusses the moment invariant fea-
tures proposed by Hu." Section 3 describes the
neural net architecture and the back-
propogation learning algorithm.  Section 4
reports the experimental results on a 10-class
data set consisting of numerals and also the
generalization of the feature extractor neural net.
Section 5 addresses the conclusion of the study.

2. Moment Invariant Features

Hu? has shown from these moments the sec-
ond and third order invariant moments can be
determined which are invariant not only to
translation and scale variations, but also to
rotation of image patterns.

moo= [ [ xtyof (x, y)dxdy,

for p,q=0,1,2, - (1)
Central moments which are invariant to transla-
tion can be defined as:

upq:[:[:(x—f)"(y—f)"f(x, y)dxdy
where

Mo = __ Mo
= . 2
Mmoo’ y Moo (2)
Central moments can be normalized to scale
invariant by

X=

Npqg™= L/Z’E
where
+
y=£———g~2 +1. (3)

A set of nonlinear functions which are invariant
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to translation, scale and rotation can be express-
ed as:
ml= 195+ 702
m2:(7720_ 7]02)Z+47}121
m3=7s0—372)*+ (3721 — 705)°
mé=(7s0+ m2)’ + (721 703)*
mS5= (30— 3m2)(30+ m2)[( 730+ 72)*— (71
+703)%] + (3 721~ 703) (721 + 703)[ 3( 730
+ 712)* — (9214 703)*]
m6=720~ 7902)[ (30 + 72)*— (721 703)°]
+470(750+ 712) (21 + 703) (4)

Regular and complex moments have been
used in transforming an image to a predeter-
mined standard form. Using moments through
second order an image can be transformed into
a standard form.® The number of training pat-
terns needed to train the feature extractor neural
net will be greatly reduced by transforming the
image to a standard form.

In this paper, the zero-order regular moment,
o, is used in transforming the image. Normal-
ized binary images are used as inputs to the
feature extractor neural net. The binary images
are normalized with respect to scale and transla-
tion. Scale invariancy is achieved by enlarging
or reducing each object such that the zero-order
regular moment, g, is set to a predetermined
value. Let f(x/a, y/a) represent a scaled version
of the image function, f(x, y). Then the regular
moment mpq of f(x, y) and mp, the regular
moment of f(x/a, y/a), are related by

M pg=a"* " 2myq. (5)

The total number of object pixels in a stan-

OUTPUT PATTERNS

INPUT PATTERNS

dard image is determined from the arithmetic
mean of the area of the training images and this
is represented by m . The relationship between
the standard image and the unknown image, m
00, can be represented as m = a?my where a is
the scaling factor.

An image function, f(x, y), can be normal-
ized with respect to scale and translation by
transforming it into g(x, y), where

g(x y)=f(*f;+f,%+)7>- (6)

with (X, y) being centroid of f(x, y) and can
be computed using Eq. (2).

3. Neural Network

Artificial neural networks are the basis of a
new computational technique inspired by the
way the human brain works. Artificial neural
networks with their inherent parallelism are
ideally suited to image processing. Figure 3
shows a three-layered feedforward network. The
objective here is to find proper weights for all
the connections such that a desired output is
generated for corresponding input. The back-
propagation learning algorithm is used in deter-
mining the ideal weights of all connections.

The back-propagation learning algorithm!®
involves .a forward-propagation followed by a
back-propagation step. Rather than developing
a program to undertake a task, the network is
trained by “learning from example.” Both the
forward and back-propagation steps are done
for each pattern presentation during training.

QUTPUT UNITS

HIDDEN UNITS

INPUT UNITS

Fig. 3 A three-layered back-propagation network.
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Fig. 6 Block diagram of unnormalized image using

single neural net.

The network is presented with pairs of input
pattern paired with target outputs. The input
data is fed into neural net to produce its own
output data and then this is compared with the
desired output, resulting in an error signal for
each output unit. Weights are adjusted to
decrease the difference between the network’s
output and the target output. The patterns in the
training set were presented to the neural net
repeatedly until the Root Mean Square (RMS)
value was 0.008.

Figure 4 shows the block diagram of the
normalized image using two cascaded three-
layered feedforward network that was used in
our study. The first neural net (feature extractor
neural net) of a cascaded two three-layered feed-
forward neural net as shown in Fig. 1, when on
presentation of a binary image will generate the
moment invariant features. These features will
then be used by the second neural net, which acts
as a classifier, will assign the class to which these
features belong to. Figure 5 shows the block
diagram of computed moments of a normalized
image classified by a neural net. Figure 6 shows
the block diagram of the computed moments of
the unnormalized binary image classified by a
neural net. Back-propagation learning algo-
rithm is used in training the neural nets.

4. Experimental Study

In this section, the performance of a single and

cascaded neural net to classify the 10 numerals
are reported. In the case of the single neural net
only computed moment invariant features of
normalized and unnormalized binary images are
used and the cascaded neural net uses moments
that are generated by the feature extractor neural
net.

Two sets of training data were used. The first
set uses only 200 noiseless moment features as
training examples and the performance of both
the single and cascaded neural nets are examined
under noiseless and noisy conditions. The sec-
ond set consists of 400 noiseless moment features
as training examples and is tested with the
remaining data set. The performance of both the
single and the cascaded neural nets are examined
under different SNR.

4.1 The data sets

Four slightly different types of noiseless bina-
ry image of numerals 0 to 9 of 32 X 32 are
written onto a board and the images are captur-
ed using a camera together with a frame grabber
card. A thresholding value is used in converting
the grey scale images to binary images. Each
noiseless binary image of a numeral is then
scaled, rotated, and translated to produce 56
noiseless binary images. Figure 7 shows an
example of a noiseless binary image of a
numeral 9 that has been scaled, rotated, and
translated. Each binary image of a numeral is
perturbed with random noise. The SNRs of 50,
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Fig. 7 The 56 scaled, rotated and translated images of
numeral 9 in the data set.
Note the slight variations in shape shown in the

first column.
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Fig. 8 Numerals from 0 to 9 with different levels of

noise.

From top to bottom, SNR is noiseless, 50, 40,

and 30 dB.

40, and 30 dB are used in this study. The total
number of noiseless and noisy binary images of
a numeral used is 224. Figure 8 shows numerals
0 to 9 with different SNR’s.

The noisy binary image is generated by ran-
domly selecting some of the 1024 pixels of the
noiseless binary image and reversing their values
from O to 1 or vice versa. This random pixel
selection is done according to a uniform prob-
ability distribution between 1 and 1024. The
SNR is computed using 20 log[ (1024—N) /N ],
where N is the number of pixels which are
different between a noisy image and a noiseless
image.

Three sets of second and third order moment
features of each binary image set of each
numeral are determined. The first set was deter-
mined by computing each normalized binary
image of each numeral using the equations in
Eq. (5). The second set is determined just like
the first set but in this case unnormalized binary
images are used instead.

The third set is determined from the feature

extractor neural net which is trained to generate
second and third order moment features. After
the neural net has been trained, the sets of
noiseless binary images and noisy images of
SNR 50, 40, and 30 dB are fed as inputs to the
neural net. The neural net then generates the
moment invariant features for each binary image
that is presented to it.

In addition to that, 240 noisy binary images of
all classes are simulated. These images are used
to test the feature extractor neural net’s ability to
generalize after training.

4.2 Description of experiments

Two sets of training examples are used in this
experiment to determine the performance of the
respective classifiers. The training examples
used in both the single and cascaded neural nets
are of the same class of binary images. The data
set of computed moments of unnormalized
binary images, computed moments of normal-
ized binary images, and generated moments is
used in the training of the respective classifiers.
Computed moments of normalized and unnor-
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Fig. 9 Classification results using 200 images.

malized binary images are used as inputs to the
single neural network. The cascaded neural
network consists of two neural network, the first
functions as a feature extractor neural network
and the second neural network as a classifier.
The feature extractor neural network generates
the moment invariant features when presented
with binary images, and these generated
moments are used as inputs to the classifier,
which assigns to which class they belong to.

In the first experiment we use only moment
features of 200 noiseless binary images and is
tested with noiseless and noisy images. Figure 9
(a)-(d) shows the performance of the
classifiers when trained with 200 samples of
moment features of noiseless binary images.

In the second experiment, 400 training exam-
ples of moment features of the noiseless binary
images are used and is tested with the remaining
noiseless and noisy images. The training sam-
ples are presented in a random order. The
training features are normalized to have zero
mean and unit variance. This is necessary to
ensure that a subgroup of the features does not
dominate the weight adjustment process during

training. The mth feature is normalized by

= In—In

I (7)
where 7, and o, are the sample mean and
standard deviation of the sth training features
of all classes. The neural net has converged to
the error limit of 0.008 in less than 400 iterations
when presented with generated moment invari-
ant features. This is because the moment fea-
tures of the same class typically vary little when
perturbed with noise. After the network has
learned and if one of the example from the
training set is presented to the network it will
generate 0.9 and above for the selected bit and
the remaining bits are set to less than 0.1.

A continuing question in neural network
research is the size of network needed to solve a
particular problem. We used hidden layer nodes
between 10 and 100 and find that 20 hidden
layer nodes give the best or very close to the
classification accuracy in all examined cases.
Figure 10 (a)-(d) shows the performance of
the cascaded neural net and a single neural net
when the number of hidden units are varied.
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Fig. 10 Classification results using 400 images.

4.3 Generalization of feature extractor
neural net

The feature extractor neural net is trained to
generate second and third order moments.
Noiseless and noisy images are used as input
patterns and the target outputs are those of
computed moments of noiseless binary images.
We consider the network to have learned if the
error between the target output and the network
output is minimal. Table 1 shows the standard
deviation of the errors of the generated moments
from the desired outputs of classes 0 to 9 for
SNR 50 dB. Table 2 shows the standard devia-
tion of the errors of the computed moments from
the computed moments of noiseless image of
classes 0 to 9 for SNR 50 dB. The intraclass
invariance of the generated moments is much
better than computed moments of SNR 50 dB.

There is no clear indication as to the number
of training patterns needed to train the network
to achieve generalization, so we start off with
250 samples. After training, the network is
tested for its ability to generalize. We present
240 unseen patterns: which are representative of
the data set to the network to generate the six

moments.

For the effective classification of the unseen
patterns, we have developed the tolerance level
or bandwidth approximation for each individu-
ally generated moments. If §; denotes the
tolerance level, then

Mz~ 8 < Gin< Mjr+ 8in (8)
represents the interval in which Gy, should lie in
order for the pattern to be correctly classified,
where Mj, is the target output (moment) and G
s is the generated output (moment), j represents
the class, and k represents the component of the
class. The tolerence interval can be computed
and its formulation is given in Eq. (9). If the
generated moments for each pattern falls within
the range allowed for each class, then the pattern
is classified correctly.

We next evaluate the deviations (G.— M)
for each class j and obtain the maximum and
minimum deviations. Let Mpax and My, denote
the maximum and minimum deviations for any
class j respectively. Then the difference between
Moy and My, gives the separation error within
which lies all the other errors. The magnitude of
the tolerance, &, is given by the following
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Table 1 Standard deviation of the error of the generated
moments of all classes for SNR 50 dB.

Generated moments

G G,

Class

G

G, G Gs

<

.0135
.0093
.0161
.0294
.0286
.0132
.0195
.0120
.0290
.0247

0.2733
0.0272
0.0672
0.0729
0.0682
0.0353
0.0728
0.0308
0.1054
0.0442

oo o

=

OO O D D

O 00 ~3 O U W N

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

1425
1480
3259
2540
4930
1062
4483
0876
1877
3052

0.1779
0.0907
0.1224
0.0863
0.1665
0.0437
0.1399
0.0568
0.1070
0.0831

0.2361
0.1186
0.2352
0.1217
.2781
.0750
.2985
1251
.1062
.0944

.3129
.0932
-1459
L1171
1754
.0920
1724
.1357
1571
0.0768
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0
0
0
0
0
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Table 2

Standard deviation of the errors of the comput-

ed moments of all classes for SNR 50 dB.

Computed moments (Normalized images)

Class| M, M,

M,

M, M; M;

L)

.0465
.0184
.0330
.0387
0397
0385
.0340
.0354
.0356
0347

0.5287
.0657
.0875
.1808
.1429
.1087
.1883
.0071
.1577
0.0969

OO OO O OO D

WO W -3 U W N
[l o BN e 2 == I e T ae RN TN e N e B )

1.
1.
0.
0.
0.
1.
0.
0.
1.
0.

2744
5696
9226
8561
7289
0693
4607
25651
0575
5779

1.4465
1.7560
0.7759
0.8530
0.8956
0.8077
0.6696
0.4632
1.1332
0.4307

0.7400
0.9629
0.4160
0.3439
0.4139
0.4645
0.3542
0.1340
0.5766
0.2037

1.0511
0.6972
0.4014
0.4954
0.8543
0.4444
0.4484
0.2962
0.6054
0.3894

equation.

- Mmin)

. (9)

When the inequality as given by the Eq. (8)
holds true for all admissible values of k(k=1 to
6) then the pattern will correctly belong to class
j.  We test the generalization ability of the
feature extractor neural net by measuring the
number of patterns it is able to classify accurate-

ly.
5. Conclusion

A neural net containing a feature extractor
trained to generate second and third order
moments and a classifier has been used for the
recognition of noisy and noiseless binary
images. Moment invariant features possess good
large interclass separation but rather poor intra-
class invariance-images of the same class with

slight change in image content. Using a feature
extractor neural net it is possible to train the
network to minimize the intraclass invariance.

The distinct advantage of using a feature
extractor neural net is that it attempts to generate
outputs that it has learned during training when
presented with images that it has not seen. We
found the network was able to generate outputs
close to target outputs for an image (still recog-
nizable) whose boundary was distorted. As the
distance of its noise points from the centroid of
an image increases, the computed moments
varies substantially, and to classify them to the
correct class is a difficult task. In the case of the
feature extractor neural net it does not behave in
the same manner, since it is trained to generate
outputs close to the target outputs. This helps to
improve the performance of the classifier.

In this paper, to test the generalization of the
feature extractor neural net, we developed the
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tolerance level or the bandwidth approximation
for each individually generated moments. If the
proximity of the generated outputs with respect
to the target outputs are to be maintained for any
given input variations within an acceptable
range, then the differences amongst the weights
between the input and hidden layer of the feature
extractor neural network should be small.

The performance of the cascaded neural net to
classify noisy images of SNR 50 dB is about 90%
and SNR 40 dB is about 80% after being trained
with generated moments of noiseless binary
images.  The performance improves when
trained with 400 images of generated moments.
The performance by computed moments of nor-
malized binary images was far better than that of
computed moments of unnormalized binary
images, but not as good as using generated
moments.

Further work should be explored on the
significance'” of each of the features used in
classifying an image and also which combina-
tion of feature is sufficient to classify the patterns
correctly.
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