Vol.35 No.2

Transactions of Information Processing Society of Japan

Regular Paper

Generating Nested SQL Queries for Documentation

MOHAMED E. EL-SHARKAWI | and YAHIKO KAMBAYASHI 't

In this paper, we develop procedures to transform a user’s query into a nested form suitable for
query documentation, editing, and reusability purposes. We discuss generating nested form of the
three query types : chain, tree, and cyclic. For tree and cyclic queries, there may be more than one
nested form. Thus, we have to determine the order of writing query blocks, we use the notion of join
strength. Joins are classified by their strength of relationship. Strong joins are selected to connect
adjacent query blocks. For a tree query, the first blocks is selected by the output attribute, the second
one is selected as that of strongest join with the previous block and so on. Chain queries are handled
as a special case of tree queries. A cyclic query cannot be written in the nested form. A form which
is in part nested and in part unnested, called seminested form is used. This form is generated by first
finding a minimum spanning tree of the cyclic query graph. This tree contains most strong joins. We
discuss also the case when the query output is obtained from multiple blocks. Since it is not possible
to write such a query in the nested form, the query is converted into a modified nested query in which

Feb. 1994

the output is obtained from only one block.

1. Introduction

Relational databases are heavily used as a
component of information systems. Since the
introduction of the relational data model by
Codd", several commercial database manage-
ment systems (DBMS’s) based on the model
have been developed®~%. One of the advantages
of the model is supporting ron-procedural query
languages to manipulate the data. That is, a user
describes the output of his query, not how to
access data satisfying his requirements. That is
in contrast of network and hierarchical data
models. The original query languages suggested
by Codd, relational algebra and relational calcu-
lus, are not user friendly. Several high level
query languages have been proposed, SQL,
QBE, QUEL to name some. Some of these
languages are easy to use. For example, in
QBE? it is easy to write queries through its
visual representation of relations. In some other
languages it is easy to understand a query’s
meaning. In SQL, a complex query may be
written in the nested form as consecutive query
blocks. In this way, editing and reuse of an
existing query is easy.

Query understandability should be provided

T Department of Mathematics, Faculty of Science,
Kuwait University

1t Integrated Media Environment Experimental Labo-
ratory, Faculty of Engineering, Kyoto University

253

and enhanced in order to document, edit, and
reuse queries. User interfaces usually concen-
trate on ease of written queries, neglecting under-
standing previously written queries. Studying
query understandability issues is important for
the following reasons :

(1) System documentation is one of the
most important phases of building software
systems. Documentation of database queries is
also important.

(2) Generating understandable queries is a
component of an integrated interface named
ENLI®. ENLI has the following characteristics :
1- supports naive users with an English like
query language. 2- uses QBE as an intermediate
language that supports trained users, who write
interactive simple queries, 3- generates for a
given query its equivalent and understandable
nested form using procedures in this paper, 4-
generates English meanings of SQL queries”,
and 5- generates an understandable form of a
query’s output, by presenting the output in an
unnormalized relation.

(3) Current DBMS’s permit users to store
and edit their queries. Editing nested SQL
queries would be easier than editing unnested
ones.

(4) Query modification is a frequent opera-
tion when editing queries. It is easy to modify a
nested query. Dropping and adding joins to a
query, splitting a query into two queries, or



254 Transactions of Information Processing Society of Japan

combining several queries into a single query
can be performed easily on nested queries.

(5) Using procedures presented in this
paper, a core for a new query editor can be
build. The new query editor is shown in Fig. 1.
Figure 1 (a) shows the current editing process.
Figure 1( b ) shows the new editor. A query is
edited using a text editor, procedures presented
here are used to generate a more understandable
form of the query. The procedures are also part
of the query design facility which is necessary to
realize a database workbench®.

In this paper, we discuss how to convert a
SQL query into a more understandable form.
SQL is now considered a standard relational
query language and is supported in many com-
mercially available relational database systems.
Our approach to generate SQL queries for docu-
mentation is based on transforming an unnested
query into an equivalent nested form which is
suitable for documentation. We shall define
which nested form is suitable for documentation
in Section 3. If the query is in the nested form,
we first transform it into its equivalent unnested
one ‘since the nested form given by the user may
not be the best for documentation:

The following example shows the understand-
ability of the nested form over the unnested one.
Example : Consider a database for suppliers,
parts, and projects. It consists of five relations :
Supplier (S#, SNAME, CITY #)

Part (P #, PNAME)
SP(S# P# QTY)
Project (P4, P #)
City (City #, CNAME)

Underlined attributes are the keys. Consider
the query :

Feb. 1994

Find supplier names of suppliers in Tokyo
who supply parts to project number DB 92.

The query is written in the unnested and
nested forms as follows :

SELECT SNAME
FROM Supplier, Part, SP, Project, City
WHERE Supplier. S #=SP. S# AND

Supplier. CITY #=City. CITY #
AND
SP. P #=Project. P # AND
Project. PJ #=“DB 92” AND
City. CNAME=“TOKYO”

The nested form of the query is:

SELECT SNAME
FROM Supplier
WHERE S f=
SELECT S#
FROM Sp
WHERE P#=
SELECT P#
FROM Project
WHERE PJ
#=“DB 92”
AND Supplier. CITY #=
SELECT CITY #
FROM City
WHERE CNAME=

“TOKYO”

The paper is organized as follows. In the next
section, basic concepts and related work are
reviewed. Section 3 discusses basic conversion
procedures. The notion of join strength is
introduced, next we give a preprocessing step to
convert a given query into an equivalent one that
is written in a deep level of nesting, next proce-
dures to handle chain and tree queries are given.
Section 4 gives a procedure to transform cyclic

USER — > |QUERY EDITING ]‘_>IQUERY STORING l‘—l

(a)

QUERY
USER —> gDITING

QUERY

DOCUMENTATION

QUERY

STORING

(b)

Fig. 1 Structure of a new query editor.



Vol.35 No.2

queries to nested form. Section 5 discusses the
case when the output is obtained from more than
one query block. Section 6 concludes the paper.

2. Basic Concepts

2.1 SQL Syntax

In this section we review the part of SQL
syntax that is relevant to our discussions. A
complete syntax of SQL can be found in
[Date]®. A basic SQL query consists of three
clauses, two are mandatory SELECT and
FROM and -one is optional WHERE. These
three clauses constitute a query block. The
SELECT clause enumerates output attributes.
FROM clause names relations involved in the
query. The WHERE clause contains conditions
(predicates) that should be satisfied by the
output.

In the WHERE clause, predicates to be
satisfied are :

(a) A simple predicate :

Attribute [Comparison Operator] Constant

(b) A join predicate :

Attribute] [Comparison Operator] Attribute2

(¢) A nested predicate :

Attribute " Constant ‘[Comparison Opera-
tor] Query Block
there are some other predicates which are not

o]
R1
A B
R3
R2
D
R4
(a)
SELECT RL.0
FROM R1
WHERE RLA =
SELECT R2.A
FROM R2
AND R1B=
SELECT R1.0 SELECT R3.B
FROM R1,R2,R3,R4 FROM R3
WHERE RLA =R2.A WHERE R3.D=
AND  RLB=R3B SELECT R4.D
AND  R3D=R4D FROM R4

(b) (¢)

Fig. 2 SQL query represented in unnested and nested
forms.

Generating Nested SQL Queries for Documentation 255

relevant to our discussions, these are set, minus,
and union predicates. To write a query that
contains any of these predicates, the query
should be nested.

Comparison Operators considered are =, =+,
>, =, <, <. Predicates may be combined
using AND and OR operators and negated using
NOT.

To write a join query in SQL there are two
forms, unnested and nested. In the unnested
form the query is written as a single block.
Names of all relations involved in the query are
written in the FROM clause. Joins are re-
presented as join predicates in the WHERE
clause. In the nested form, joins are represented
as nested predicates. SQL forms are defined as
follows :

Definition 1: A query is said to be written in
the unnested form when all the joins are written
as join predicates.

Definition 2: A query is said to be written in
the pure nested form when all the joins are
written as nested predicates.

Definition 3: A query is said to be written in
the seminested form when some of the joins are
written as join predicates and some are written
as nested predicates.

Throughout the paper, we use the term nested
form to mean pure nested form.

In this paper we consider Select-Project-Join
(SPJ) queries. Queries that contain set, minus,
or union predicates should be written in the
nested form.

Definition 4: A query is an SPJ query if it
consists of a select or a project operation (or
both) and a join operation.

2.2 Query Graphs

To formalize our discussions, we use graph
representation of queries.

Definition 5: A query graph G=(N, E) is a
labelled undirected graph. N is the set of nodes
and E is the set of edges in the graph. Each
node i in N corresponds to a query block. One
block contains one or more relations. There is
an edge between nodes i and j when a relation
in the block represented by node i is joined with
a relation in the block represented by node j.
Each edge e;; is labelled with the attribute that
joins blocks i and j. If there is more than one
attribute joining the two blocks, there is an edge
corresponding to each attribute. Let n be the



256

number of nodes, among these nodes one is
distinguished as the root of the graph. The root
is the node that corresponds to the query block
in which the query output is specified. This
node is called output node. If there is more than
one output node, one is selected as the root.
Definition 6: A node i which is connected to K;
nodes is called to have join degree K;. Among
the K; nodes a node NiR; (Nearest to Root) is
defined as the node with minimum distance to
the root.

Note that for some nodes NtR;=i (i.e. node
i is directly connected to the root).
Definition 7: The  WHERE-degree of a node i
is defined as the join degree of i reduced by one.

When:there is no confusion degree is used to
mean join degree.

We define three types of query graphs: chain,
tree, and cyclic.
Definition 8: A graph is a tree graph if it has »
nodes and n—1 edges. A node of degree 1 is
called a leaf node. Nodes that are not leaves
are called inner nodes.
Difinition 9: A graph is a chain graph if it is a
tree graph such that there is only two nodes of
degree one (the root and the leaf) and every
other node has degree two.
Definition 10: A graph is a cyclic graph if it is
not a tree graph.
Definition 11: The distance between two nodes
i and j, denoted d[i, j], is defined as the number
of edges in the path that connects the two nodes.

Note that for a cyclic graph, there may exist
two nodes u and v, such that there is more than
one d[u, v].

Throughout the paper we assume that every

(a)

Transactions of Information Processing Society of Japan

(b)

Feb. 1994

graph is connected.

Query graphs that correspond to chain, tree,
and cyclic queries are given in Fig. 3(a), (b),
and (¢) respectively.

A query is a tree query if its corresponding
graph is a tree graph, it is chain query if its
corresponding graph is a chain graph, and it is
cyclic query if its corresponding graph is a cyclic
graph.

2.3 Related Work

The query conversion approach is widely used
in the domain of query processing. A query is
transformed to a new form that is more ame-
nable for efficient processing (e.g. Refs. 10),
11)). Reference 12) shows transforming SQL
queries into relational algebra generates wider

‘optimization plans. Reference 13) transformed

nested SQL. queries into their equivalent unnest-
ed queries. An existing query optimizer is
designed to efficiently process unnested queries.
In Ref. 14), a set SQL query is transformed into
a non-set query in order to minimize transmis-
sion cost in distributed environments.

Work on user interfaces aim at presenting
users with easy ways to express their queries.
They did not consider understandability of
queries. The work in Refs. 15), 16) discussed
generating English sentences that express the
meaning of SQL queries. The problem with this
approach is that the generated English meaning
may not be used again.

Work in this paper is not concerned with
efficient processing of queries. Our aim is to
transform a query from its form to a more
understandable form.

A &

(c)

Fig. 3 Query graphs for chain, tree, and cyclic queries.



Vol.35 No.2

3. Basic Conversion Procedures

In this section we shall develop procedures for
generating nested form for tree queries. The next
section discusses cyclic queries. We assume that
there is only one block from which the output is
obtained, generalization will be given in Section
5.

3.1 Strength of Joins

Although the join structure of a query may be
tree or cyclic, SQL requires a one dimensional
representation. Thus, it is necessary to deter-
mine the order of writing query blocks. It is
reasonable that two blocks which are joined
strongly be placed adjacent to each other. We
need, then, to determine join strength. For
example, consider a tree query graph where
some inner node i have WHERE-degree two
(nodes j and k). We have to decide the order
of writting query blocks corresponding to these
two nodes. Generaly, for a query block corre-
sponding to a node i/, that has degree K;, will
have a WHERE clause with K;—2 AND’s. We
need to decide which join will be written in the
WHERE clause, which in the first AND, and so
on.

We present some criteria by which the order
of writing the joins is determined. The most
strong join is written in the WHERE clause and
the least strong join is written in the last AND.
These criteria are based on perceiving database
relations as representing real-world entities and
relationships between the entities. We may
think of a join between two relations as a way to
connect between some real-world concepts.
Some joins may represent strong connections or
even collect information about a single entity.
This information was distributed among several
relations as a result of the normalization
process'™. In a query graph edges are assigned
weights to represent join strength, the minimum
the weight, the strong the join.

For some node i of WHERE-degree k;, k;>2,
criteria to decide strength of joins are as fol-
lows :

(1) Ifthere is one and only one join such that
the join attribute is the key of node i (a key of
a node is.a key of one of the relations in the
block represented by the node), we consider this
join as the most strong join. If all the joins are
keys of relations in the block, the one which is

Generating Nested SQL Queries for Documentation 257

the key of the relation from which the output is
obtained is considered as the most strong join.
The reason is that a key of a relation is used
identify an entity or a relationship in the world.
Thus joining two relations by a key of one of
them is a way to collect together information on
a single real-world entity.

(2) If there is more than one join such that
the joining attributes are alternative keys of the
node i and one of these attributes is in the
output of the block, this join is considered as the
most strong join. This attribute is playing an
important role (the output of the block), and if
it is the query output, the user is interested in it.
(3) 1If there is no join attribute which is the
key of node i, and, however, one of the join
attributes is a key of another node in k;, this join
is considered as the most strong join. If there are
more than one attribute satisfying this condition,
we select the one corresponding to the node of
minimum degree.

(4) Consider a case where there is a node i
that has WHERE-degree k; and the node that
has the most strong join with i is j. In the
subgraph rooted at j, there is some node / such
that d[j, /] is longer than all d[m, v], for any
node m in k;, and for any node v in the sub-
graph rooted at m. Here we have a tradeoff, if
we write the join between i and j first, the rest of
joins between i and any node in k; will be
written so fare from the block corresponding to
node i. In this case, we combine (join) the two
nodes, / and j, into one node (block) and then
write the query. The following example illus-
trates this situation.

Example : Consider the graph in Fig.4(a ), for
simplicity each node B; corresponds to a rela-
tion named B;. Assume that the join between
blocks B, and B; is stronger than the join
between: blocks B; and Bs. According to the
previous criteria, the join between B, and B,
should be represented first, the query will be
written as shown in Fig. 4(c). However, the
path from the root node to the leaf node of B, is
longer than the path containing Bs;. It may be
better then to combine nodes B; and B, together
as in Fig. 4(b). After combining the two
nodes, it is not needed to select which node
among Bs and B, to represent next, since B, is
considered strong relative to the original output
node B,. The query is written as shown in Fig.



258 Transactions of Information Processing Society of Japan

(b)

Fig. 4 Case when the strongest join i (b) the longest

path.
SELECT B1.0
FROM B1
WHERE BlA = SELECT B1.0
SELECT B2.A FROM B1,B2
FROM B2 WHERE Bl1.A =B2A
WHERE B2.C = AND BiB =
SELECT B4.C SELECT B3.B
FROM B4 FROM B3
WHERE B4.D= AND B2.C =
SELECT B5.D SELECT B4.C
FROM B5 FROM B4
AND B1.B = WHERE B4.D=
SELECT B3B SELECT B5.D
FROM B3 FROM B5

(¢)

(d)

Fig. 4 (continued) SQL queries representing Fig. 4
(a) and (b).

4(d), combining B, and B is the join between
the two relations represented by the two nodes.
(5) If none of the join attributes satisfies the
above criteria, all joins are considered to have
same join strength. We consider the subtree with
minimum weight as the most strong one and
represent it before the others.

3.2 Egquivalence Transformation of Query

Graphs

When p relations are joined by identical
attribute, we can apply the equivalence transfor-
mation shown in Fig. 5.

We use this transformation as a preprocessing
step to convert a graph into another equivalent
one that will be written in deep level of nesting.
For example, consider the query ‘graph given in
Fig: 6( a ), it may be converted into the graph in

Feb. 1994

A A
Fig. 5 Equivalent query graphs.

(o)

Fig. 6 Two equivalent tree graphs.

Fig. 6(b).

This situation can be stated as follows :

Given a query graph having some node i of
join degree K; (i.e. there are K; nodes con-
nected to 7). Among the K; nodes there are m
nodes such that all edges that connect the m
nodes to node i have same label L. We can use
the mentioned transformation to convert this
graph to another equivalent one whose corre-
sponding query will be written in a deeper level
of nesting than the original graph. The follow-
ing procedure, RG, makes this transformation.
The procedure performs as follows. First, calcu-
lates for each node j in m the distance between
the node and the root, i. e. d[j, #]. We assume
that there is a procedure that accepts a graph,
two nodes, and calculates the distance between
the two nodes. Next, if all the nodes in m have
same distance from the root, the procedure con-
structs a chain of m nodes. If, however, there is
some node u such that d[u, r] is less than any
d[j, 7], we construct a chain of m—1 nodes,
the execluded node is node u.



Vol.35 No.2

Procedure RG
Input: A query graph.
output : A reconstructed form of the input
query.
begin

if the graph has some node i
that is connected to m nodes,
m< K;, such that all the edges that connect
the node i to m nodes have same label
then do
for each node u in:m do
calculate d|u, ],
where 7 is the root of the graph ;
end do
if all the m nodes have same d[«, 7] then do
construct a chain consisting of the m
nodes ;
append this chain to node i ;
/* i will be of degree K;—m+ 1%/
end do
else
if among the m nodes there is some node
u’ with
minimum distance from the root then do
construct a chain consisting of the m
—1 nodes;
/* the execluded node is #'*/
append this chain to node i ;
/* i will be of degree K;—m—+2%/
end do
end if
end if
end if
end

The node that will be the root of the chain of
m nodes is selected as follows :

(1) If the graph is tree, it is the node with
most strong join.

(2) Ifthe graph is tree and the m nodes have
same join strength, select the one with minimum
degree.

(3) Ifthe graph is cyclic, the root of the chain
is the node that participates in the cycle, if such
a node exists.

The rest of the nodes in the chain are con-
nected according to the node’s degree. The node
with minimum degree is connected directly to
the root, and the one with maximum degree is

Generating Nested SQL Queries for Documentation 259

the leaf of the chain. For example, in Fig. 6(b)
node B, is connected directly to node B, rather
than node B;. That is because B, has degree less
than Bs.

3.3 Generating Nested Form for Tree

Queries

In this section, we give a procedure to convert
an unnested tree query into its equivalent nested
form which is the most suitable for our purposes.
Before giving this procedure, we give a proce-
dure to handle chain queries.

A chain query is a simple tree query in which
every node has WHERE-degree one and there is
only one leaf with zero WHERE-degree. In this
case, we do not need to apply any criteria to
arrange query blocks.

In the chain graph, we number the nodes from
1 to n, such that the root is numbered 1 and the
only leaf is numbered n. There is an edge
between nodes i and i+1, i=1, -+, n—1.
Procedure CQ accepts a chain query in the
unnested form and converts it into the nested
form. The query output is specified in the
SELECT clause of the block corresponding to
the first node in the chain. The SELECT clause
of any node i contains attribute joining { with i
—1. The FROM clause in the block correspond-
ing to node i contains relation(s) in the block.
The WHERE clause of any node i, i==1, -+, n
—1, contains attribute joining i with i+1. The
WHERE clause of the leaf node does not con-
tain any nested predicate.

Procedure CQ
Input: A chain query in the unnested form and
its query graph.
output : The same query in the nested form.
begin

for i=1to n do
if i=1 then

SELECT clause of i contains output
attributes ;
else
SELECT clause of i contains the attri-
bute joining i with i—1;
end if
FROM clause of i contains name(s) of
relation(s) in block i



260 Transactions of Information Processing Society of Japan

if i#n then
WHERE clause of i contains the attribute
joining i with i+1;

else
i has no join predicate in the WHERE
clause ;

end if

end for
end

Before rewriting a tree query in the nested
form, we have to reconstruct the tree according
to the strength of joins. For each node 7 that has
a WHERE-degree k;>1, we sort the k; nodes
such that the leftmost node in &; is the one with
most strong join with node i, and the rightmost
node is the one with least strong join with i.
After reconstructing the tree, procedure TQ is
applied to rewrite the query.

While procedure TQ is preorderly traversing
the tree'®, it writes the query corresponding to
each node. If the current node is the root, its
SELECT clause contains output attributes.
Otherwise, it checks its NtR node, if it is the
node itself, the SELECT clause of the node
contains attribute joining the node with the root.
If, however, the NtR is not the node itself, the
SELECT clause of the node contains attribute
joining the node with its NtR node. Next, the
degree of the node is reduced by one to reflect
the previous step. The FROM clause of a node
contains name(s) of relation(s) in the block.
The third step is to write the WHERE clause of
the node. If the node is a leaf, i. e. its k; is zero,
its WHERE clause does not contain a nested
predicate. For a non-leaf node, the WHERE
clause contains k;—1 AND subclauses. In the
WHERE clause, the join between the node and
the node with the most strong join, among the k;
nodes, is written. AND clause number j, j=1,
-+, k;—1, contains join of strength j+1. The
final step is to write the whole query. Blocks are
written consecutively according to the list gener-
ated from the preorder traversal of the tree.

Procedure TQ
Input: A tree query and its reconstructed query
graph.
output : The same query in the nested form.
While traversing the tree in a preorder traversal,
write the query following the next algorithm.

Feb. 1994

begin

Jj=1;

for each node i do
if 7 is the root then

SELECT clause of i contains output
attributes ;

else
if NTR;=i then do

SELECT clause of i contains the
attribute joining i with NTR;;
ki: kz" 1 N
end do
else do
SELECT clause of i contains the
attribute joining i with the root;
ki: ki* 1 5
end do
end if
end if
FROM clause of i contains name(s) of
relation(s) in block 7
if k;>0, that is / is not a leaf node then do
WHERE clause of { has k;—1 ANDs;
WHERE clause of i contains the most
strong join among k; ;
repeat
AND clause number j contains the join
of strength j-+1;
until j=k,—1;
end do
else
node i has no nested predicate in its
WHERE clause ;
end if
end for
write the query blocks according to the list
produced  from the preorder traversal of the
tree;
end

4, Conversion Procedure for
Queries

Cyclic

A cyclic graph consists of # nodes and m
edges such that 72 >n. The nested form is more
understandable than the unnested form, how-
ever, it cannot represent cyclic queries. Another
form called seminested form can represent cyclic
queries. This form is more understandable than



Vol.35 No.2

the unnested form. In the seminested form, all
joins are written in the nested form except either
one of the edges that constitute a cycle. This
join is written as a join predicate.

In a query graph, when an edge is dotted its
corresponding join is written as a join predicate.
When an edge is solid its corresponding join is
written as a nested predicate. In a query graph,
if some edges are dotted and some others are
solid, its corresponding query is written in the
seminested form. Figure 7(a), (b), (c) show
an -example of a query written in unnested,
nested, and seminested forms, respectively.

As in the case of tree queries, the criteria of
join strength: is used to select which join among
those causing the cycle to be represented as a
nested predicate and which as a join predicate.
In some database systems, it is allowed to write
a multiple attribute join in a WHERE clause, in
this case we may combine (join) #—1 nodes in
the cycle as a single node, the query becomes a
tree query. When the number of nodes n>3, it
is better not to use this transformation. The
number of combined nodes is large and the
query will not be easy to understand.

Before giving a procedure to handle cyclic
queries, the following two definitions are
required.

Definition 11: Given a connected cyclic graph
G.(V,, E.), where V. is the set of nodes and E,
is the set of edges. We define a spanning tree of

o

0 R2 R3
\ R1 R2 R3 - R1 R °
SELECT R1.0 SELECT R1.O
FROMRLR2,RS FROM Rl
WHERE RLA = R2.A WHERE RLA =
ANDR2B=R3.B SELECT R2.A
FROM R2
WHERE R2.B =
SELECT R3.B
FROM R3
(a) (b)
SELECT R1.O
FROM R1 °
R
WHERE RLA = Rl R2 R
SELECT R2.A \O_____O _____ ')

FROM R2,R3
WHERE R2.B =R3.B

(c)

Fig.7 A query written in the unnested, nested, and
seminested forms.

Generating Nested SQL Queries for Documentation 261

the graph as the connected tree Ts( Vs, Es) such
that V5=V, and EsCE,.

Definition 12 : Given a connected cyclic weight-
ed graph, i.e. each edge is assigned certain
weight. A spanning tree of the graph is called a
minimum spanning tree, when the summation of
the weights in tree is the minimum among the
candidate spanning trees.

Procedure CYQ accepts a cyclic unnested

query and generates it in the seminested form.
First, if the underlaying SQL permits writing
multiple attributes in a WHERE clause, and the
number of nodes in the cycle is less than or equal
three, the following two steps are done :
(1) Combine the output node with one of the
nodes in the cycle. This node is the one that has
the most strong join with the output node.
Combining two nodes in a graph corresponds to
Jjoining relations represented by the nodes on the
attribute labeling the edge between the two
nodes. (2) Apply procedure TQ on the new
graph.

Otherwise, it finds a minimum spanning tree
of the graph. Edges in the tree are colored red
and the remaining edges are colored blue. The
minimum spanning tree is preorderly traversed.
During the traversal process, for any node i
which is connected by a blue edge to another
node j, check whether node j has been already
visited. If the node has been visited, write the
join between relations i and j as a join predi-
cate. This check is necessary to ensure that any
relation which is referenced in a join predicate
has been represented in a query block.

Procedure CYQ
Input : A cyclic query in the unnested form and
its query graph.
output : The same query in the seminested form.
begin

if mutli-attribute join is allowed and the
number of nodes in the cycle less than or
equal three then do

Combine the output node with the one of

the most strong join into one new node ;

Apply procedure TQ on the new graph ;
else do



262 Transactions of Information Processing Society of Japan

SELECT R1.0
FROM RI1
WHERE R1.A =
SELECT R2.A
FROM R2
WHERE R2.D =
SELECT R4.D
FROM R4
AND R2.C =
SELECT R3.C
FROM R3
WHERE R3.B = R1.B
AND R3.F =
SELECT R5.F
FROM R5
WHERE R5.E = R4.E

Fig.8 A cyclic query written in the seminested form.

Preprocessing steps :

(1) Determine a minimum spanning
tree and color all edges in the tree red and
the remaining edges blue ;
(2) Reconstruct the graph as done in
case of tree queries to reflect strength of
joins ;

End Preprocessing steps :

while traversing the minimum spanning tree

preorderly do
Create a list of all nodes traversed so far ;
if the current node i is connected to
another node j with a blue edge then do

if the relation corresponding to node j
is in the list of traversed nodes then
write the join between relations 7 and j
as a join predicate ;
end if

end do

end if

end do
end

Example : Figure 8 shows a cyclic query
graph. The graph has two cycles. The first
consists of nodes RI, R2, and R3, the second
cycle consists of nodes R2, R4, RS, and R3. (We
consider that writing multi-attribute join in one
WHERE clause is not permitted.) The first step
is to determine a minimum spanning tree.
Assume that edges in the minimum spanning
tree are the edges labelled A, D, C, and F. The
other remaining edges B and E are execluded
from the tree. Joins represented by the edges of
the tree are written as nested predicates and
other joins are represented as join predicates.

Feb. 1994

5. Queries with Multiple Output Relations

The nested form is more understandable,
however, some queries may not be written in this
form. If the query output is obtained from
several relations, the query cannot be written in
the nested form. If the query is simple, it may be
understandable when written in the unnested
form. In this section, we give two preprocessing
procedures to convert graphs with multiple
output nodes into equivalent graphs with only
one output node. The first procedure TMO,
handles tree graphs and the second, CMO, han-
dles cyclic graphs.

First we describe TMO. If the underlying
SQL permits writing multiple joins in a single
join predicate, output nodes are combined into a
single node. Output relations are combined by
taking their Cartesian product. If it is not
permitted to write multiple joins in one join
predicate, combines output nodes along with
any node in the path connecting two output
nodes. In this case, relations corresponding to
these nodes are joined. Next, the graph is recon-
structed such that the new output node becomes
its root node. For any node that was connected
to any of the combined nodes, there will be an
edge between this node and the new root having
same label as before.

Procedure TMO
Input: A tree query graph with multiple output
nodes :
output : An equivalent graph with a single
output node
begin

/* Define JOIN as a store of nodes to be
combined together. */
if multiple attribute join is allowed then
Combine output nodes into one node ;
/* Combined in the query by taking their
Cartisian product */
else
for each node i do
if / in the path between any two output
nodes then
add i to JOIN ;
end do
constitute a relation that corresponds
to the output node R, as R,=D]R;, i



Vol.35 No.2

=1-m,
where m is the number of relations in
JOIN ;
/* reconstruct the graph with R, as the
root */
end if
for each node j that was connected to any
node in JOIN do
connect this node to the new root with an
edge havig same label as before ;
end do
end

Example : Consider the query graph shown
in Fig.9(a), applying procedure TMO gener-
ates the graph shown in Fig. 9(b). The node
B, corresponds to joining relations in blocks
B1, Bz, and B4.

In case of tree queries, we have only one path
to combine output nodes. In case of cyclic
queries, however, if the path that connects the
output nodes contains at least two nodes that are
members in a cycle, we may have two ways to
combine output nodes. We have the following
criteria to select which set of nodes to combine :
(1) If the paths connecting output nodes have
same length, apply the criteria of join strength.
(2) If the paths connecting output nodes have
different lengths, select the path that contains
minimum number of nodes to combine. In this

O

B3

B4 Bs Bs Bs
(a) (b)

Fig. 9 A tree graph with multiple output nodes and its
simplification.

Generating Nested SQL Queries for Documentation 263

case there is a tradeoff between selecting the path
that contains minimum number of nodes to
combine and writing query blocks according to
strength of joins.  When considering join
strength, we may have to select large number of
nodes to combine. We decided to combine
minimum number of nodes sacrificing strength
of joins in order to generate nestings deeply as
possible.

To select such a path, we generate a new
graph from the original one. Nodes in the new
graph are output nodes in the original graph.
Each path that connects any two output nodes i,
J in the original graph is represented by a
labeled edge between i, j in the new graph. The
label of an edge connecting nodes u, v in the
new graph is the distance between these two
nodes in the original graph. For the new graph,
we find the minimum spanning tree. This tree
corresponds to the path that contain minimum
number of nodes to combine.

Example : The graph in Fig. 10(a) is a cyclic
graph with multiple output nodes. The graph in
Fig. 10(b) shows the new generated graph.
Solid edges in the new graph represent the
minimum distance spanning tree. Figure 10(c)
shows the original graph with only one output

0O B1
B2 Bs
04
B3
02
O3
(b)
By Bs
(a)
B*;
01,02, 03,04 <—
B2 Bs

(¢)

Fig. 10 Cyclic query graph with multiple output nodes
and its simplification.



264 Transactions of Information Processing Society of Japan

node B*;, which is the combination of nodes B,
Bg, B3, and B,.

Procedure CMO
Input: A cyclic query graph with multiple
output nodes
output: An equivalent graph with a single
output node
Condition :
The output node in the final graph is the combi-
nation of nodes in the input graph.
Method :

1- Build a new graph G'(V’, E’) from the
input graph as follows:

V' is the set of output nodes in the original
graph.

The set of edges E’ is constructed as fol-
lows:

for any two nodes i, j, if there is a path in
the original graph is connecting these
nodes,

it is represented by an edge between i, j in
the new graph.

The label of this edge is distance between i,
j in the original graph.

Associated with each edge an array that
contains nodes in the original path between
the two nodes.

2- Find the minimum spanning tree of the

01, 02

(a) (b)

Fig. 11 Case when multiple attributes join is possible.

Feb. 1994
new graph.

3- Combine all the nodes in the arrays
associated with edges in the minimum span-
ning tree into one node, say Bx,.

4- Build the output graph with node B+, as
its output node.

For any node wu, in the original graph,
which is connected by an edge labelled / to
any node in the combined nodes,

connect u to B+, via an edge with label /.

end

If the underlying SQL permits writing more
than one join attribute in the WHERE clause,
we can combine output nodes only. The combi-
nation is their Cartesian product. The graph
shown in Fig.9(a) is reconstructed as the
graph shown in Fig. 11(a). The query block
which corresponds to the node B*; in Fig. 11
(a) contains the Cartesian product of relations
in blocks B; and B,.

In the graph shown in Fig. 11( b ), we need to
combine output nodes in different paths, that is
we need to combine nodes By, B,, Bs, B,, and Bs.
If multi-attribute join is permitted we only need
to combine nodes By, B, and Bs.

6. Conclusion

In this paper, we presented procedures to
generate nested SQL queries for documentation
and query reuse and editing. An unnested query
is transformed to its equivalent nested one. Tree
and cyclic queries are considered. For a tree or
a cyclic query, there may be more than one
nested form. We gave criteria to select the order
of writing query blocks. These criteria are based
on determining join strength. We also presented
procedures to handle queries when the output is
obtained from several blocks.

References

1) Codd, E.F.: A Relational Model for Large
Shared Data Banks, Comm. ACM, Vol. 13, No.
6, pp. 377-387 (1970).

2) Astrahan, M. M. etal.: System R: Relational
Approach to Database Management, ACM
Transactions on Database Systems, Vol. 1, No.
2, pp. 97-137 (1976).

3) Chamberlin, D.D. etal.: SEQUEL2: A



4)

5)

6)

8)

9)

10)

11)

Vol.35 No.2

Unified Approach to Data Definition, Manipu-
lation, and Control, IBM J. Res. Dev., Vol. 20,
No. 6, pp. 560-575 (1976).

Unify Corporation: Unix Relational Data Base
Management System, Reference Manual (1984).
Zicof, M.: Query-by-Example: A Database
Language, IBM Systems J., Vol. 16, No. 6, pp.
324-343 (1977).

Kambayashi, Y.: An Overview of a Natural
Language Assisted Database User Interface:
ENLI, Proc. IFIP, pp. 1055-1060, Sept. (1986).
Kambayashi, Y. and Amano, H.: Transforma-
tions of Natural Language Expressions by Basic
Relational Database Operations, Trans. IPSJ
Vol. 30, No. 10, pp.1316-1322 (1989) (in
Japanese).

Kambayashi, Y.: Functions of the Database
Workbench, Proc. NCC, pp.547-553 (July
1984).

Date, C. J.: A Guide to the SQL Standards,
2nd Ed., Addison-Wesley (1989).

Bernstein, P. and Chiu, W.: Using Semi-Joins
to Solve Relational Queries, J. ACM, Vol. 28,
No. 1, pp. 25-40 (1981).

Kambayashi, Y.: Processing Cyclic Queries,
Query Processing in Database Systems, Kim,
W., David, S. and Don Batory, S. (eds.),
Springer-Verlag (1985).

Generating Nested SQL Queries for Documentation

265

12) Ceri, S. and Gottlob, G. : Translating SQL into
Relational Algebra: Optimization, Semantics,
and Equivalence of SQL Queries, JEEE Soft-
ware Engineering, Vol. SE-11, No. 4, pp. 324-
345 (1985).

Kim, W.: On Optimizing an SQL-like Nested
Query, ACM Transactions on Database Sys-
tems, Vol. 7, No. 3, pp. 443-469 (1982).
El-Sharkawi, M. and Kambayashi, Y.:
Efficient Processing of Distributed Set Queries,
Databases : Theory, Design , and Applications,
Rishe, N., Navathe, S. and Tal, K. (eds.), IEEE
Computer Press. (1991).

Luk, W. S. and Kloster, S.: ELFS: English
Language from SQL, ACM Transactions on
Database Systems, Vol. 11, No. 4, pp. 447-472
(1986).

Amano, H. and Kambayashi, Y.: Translation
of SQL Queries Containing Nested Predicates
into Pseudonatural Language, Proc. of DAS-
FAA, pp. 116-125 (1991).

Date, C.J. : An Introduction to Database
Systems, 3rd Ed., Addison-Wesley (1981).
Aho, A. V., Hopcroft, J. E. and Ullman, J. D.:
The Design and Analysis of Computer Algo-
rithms, Addison-Wesley (1974).

(Received July 3, 1989)
(Accepted September 9, 1993)

13)

14)

15)

16)

17)

18)

Mohamed E. El-Sharkawi re-
ceived the B. Sc. degree in Com-
puter and Systems Engineering
from Al-Azhar University,
Cairo, Egypt, M. Eng. and D.
Eng. degrees from Kyushu Uni-
versity, Fukuoka, Japan, in 1981,
1988, and 1991, respectively. He spent one year as a
researcher in the Advanced Software Technology and
Mechatronics Research Institute of Kyoto (ASTEM/
Kyoto). He was also a visiting researcher at the
Integraed Media Environment Experimental Labor-
ator at Kyoto University. Currently, he is Assistant
Professor at the Department of Mathematics, Kuwait
University. His research interests are in the areas of
object-oriented databases and computer supported
cooperative work.



266 Transactions of Information Processing Society of Japan

Yahiko Kambayashi received
the B. E, M. E,, and Ph. D.
degrees in electronic engineering
from Kyoto University, Kyoto,
Japan, in 1965, 1967, and 1970,
respectively. During 1970-1971
he was a Research Associate at
Kyoto University. From 1971 to 1973 he was a
Visiting Research Associate at the University of
Illinois, Urbana, U. S. A. During 1973-1984 he was
with the Department of Information Science, Kyoto
University. In 1984 he became a Professor at the
Department of Computer Science and Comunication

Feb. 1994

Engineering, Kyushu University, Fukuoka, Japan.
Since 1990 he has been a Professor at Integrated
Media Environment Experimental Laboratory of
Kyoto University. . In 1979, he was a Visiting Profes-
sor at McGill University, Montreal, Canada, and in
1984 he was a Visiting Professor at Wuhan Univer-
sity, Wuhan, China. His research interests include
logic design and database theory. Dr. Kambayashi
was a Chairman of SIGDBS (database systems) of
the IPSJ, a Chairman of SIGCOMP (computation
theory) of the IIEIEJ. He was also a member of the
boad of IPSJ. He is currently a vice-chair of Japan
Section of ACM.




