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Dimension Reduction Using Nonnegative Matrix
Tri-Factorization in Multi-label Classification
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Abstract: Multi-label classification problem has become more important in image processing and text analysis where
an object often is associated with many labels at the same time. Recently, even in this problem setting dimension
reduction aiming at avoiding the curse of dimensionality has gathered an attention, but it is still a challenging problem.
Nonnegative Matrix Factorization (NMF) is one of promising ways for dimension reduction in unsupervised learning,
and is extended from two-matrix factorization to triple-matrix factorization. In this paper, we reformulate the NMF
with three factor matrices in such a way that it is solvable the problem of the combinatorial explosion of labels and
incorporates the label correlation naturally in supervised learning. Experiments on web page classification datasets
show the advantages of the proposed algorithm in the classification accuracy and computational time.

1. Introduction
Multi-label classification has attracted much attention in a vari-

ety of fields such as text analysis, image analysis and recommen-
dations [10]. This is because an object often has several labels
simultaneously, for example, a document may belong to politics
and economics. A multi-label multi-class problem can be trans-
formed into a set of independent single-label binary-class prob-
lems. However in that case, the relation between classes is lost.

Dimensional reduction is an essential technique in the field of
machine learning and it aims to avoid the curse of dimensional-
ity. The methods for dimension reduction are classified into either
unsupervised or supervised method. The unsupervised methods
such as Principal Component Analysis (PCA) [7] and Nonnega-
tive Matrix Factorization (NMF) [8] reduce the dimension of the
feature space ignoring the class information, while the supervised
methods such as Linear Discriminant Analysis (LDA) aim to keep
the class separability even in the reduced feature space. Recently,
some supervised dimension reduction methods have been pro-
posed even for multi-label classification [13, 15, 18]. The key
idea in common is to keep the label dependency as possible in the
reduced space.

NMF is one of the unsupervised dimension reduction methods
and decomposes a given nonnegative matrix into a product of two
lower-ranked nonnegative matrices [8]. It is reported that NMF
outperforms PCA in the interpretability and even in the classifi-
cation accuracy [3]. Its supervised version, NMF-LDA [16], is
more advantageous in the classification accuracy. However, such
supervised NMF algorithms are all only applicable to single-label
classification and hard to be simply extended to multi-label clas-
sification for the difficulty to solve a set of binary-class problems
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Fig. 1 The position of this study: a supervised multi-label dimension reduc-
tion method with nonnegative constraint for the elements.

in single dimension reduction scheme.
In this paper, we cope with this difficulty by proposing a multi-

label NMF with the idea of tri-factorization. As seen in Fig. 1.
this study is the first nonnegative supervised multi-label dimen-
sion reduction method. Our goal in this study is to find an effec-
tive representation of nonnegative data matrix with correspond-
ing label matrix, while taking into consideration the multi-label
information and the label dependency at the same time. Nonneg-
ativity is imposed from an emprical knowledge that the nonneg-
ativity, and the sparsity induced by the nonnegative constraint,
has been to the improvement of classification in the past of study
of NMF [1, 6, 14]. We borrow the idea of Nonnegative Matrix
Tri-Factorization (NMTF) proposed by Ding et al. [5], one of un-
supervised algorithms, which decompose a nonnegative matrix
into a product of nonnegative three matrices. In this study, we
decompose a data matrix into three factor matrices that have their
own roles in data approximation.

1.1 Notations
We use X for a matrix and x for a vector. In multi-label clas-
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sification, a sample x is associated with a subset y of class la-
bels. We consider N training samples and L labels. Each sam-
ple xi belongs to an M-dimension space and the associated la-
bel subset is represented as a binary vector yi ∈ {0, 1}

L. We
denote X = [x1, x2, . . . , xN] ∈ RM×N as a data matrix and
Y = [y1, y2, . . . , yN] ∈ {0, 1}L×N as a label matrix.

2. Related Work
According to Fig. 1, we review the methodology proposed so

far.
Unsupervised Dimensionality Reduction Methods
Latent Semantic Indexing (LSI) is one of popular unsupervised
dimension reduction methods [4]. LSI decomposes a matrix X
into a product of two low-rank matrices AB by solving an eigen
problem. Nonnegative Matrix Factorization (NMF) is another un-
supervised method [8]. In NMF, the two factor matrices are re-
quired to be of nonnegative elements and this leads sparser ma-
trices as a side effect. There are some reports saying that NMF
outperforms PCA in the accuracy of classification by the virtue
of the sparse representation [1, 3, 6, 14].
Supervised Dimensionality Reduction Methods for Single-
label Classification
Linear Discriminant Analysis (LDA) is a supervised dimension
reduction method for single-label multi-class classification [9]. It
finds a subspace so as to maximize the ratio of between-class dis-
tance to the within-class distance. Zafeiriou et al. coupled NMF
and LDA to produce NMF-LDA [16]. They aimed to realize both
the sparsity, inheritance of NMF, and the class separability, inher-
itance of LDA. They constructed an objective function to achieve
both in NMF-LDA.
Supervised Dimensionality Reduction Methods for Multi-
label Classification
Yu et al. firstly conducted dimension reduction for multi-label
classification problem and proposed a method called Multi-Label
Informed Latent Semantic Indexing (MLSI) [15]. This method
decomposes data matrix and label matrix at the same time with
sharing a matrix. The shared matrix bridges the approximation
information and the label information. Zhang et al. proposed
another method called Multi-label Dimensionality reduction via
Dependence Maximization (MDDM) [18]. MDDM finds a sub-
space so as to maximize the dependency between the features
and the associated labels. Wang et al. proposed Multi-label
LDA (MLDA) as a generalization of Linear Discriminant Anal-
ysis (LDA) [13]. They redesigned the scatter matrices so as to
handle multi-label setting. Other than redesigned scatter matri-
ces, MLDA is the same as LDA. Therefore, it is straightforward to
couple NMF with MLDA, such as NMF was coupled with LDA
to produce NMF-MLDA, but we leave such a trial for the future
work.

3. Multi-label Informed Nonnegative Matrix
Tri-Factorization

We first explain the key idea of the proposed approach. In un-
supervised dimension reduction, we usually consider to approx-
imate a data point x ∈ RM by a linear combination of a small
number of bases u j ∈ R

M , j = 1, 2, . . . , J (J � M), as

x � x̂ = a1u1 + a2u2 + · · · + aJuJ ,

where a j ∈ R, j = 1, 2, . . . , J are the coefficients depending on x.
If samples belonging to the same class concentrate on around a
representative point of the class, the number J could be identical
to the number L of classes as long as single labeled samples are
only considered. In multi-label problems, since such a sample x
is associated with a subset of labels, the number of possible (ex-
tended) classes becomes 2L in the same scenario. It is, therefore,
infeasible to find a low-dimensional subspace, a small value of J.
To cope with this problem, we take the following approach. We
first assume a multi-labeled mean vector my ∈ RM is expressed
by a linear combination of single-labeled mean vectors as

my = y1m1 + y2m2 + · · · + yLmL, y = (y1, y2, . . . , yL)T (1)

In addition, we consider to express the single-labeled mean vec-
tors by J bases as

ml = s1lu1 + s2lu2 + · · · + sJlul, l = 1, 2, . . . , L. (2)

From (1) and (2), we can write my by

my = (u1,u2, . . . ,uJ)


s11 · · · s1L
... · · ·

...

sJ1 · · · sJL



y1

y2
...

yL


= USy.

For each pair (x, y) given as a training sample, we try to ap-
proache x̂ = my = USy to x by choosing U and S appropri-
ately. Once bases U is determined, we project x on the subspace
spanned by U for dimension reduction.

3.1 Problem Formulation
In the following objective function to minimize, we expect that

all training data x associated with y are distributed near the mean
vector my. In addition, we expect the mean vectors of frequently
co-occurred classes are closely located. As a result, we find U
and S minimizing

J(U,S) = ||X − USY||2F + λtr(SLST ), (3)

where ‖ · ‖F denotes Frobenius norm, tr(·) denotes the trace and
λ is a positive coefficient. Here, L is the graph Laplacian matrix
defined as L = K − D where K = YT Y, and D is the diagonal
matrix whose lth elements is Dll =

∑L
j=1 K jl. This penalty term

is called graph regularization which aims to preserve the local-
ity provided by K on the subspace spanned by U [2]. That is, to
minimize the second term, the mean vectors mj and ml should be
close for frequently co-occurred jth and lth classes.

3.2 Optimization
Since NMF problems are NP-hard [12], we optimize the com-

ponent matrices alternatively as EM algorithm does. We use mul-
tiplicative update rules algorithm [8]. According to [3, 8], the
multiplicative update rule of A for minimizing ‖X − AB‖2F are
expressed in general as
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Algorithm 1 Multi-label Nonnegative Matrix Tri-Factorization
(MNMTF)

1: Input: Nonnegative matrix X and binary label matrix Y;
Weighting parameter for label correlation λ; The number of
bases J;

2: Output: Nonnegative matrices U and S minimizing ||X −
USY||2F + λtr(SLST );

3: Initialize U and S by random positive values;
4: repeat
5: U = U ∗ XYT ST

USYYT ST .

6: S = S ∗ UT XYT
+λSK

UT USYYT
+λSD .

7: until Convergence criterion is met

A = A ∗
∇−A

∇+
A
,

where ∗ and / is the element-wise multiplication and division, re-
spectively. Here, ∇+

A and ∇−A are the positive term and the negative
term of the gradient of ||X−AB||2F in A, respectively. The gradient
of (3) in U and S are calculated as follows:

∇U = −2XYT ST + 2USYYT ST ,

∇S = −2UT XYT + 2UT USYYT − 2λSK + 2λSD.

Hence, we update U and S, respectively:

U = U ∗
XYT ST

USYYT ST and S = S ∗
UT XYT + λSK

UT USYYT + λSD
.

The pseudo-code of the proposed Multi-label Nonnegative Matrix
Tri-Factorization (MNMTF) algorithm is shown in Algorithm 1.

After obtaining the subspace U, we project all training and test-
ing samples into the subspace by solving the following minimiza-
tion problem with nonnegative constraint:

||x − Uu||2.

We use this u ∈ RJ as the new representation of original sample
x ∈ RM in both training and test phases. In the training phase, u
is given by u = Sy for a pair (x, y).

3.3 Computational Complexity
All traditional algorithms such as MLSI, MDDM and MDDM

need O(M2N) or O(M3) to obtain the subspace U. On the other
hand, the proposed algorithm needs O(MNL). In most cases, the
number L of labels is smaller than both the dimension M of data
and the number N of training samples L. Thus, the proposed al-
gorithm is faster than these traditional algorithms in such cases.

In the projection step, all traditional algorithms need O(M(N +

K)J) to project N training samples and K test samples. The pro-
posed algorithm also needs O(M(N + K)J), however, in practice
it needs several repeatations of matrix multiplications due to the
nonnegativity constraint and non-orthogonality of U. Thus, the
actual computation time is a little more than those of the tradi-
tional algorithms.

4. Experiments
We evaluated the performance of the proposed algorithm

through experiments on web-page classification.

Table 1 A Summary of Dataset

Top-category #Labels (L) #Words (M)
Arts&Humanities 26 2315
Business&Economy 30 2192
Computers&Internet 33 3410
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Fig. 2 Classification performance in dimension reduction (Hamming loss
comparison). We omitted the result of MLDA due to the worse per-
formance.

4.1 Dataset
We used a yahoo web page classification dataset [11]. The

summary of dataset are shown in Table 1. We followed the set-
ting used in [17]. For each dataset, we randomly picked up 2,000
samples for training and 3,000 for testing. Top 10% most fre-
quently occurred words were chosen as features. For more detail,
see [17].

4.2 Results
We compared the proposed algorithm (MNMTF) with the

other three multi-label dimension reduction methods, MLSI [15],
MDDM [18], and MLDM [13]. In addition, we also compared
with the original feature space (ORI) without dimension reduc-
tion and an unsupervised standard NMF without multi-label in-
formation (NMF) [8]. The weighting parameter β of MLSI β was
set to the recommended value β = 0.5 [15]. In the proposed
algorithm (MNMTF), we set λ = 0.1. We used a Multi-label
k-Nearest Neighbor (ML-kNN) for the classifier after dimension
reduction [17] with default settings.

In multi-label classification, several measures of performance
are used at the same time instead of a single measure,e.g. the
error rate used in single-label classification. We used four pop-
ular criteria of hamming loss, one-error, coverage and average
precision [17]. We averaged the results of five-subsets in each
dataset.

We varied the number of dimensionality J =

0.1M, 0.2M, . . . , 0.8M. The results on ”Arts&Humanities”
dataset and ”Business&Economy” are shown in Fig. 2. We note
that NMF, MLSI and MLDA failed to improve the classification
performance by reducing the dimensionality. The proposed
MNMTF succeeded in total, although it is a little sensitive the
value of J. We show the result with 30% dimension on Table 2.
This was the best setting on ”Arts&Humanities” dataset. We can
see that the proposed algorithm MNMTF is almost the best in all
the criteria, although the degree of improvement is only slightly
more.
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Table 2 Results on yahoo web page classification datasets. the bold figures show the best score. The
symbol +/− larger/smaller is better in the criterion.

Dataset Evaluation Compared methods
criterion ORI MLDA [13] MLSI [15] MDDM [18] NMF [8] MNMTF(Proposal)

Arts&Humanities Hamming loss (−) 0.060 0.111 0.061 0.059 0.061 0.058
One-error (−) 0.608 0.847 0.618 0.565 0.609 0.608
Coverage (−) 6.269 16.815 6.468 6.395 6.364 5.978
Average precision (+) 0.360 0.154 0.353 0.369 0.358 0.383

Business&Economy Hamming loss 0.028 0.065 0.028 0.028 0.028 0.027
One-error 0.119 0.596 0.123 0.126 0.122 0.116
Coverage 4.023 18.598 4.053 4.125 4.030 3.930
Average precision 0.394 0.193 0.393 0.391 0.394 0.396

Computers&Internet Hamming loss 0.038 0.070 0.042 0.041 0.040 0.036
One-error 0.421 0.702 0.429 0.404 0.413 0.402
Coverage 5.343 18.193 5.606 5.607 5.491 5.285
Average precision 0.389 0.193 0.382 0.388 0.388 0.396

5. Conclusion
In this paper, we have proposed a supervised Nonnegative Ma-

trix Factorization algorithm for multi-label classification prob-
lems. The key idea is to formulate a supervised multi-label prob-
lem as a factorization problem of a given data matrix into three
nonnegative factor matrices one of which is a give label matrix.
The results on text classification showed the advantages in clas-
sification accuracy and computational time compared with the
state-of-the-art methods.
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