
IPSJ SIG Technical Report

Swapping Labeled Tokens

on Complete Split Graphs

Gaku Yasui1,a) Kouta Abe1,b) Katsuhisa Yamanaka1,c) Takashi Hirayama1,d)

Abstract: A token-swapping problem is a kind of generalization of sorting problems. Given a graph
G = (V,E) in which each vertex has a token, we wish to move tokens to their target vertices by repeatedly
swapping two tokens on adjacent vertices. Recently, Yamanaka et al. have proposed a polynomial-time
2-approximation algorithm for trees and polynomial-time exact algorithm for bipartite complete graphs. In
this paper, we give a polynomial-time exact algorithm for complete split graphs.

1. Introduction

Sorting problems are fundamental and important in com-

puter science. In this paper, we consider a problem of sort-

ing on graphs. Given a simple connected graph G = (V,E)

in which each vertex has a labeled token, we wish to move

each token to its target vertex by swapping the two tokens

on adjacent vertices. We call this a token-swapping problem.

The token-swapping problem can be solved in O(n2) token-

swaps for any connected graph [1]. Thus, our objective is to

minimize the number of token-swaps.

Some results of the token-swapping problem have been

known for several graph classes. For paths, cycles, and com-

plete graphs, the problem can be exactly solved in poly-

nomial time [2]. For square of paths, Heath and Ver-

gara [3] have proposed a polynomial-time 2-approximation

algorithm. Recently, Yamanaka et al. [1] have proposed a

polynomial-time 2-approximation algorithm for trees and

a polynomial-time exact algorithm for bipartite complete

graphs.

2. Preliminaries

2.1 Graph notations

In this paper, we assume without loss of generality that

graphs are simple and connected. Let G = (V,E) be an

undirected unweighted graph with vertex set V and edge

set E. We sometimes denote by V (G) and E(G) the ver-

tex set and edge set of G, respectively. We always de-

note n = |V |. For a vertex v in G, let N(v) be the

set of all neighbors of v (which does not include v itself),

that is, N(v) = {w ∈ V (G) | (v, w) ∈ E(G)}. Let

1 Iwate University, Japan
a) yasui@kono.cis.iwate-u.ac.jp
b) k-abe@kono.cis.iwate-u.ac.jp
c) yamanaka@cis.iwate-u.ac.jp
d) hirayama@cis.iwate-u.ac.jp

(a) (b)

Fig. 1 (a) A split graph and (b) a complete split graph.

N [v] = N(v) ∪ {v}.

A graph is a split graph if its vertex set is partitioned into

a clique and an independent set. A split graph is a complete

split graph in which each vertex of its independent set is

adjacent to all vertices of its clique. See Fig. 1 for examples.

2.2 Token-swapping problem

Suppose that the vertices in a graph G = (V,E) have dis-

tinct labels v1, v2, . . . , vn. Let L = {ℓ1, ℓ2, . . . , ℓn} be a set

of n labeled tokens. Then, a token-placement f of G is a

mapping f : V → L such that f(vi) 6= f(vj) holds for ev-

ery two distinct vertices vi, vj ∈ V ; imagine that tokens are

placed on the vertices of G. Two token-placements f and f ′

of G are said to be adjacent if the following two conditions

(a) and (b) hold:

(a) there exists exactly one edge (vi, vj) ∈ E such that

f ′(vi) = f(vj) and f ′(vj) = f(vi); and

(b) f ′(vk) = f(vk) for all vertices vk ∈ V \ {vi, vj}.

In other words, the token-placement f ′ is obtained from f

by swapping the tokens on two vertices vi and vj such that

(vi, vj) ∈ E. For two token-placements f and f ′ of G, a

sequence S = 〈f1, f2, . . . , fh〉 of token-placements is called

a swapping sequence between f and f ′ if the following three

conditions (1)–(3) hold:

(1) f1 = f and fh = f ′;

(2) fk is a token-placement of G for each k = 2, 3, . . . , h−

1; and

(3) fk−1 and fk are adjacent for every k = 2, 3, . . . , h.

1ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.14
2015/6/13

IPSJ SIG Technical Report

(a) f0 (b) (c) ft

Fig. 2 (a) A given graph and a token-placement f0. (b) The
token-placement obtained by swapping two tokens placed
on v1 and v5. (c) The token-placement obtained by swap-
ping two tokens placed on v4 and v5. This is the target
token-placement.

(a) (b)

Fig. 3 (a) A token-placement of a graph, and (b) its conflict
graph.

The length of a swapping sequence S, denoted by len(S),

is defined to be the number of token-placements in S mi-

nus one, that is, len(S) indicates the number of token-swaps

in S. We call a given token-placement an initial token-

placement, denoted by f0. The target token-placement, de-

noted by ft, is the token-placement such that ft(vi) = ℓi for

all i = 1, 2, . . . , n. A vertex vi is a target vertex of a token

ℓj if ℓj = ft(vi) holds. Token-Swapping is the problem

of finding the minimum length of a swapping sequence be-

tween a given initial token-placement f0 and a target token-

placement ft. See Fig. 2 for an example. For a graph G and

an initial token-placement f0, OPTG(f0) = min{len(S) |

S is a swapping sequence between f0 and ft}.

2.3 Conflict graph

We introduce a digraph D = (VD, ED) for a token-

placement f of a graph G, called the conflict graph, as fol-

lows:

• VD = V (G); and

• there is an arc (vi, vj) from vi to vj if and only if

f(vi) = ft(vj).

Therefore, each token f(vi) on a vertex vi ∈ VD needs to be

moved to the vertex vj ∈ VD such that (vi, vj) ∈ ED. (See

Fig. 3 for an example.) A vertex vi with f(vi) = ft(vi) has

a self-loop.

The following lemma holds.

Lemma 1. [1] Let D be the conflict graph for a token-

placement f of a graph G. Then, every component in D is

a directed cycle.

For a token-placement f of a graph, let C(f) be the set

of cycles of the conflict graph. Then, we define V (C(f)) =
⋃

C∈C(f)

V (C).

Algorithm 1 find-swapping-sequence(G, f0)

1: G is a complete split graph and f0 is an initial token-placement

of G. Let f be the current token-placement of G, and set

f = f0.

2: for all v ∈ VQ do

3: while f(v) 6= ft(v) do

4: Swap f(v) with the token on the target vertex of f(v), and

update f to the token-placement obtained by the token-

swap.

5: end while

6: end for

7: for all v ∈ VI do

8: if f(v) 6= ft(v) then

9: Swap f(v) with the token on any vertex u in VQ, and let

f be the obtained token-placement.

10: while f(u) 6= ft(u) do

11: Swap f(u) with the token on the target vertex of f(u),

and update f to the token-placement obtained by the

token-swap.

12: end while

13: end if

14: end for

3. Upper and lower bounds

In this section, we consider the Token-Swapping prob-

lem for complete split graphs. We first give an algorithm

that constructs a swapping sequence, and then we estimate

the length of the swapping sequence. Next we show that the

length of the swapping sequence is optimal.

Let G be a complete split graph. Let VQ and VI be sets

of vertices of the clique and the independent set of G. It is

easily observed that the clique and the independent set of

G can be founded in polynomial time. Let f be a token-

placement of G, and let D be a conflict graph for f of G.

We define C(f) as the set of cycles of D for f . We similarly

define CQ(f) as the set of cycles of D each of which is con-

sisting of only vertices of VQ, and define CI(f) as the set of

cycles of D each of which is consisting of only vertices of VI .

Denote CQI(f) = C(f)\ (CQ(f)∪CI(f)). That is, CQI(f)

is the set of cycles each of which contains at least one vertex

of VQ and at least one vertex of VI . Let C1(f) be the set

of cycles with length one. Let C′
Q(f) be the set of cycles in

CQ(f) with length two or more, and let C′
I(f) be the set of

cycles in CI(f) with length two or more.

Now we give an algorithm that finds a swapping sequence

between an initial token-placement f0 and the target token-

placement ft. Our algorithm is shown in Algorithm 1.

Our algorithm first moves tokens on vertices in VQ to their

target vertices, then moves tokens on vertices in VI . The

details are as follows.

The first for-statement constructs the following token-

placement. Let C be any cycle of D including a vertex

v ∈ VQ. Then a token f(v) can be moved to its target ver-

tex by one token-swap, since v is adjacent to all vertices ofG.

Thus, by swapping the token f(v) on v with the token on the

target vertex of f(v), we obtain a cycle with one less length

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.14
2015/6/13

IPSJ SIG Technical Report

and a cycle with one length. By repeating such token-swaps,

we obtain a token-placement f ′ such that f ′(v) = ft(v) for

all v ∈ V (C) and f ′(v) = f(v) for all v /∈ V (C). We per-

form the above process for v ∈ VQ such that f(v) 6= ft(v)

holds. Let g be the obtained token-placement. Then we

have the following lemma.

Lemma 2. For the token-placement g, we have

• g(v) = ft(v) if v ∈ VQ ∪
⋃

C∈CQI(f0)

V (C) ∩ VI

• g(v) = f0(v) otherwise.

Now, we estimate the number of token-swaps to con-

struct g. Let s1, s2, . . . , sp be lengths of cycles in C′
Q(f0) ∪

CQI(f0), where p =
∣

∣C′
Q(f0)

∣

∣+ |CQI(f0)|. Since the tokens

on vertices of any cycle with length si in C′
Q(f0)∪CQI(f0)

can be moved to their target vertices by (si−1) token-swaps,

the number of token-swaps to construct g is:

(s1 − 1) + (s2 − 1) + · · ·+ (sp − 1)

= (s1 + s2 + · · ·+ sp)− p

= |V (C′
Q(f0))|+ |V (CQI(f0))|

−(|C′
Q(f0)|+ |CQI(f0)|)

= |V (C′
Q(f0))|+ |V (CQI(f0))|+ |C1(f0)|

−(|C′
Q(f0)|+ |CQI(f0)|+ |C1(f0)|)

= |V (C(f0))| − |V (C′
I(f0))|

−(|C′
Q(f0)|+ |CQI(f0)|+ |C1(f0)|)

= |V (C(f0))| − |V (C′
I(f0))|

−(|C(f0)| − |C′
I(f0)|). (1)

The second for-statement in Algorithm 1 moves tokens

on vertices of cycles in C′
I(f0) to their target vertices. Be-

cause vertices in the cycles contained in VI are indepen-

dent set, tokens on the vertices cannot moved to their tar-

get vertices by one token-swap. For a token on a vertex

v of C ∈ C′
I(f0), we swap the token and a token on a vertex

v′ ∈ VQ. Then, we obtain a cycle with one more length.

Since the cycle contains a vertex in VQ and at least two

vertices in VI , the above method for cycles in CQ ∪ CQI

works, and hence all tokens on vertices of the cycle can be

moved to their target vertices. The number of token-swaps

is t + 1, where t is the length of C. Let t1, t2, . . . , t|C′

I
(f0)|

be lengths of cycles in C′
I(f0). The number of token-swaps

in the second for-statement is

(t1 + 1) + (t2 + 1) + · · ·+ (t|C′

I
(f0)| + 1)

= (t1 + t2 + · · ·+ t|C′

I
(f0)|) + |C′

I(f0)|

= |V (C′
I(f0))|+ |C′

I(f0)|. (2)

Taking the sum of Equations (1) and (2), we obtain the

number of token-swaps of Algorithm 1.

|V (C(f0))| − |V (C′
I(f0))| − (|C(f0)| − |C′

I(f0)|) +

|V (C′
I(f0))|+ |C′

I(f0)| = n− |C(f0)|+ 2|C′
I(f0)|

By the above analysis, we obtain an upper bound as in

the following lemma.

Lemma 3. OPTG(f0) ≤ n− |C(f0)|+ 2
∣

∣C′
I(f0)

∣

∣.

To show that the upper bound is optimal, we show a lower

bound as in the following lemma.

Lemma 4. OPTG(f0) ≥ n− |C(f0)|+ 2
∣

∣C′
I(f0)

∣

∣.

Proof. Let f be a token-placement of G, and let pG(f) =

n − |C(f)| + 2
∣

∣C′
I(f)

∣

∣. Note that pG(ft) = 0 holds. We

first show that any token-swap decreases pG(f) by at most

one for any token-placement f . That is, we show that

pG(f ′) ≥ pG(f) − 1, where f ′ is a token-placement adja-

cent to f and is obtained by swapping two tokens on the

edge (u, v).

Case 1: (u, v) is an edge of the clique of G

In this case, the token-swap on (u, v) never change the

value of |C′
I(f)|. If (u, v) is an underlying edge of D, then

|C(f)| is increased by one, and hence pG(f ′) = pG(f) − 1.

Now, we assume that (u, v) is not an underlying edge of D.

If u and v are included in the same cycle, then the token-

swap on (u, v) divides the cycle with the two cycles, and

hence pG(f ′) = pG(f)−1. Otherwise, suppose that u and v

are included in distinct cycles. Then, token-swap on (u, v)

decreases |C(f)| by one, since it unifies two cycles of D.

Hence pG(f ′) = pG(f) + 1 holds.

Case 2: (u, v) is an edge between a vertex of the clique and

a vertex of the independent set of G

Without loss of generality, suppose u is a vertex of the

clique of G and v is a vertex of the independent set of G. If

(u, v) is an underlying edge of a cycle of D, then the token-

swap on (u, v) increases |C(f)| by one, and |C′
I(f)| remains

the same. Thus, we have pG(f ′) = pG(f) − 1. Otherwise,

let Cu and Cv be the cycles including u and v, respectively.

First consider the case that u and v is included in the same

cycle of D, that is Cu and Cv are the same cycle. The

token-swap on (u, v) divides Cu into the two cycles, say C′
u

and C′
v. We assume that C′

u contains u and C′
v contains

v. If C′
u ∈ C′

I(f
′) holds, we have pG(f ′) = pG(f) + 1.

Note that C′
u ∈ CQI(f

′) holds, since u is a vertex of the

clique. Otherwise, |C(f)| is increased by one, and hence we

have pG(f ′) = pG(f) − 1. Now we suppose Cu 6= Cv. We

analyze the following two subcases.

Case (A): Cv ∈ C′
I(f0)

|C(f)| is decreased by one, and |C′
I(f)| is decreased by

one. We therefore obtain pG(f ′) = pG(f)− 1.

Case (B): Cv /∈ C′
I(f0)

|C(f)| is decreased by one, and hence pG(f ′) = pG(f)+1.

By the above case analysis, we obtain the following in-

equation;

pG(f ′) ≥ pG(f)− 1. (3)

Thus, any token-swap decreases pG(f) by at most one for

any token-placement f of G.

3ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.14
2015/6/13

IPSJ SIG Technical Report

From Equation (3), for any swapping sequence S =

〈f1, f2, . . . , fh〉 between f0 and ft of G, pG(fi+1) ≥

pG(fi) − 1 holds for i = 1, 2, . . . , h − 1. By taking a sum

of all the inequations for i = 1, 2, . . . , h − 1, we have the

following inequations.

pG(ft) ≥ pG(f0)− len(S)

len(S) ≥ pG(f0)− pG(ft)

len(S) ≥ n− |C(f0)|+ 2
∣

∣C′
I(f0)

∣

∣

Thus, we obtain the lower bound OPTG(f) ≥ pG(f).

Immediately from Lemmas 2 and 3, we have the following

theorem.

Theorem 5. For any token-placement f0 on a complete

split graph G, OPTG(f0) = n− |C(f0)|+ 2
∣

∣C′
I(f0)

∣

∣.

4. Conclusion

We have designed a polynomial-time algorithm that find

an exactly optimal solution of token-swapping problem for

a complete split graph. Our future works include to design

an algorithm for split graphs.

Acknowledgments This work is partially supported

by MEXT/JSPS KAKENHI, including the ELC project

(Grant Numbers 24106007 and 25330001).

References

[1] Yamanaka, K., Demaine, E., Ito, T., Kawahara, J., Kiyomi,
M., Okamoto, Y., Saitoh, T., Suzuki, A., Uchizawa, K. and
Uno, T.: Swapping Labeled Tokens on Graphs, Theoretical
Computer Science, accepted.

[2] Jerrum, M.: The Complexity Of Finding Minimum-length
Generator Sequences, Theoretical Computer Science, Vol. 36,
pp. 265–289 (1985).

[3] Heath, L. and Vergara, J.: Sorting by Short Swaps, Journal
of Computational Biology, Vol. 10, pp. 775–789 (2003).

4ⓒ 2015 Information Processing Society of Japan

Vol.2015-AL-153 No.14
2015/6/13

