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Abstract: In this paper we study the computational complexity of the game of Scrabble. We prove the PSPACE-
completeness of a derandomized model of the game, answering an open question of Erik Demaine and Robert Hearn.

Keywords: Scrabble, PSPACE-completeness, combinatorial games, computational complexity

1. Introduction

Scrabble� is a board game played by two to four players. In
this game, each player takes turns drawing lettered tiles randomly
out of an opaque bag and then attempting to place those tiles on
a 15 × 15 board, forming words. Points are awarded depend-
ing on the length of the formed words, the value of the letters
used and various bonuses found on the board, with the winner
being the player who has gathered the highest number of points
at the end of the game. For a fuller description of the board
game of Scrabble see the rules on the official website by Hasbro:
http://www.hasbro.com/scrabble/en US/discover/rules.cfm.

Having been invented in the US around the middle of the 20th
century, Scrabble is now one of the most popular and well-known
board games in the world. Besides the original English lan-
guage version, Scrabble has been translated to dozens of other
languages, while more than one hundred million Scrabble sets
have been sold worldwide.

Since Scrabble is such a successful game, it becomes a natu-
ral question to determine the computational complexity of find-
ing an optimal play. Similar questions have been answered for
several popular 2-player board games, such as Chess [5], Go [8],
Hex [4], and Othello [6], typically classifying their complexity as
either PSPACE- or EXP-complete. However, unlike these com-
binatorial games, chance plays a non-negligible part in a match
of Scrabble, as players don’t know in advance the order in which
tiles will be drawn. Still, much insight could be gained by investi-
gating the complexity of a perfect-information version of Scrab-
ble, where the order in which tiles will be drawn is known be-
forehand. This practice is quite common and many games which
involve chance or imperfect-information have already been anal-
ysed complexity-wise under a deterministic setting, for example
UNO [2] and Tetris [1]. This very question regarding the com-
plexity of a deterministic version of Scrabble was listed as an
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open problem by Demaine and Hearn [3]. In this paper, we tackle
exactly this question, showing that a derandomized version of
Scrabble is PSPACE-complete.

This result on its own is probably not surprising, since most
interesting board games are at least PSPACE-hard, and Scrabble
is trivially in PSPACE from the fact that tiles cannot be removed
from the board once they are placed. In addition to settling the
complexity question though, we go about trying to understand
what exactly makes the problem hard.

Informally, at any given round, a Scrabble player is confronted
with two decision tasks: which word to form and where to place
it on the board. Though these tasks are not independent -since
the formed word must be using some tiles already on the board-
they are conceptually different and the hardness of the game could
stem from either one. Put another way, it could be the case that
deciding which word is best to play is easy if there is only one
possible position where a word can be placed, or that deciding
where to place the next word is easy if only one word can be
made with the available tiles.

We present two different hardness proofs arguing that both of
these tasks are hard. In one reduction, the players are essentially
given appropriate tiles so that they only have one possible word
to play in each round, with a choice of two locations to place it.
In the other, players are essentially forced to play at a specific
place on the board, but are able to choose between two different
words. In both cases, the problem of deciding optimal play still
turns out to be PSPACE-complete. Thus, we establish that during
the course of a game, Scrabble players need to perform not one,
but two computationally hard tasks, which is probably the reason
why Scrabble is so much fun to play. Along the way, we show
that even a solitaire version of the game, where one player tries to
place all available tiles on the board while forming proper words,
is NP-complete.

The rest of the paper is divided as follows: In Section 2 we
present the model of the game that we study and define it for-
mally. In Section 3, we prove that Scrabble is hard due to the
players’ ability to place their formed word in more than one place.
In Section 4 we prove the hardness of Scrabble due to the play-
ers’ ability to form more than one word using the same letters.
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Finally, in Section 5, we give some conclusions and present some
interesting questions for further investigation.

2. Our Model of Scrabble - Definitions

Informally, the question we are trying to answer is the follow-
ing: given a Scrabble position, how hard is it to determine the
best playing strategy? As mentioned, we will tackle this problem
in a perfect information setting, where the contents of the bag and
the order in which they are drawn are known in advance to both
players (and therefore both players know each other’s letters).

Moreover, since Scrabble is a finite game, in order to study its
computational complexity we need to consider some unbounded
generalization. The most natural way to go forward is to consider
the game played on an n×n board. In addition, we assume that the
bag initially contains a number of tiles that depends on n, since
the restriction of the game where the bag contains a fixed num-
ber of tiles will yield at most a polynomial number of possible
configurations, putting the problem trivially in P.

Beyond the size of the board and the number of letters in the
bag, we need to define an alphabet, a dictionary (a set of accept-
able words), and a rack size which will determine how many let-
ters each player has in hand. All of these can be allowed to de-
pend on the input, but since we are interested in proving hardness
results we are happier when we can establish them even if those
parameters are fixed constants. In fact, in Theorem 4.1 we prove
that Scrabble is PSPACE-hard even with these restrictions, at the
cost of making the reduction a little technical.

We will deal with a plain version of the game, where all let-
ters have the same value and there are no premium positions on
the board (clearly, the more general case with multiple values and
possible premiums is at least as hard). We will assume that play-
ers are not allowed to exchange tiles. Pass moves are allowed and
do not affect our proofs: at any point when it’s a player’s turn
to play, that player is behind in the score. So if she chooses to
pass, the other player may also decide to pass. Repeating this for
three times in a row ends the game, according to standard Scrab-
ble rules, with the player who passed first losing the game. Thus,
if the current player has a winning strategy, it must be one where
she never chooses to pass.

Let us now give a more formal definition of the problem:
Definition 2.1 A position π in a scrabble game is an ordered

septuple (B, σ, p, r1, r2, s1, s2), where B is the board, which is an
n × n matrix of symbols from Σ, σ ∈ Σ∗ is a sequence of let-
tered tiles called the bag, p ∈ {1, 2} is the number of the active
player, r1, r2 are multisets with symbols from Σ denoting the con-
tents of the rack of the first and the second player respectively
and s1, s2 ∈ IN are the scores of the first and the second player
respectively.

Definition 2.2 We define a Scrabble game S to be an ordered
quadruple (Σ,Δ, k, π0) where: Σ is a finite alphabet, Δ ⊂ Σ∗ is a
finite dictionary, k ∈ IN+ is the size of the rack and π0 is the initial
position of the game.

A proper play uses any number of the player’s tiles from the
rack to form a single continuous word (main word) on the board,
reading either left-to-right or top-to-bottom. The main word must
either use the letters of one or more previously played words, or

else have at least one of its tiles horizontally or vertically adjacent
to an already played word. If words other than the main word are
newly formed by the play, they are scored as well, and are subject
to the same criteria for acceptability. All the words thus formed
must belong to the dictionary. After forming a proper play, the
sum of the lengths of all formed words is added to the active
player’s points, used letters are removed from the player’s rack
which is then refilled with an equal amount of new letters from
the bag (or less, if |σi| < k). The new letters form a prefix of σi.

Definition 2.3 A play Π = π1 . . . πl is a sequence of positions
such that, for all i, πi+1 is attainable from πi by the active player
by forming a proper play on the board.

Definition 2.4 A play Π = π1 . . . πl is finished if the player
who is about to make a move is unable to form a proper play. The
winner of a finished play is the player who gained more points
during the game.

Definition 2.5 A Scrabble solitaire game is defined analo-
gously to the normal game, but with only a single player. The
player solves the solitaire if she manages to get rid of all the let-
ters from the bag. We define (Σ,Δ, k, π)-Scrabble solitaire, with
Σ, Δ and k as above and π = {B, σ, r1}, with B, σ and r1 also
defined as above (in the solitaire version there is no score).

Definition 2.6 We define Scrabble to be the problem of de-
termining the winner of a given Scrabble game and Scrabble-
Solitaire to be the problem of determining if a given Scrabble
solitaire game is solvable.

We will establish PSPACE-hardness via two reductions from
3-CNF-QBF, the problem of deciding whether a quantified
boolean CNF formula is true. 3-CNF-QBF is a variation of sat-
isfiability which is complete for the class PSPACE [7]. It can
be viewed as a two player game, where players take turns setting
truth values of the variables used in a formula φ interchangeably.
If φ is satisfied then player 1 wins, else player 2 wins.
3-CNF-QBF:

Input: A first order formula ∃x1∀x2∃x3 . . .∀xn φ(x1, x2, x3,

. . . , xn), where φ is a propositional formula written in CNF
which has m clauses, with each clause containing 3 literals.
Rules: Players 1 and 2 set truth values to variables of φ.
Player 1 sets truth values to existentially quantified variables,
whereas player 2 sets truth values to universally quantified
variables.
Question: Does there exist a strategy for player 1 to make φ
satisfiable?

We are also interested in a variation of the game where there is
only one player who tries to place all the tiles on the board, which
we call Scrabble-Solitaire. Essentially the same constructions
we present can also establish NP-hardness for Scrabble-Solitaire
if one begins the reduction from 3-CNF-SAT. The 3-CNF-SAT
problem is defined as follows.
3-CNF-SAT:

Input: A propositional formula φ written in CNF that con-
tains n variables and m clauses, where each clause contains
at most 3 literals.
Question: Does there exist an assignment of truth values to
the variables such that all the clauses of φ are satisfied?
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3. Hardness due to Placement of the Words

In this section we present the first reduction, which shows that
Scrabble is hard because players have a choice on where to posi-
tion a formed word, despite that there is essentially a unique word
to form *1.

We will first prove that the one-player version Scrabble-
Solitaire is NP-complete. PSPACE-completeness of Scrabble
follows with slight modifications.

Lemma 3.1 Scrabble-Solitaire is NP-complete.
Proof. Proving that the problem is in NP is straightforward. To

establish the NP-hardness of Scrabble-Solitaire, we will con-
struct a reduction to this problem from 3-CNF-SAT. Given a 3-
CNF propositional formula φ with n variables x1, x2, . . . , xn and
m clauses, we construct in polynomial time a polynomial-sized
Scrabble-Solitaire game S, such that φ is satisfiable iff S is solv-
able.

The general idea of the proof is as follows. We will create gad-
gets associated to variables, where the player will assign values
to these variables. We will ensure that the state of the game after
the value-assigning phase completes, will correspond to a consis-
tent valuation. Then the player will proceed to the testing phase,
when for each clause she will have to choose one literal from this
clause, which should be true according to the gadget of the re-
spective variable. If she cannot find such a literal, she will be
unable to complete a move. Thus, we will obtain an immediate
correspondence between the satisfiability of the formula and the
outcome of the game.

The gadget for variable xi is shown in Fig. 1. The construction
of the dictionary and the sequence in the bag will ensure that at
some point during the value-assigning phase, the only way for the
player to move on is to form a word like in Fig. 2 (a) or to form a
symmetrical arrangement (Fig. 2 (b)).

During the test phase, for each clause ci = (l1∨ l2∨ l3) in every

Fig. 1 A gadget corresponding to the variable xi, which belongs to clauses
c j, c j′ positive and to clause c j′′ negated.

*1 In this section, we prove hardness of a version of Scrabble with an un-
bounded size alphabet. In Section 4, we prove the hardness of the natural
variant of derandomized Scrabble, where the alphabet, word, rack, and
dictionary sizes are constants.

play there will be a position, where the player will be obligated
to choose one of the literals from the clause, in whose gadget she
will try to play a word. She will be able to form a word there iff
the value of the corresponding variable, which has been set in the
earlier phase, agrees with the literal (see Fig. 3).

Let us describe the game more formally. The alphabet Σ of S
will contain:
• a symbol xi for every variable xi;
• a symbol cj, for every clause c j;
• auxiliary symbols: #, $, and ∗.
Let r be such that no literal appears in more than r clauses. The

rack size will be k = 2r *2.
The dictionary Δ will contain the following words:
• the word xi$k−1xi for every variable xi;
• the word cj∗k−1cj, for every clause c j;
• the dummy words appearing initially on the board due to the

construction of the variable gadgets.
The sequence in the bag σ will be a concatenation of the fol-

lowing:

σ =

n∏

i=2

(
xi$

k−1
) m∏

j=1

(
cj∗k−1

)
,

while the rack will initially contain: r1 = {x1} ∪ {$}k−1.
The phase of the game when at least one of the letters xi are

still on the rack is called the value-assigning phase. The follow-
ing phase is called the satisfaction phase.

We can now prove the following facts.
Fact 3.2 The player must always empty her rack in order to

perform a proper play.
Proof. Let us note that the # symbols that appear on the board

can never be combined with the given letters in the bag and rack
in order to form new words (this would require the use of an xi

or a cj in the third position from the beginning or the end of the

Fig. 2 Variable xi with an assigned value.

Fig. 3 A clause that gets satisfied due to xi.

*2 3-CNF-SAT remains NP-hard even in the restricted version where every
literal appears at most 2 times [7], so k can be set to 4.
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word, which is impossible in the current setting). So, the only
words that the player can form have all length k + 1. �

Fact 3.3 During the value-assigning phase, at each turn the
player performs an action that is in our setting equivalent to a
correct valuation of a variable, as shown in Fig. 2.

Proof. From the previous fact we gather that during each round
in the value-assigning phase, the contents of the player’s rack are
{xi} ∪ {$}k−1 for some i. Observe that the player can form a word
consisting of these letters only in one of two ways as shown in
Fig. 2, since the wall surrounding the gadget for xi forbids plac-
ing any words on the outside of the gadget. �

Fact 3.4 During the satisfaction phase, at each turn the
player’s actions are equivalent to checking whether a clause is
being satisfied, as shown in Fig. 3.

Proof. Based on the previous two facts, we know that during
each round in the satisfaction phase, the contents of the player’s
rack are {cj} ∪ {∗}k−1 for some clause c j. One can easily see that
the player can form a legal word using these letters only by ex-
tending one of the appearences of c j on the board in the gadgets.
The player can pick any gadget xi where ci appears and for which
the “assignment” word appears in the correct side (otherwise the
“satisfaction” word would not fit). �

The above facts imply that the game correctly simulates assign-
ing some valuation to a 3-CNF formula and checking whether it
is satisfied. It is easy to check that the size of the instance of the
Scrabble solitaire game obtained by the reduction is polynomial
in terms of the size of the input formula and that the instance
can be computed in polynomial time. We have thus shown that
Scrabble-Solitaire is NP-complete. �

To prove the PSPACE-completeness of Scrabble it suffices
to show that the above reduction from 3-CNF-SAT to Scrabble-
Solitaire can translate to the analogous reduction from 3-CNF-
QBF. A detailed proof follows.

Theorem 3.1 Scrabble is PSPACE-Complete.
Proof. We are given a first order formula ∃x1∀x2 . . . φ, with n

variables and m clauses. We can assume that n is even; if not, we
just add in φ a new dummy clause in which a new variable xn+1

appears both positive and negated.
We first create a propositional formula φ′ by duplicating all

clauses from φ. Observe that the new instance of 3-CNF-QBF
∃x1∀x2 . . . φ

′ is equivalent to the original.
It is easy to reduce the new instance of 3-CNF-QBF to a game

of Scrabble S. The alphabet Σ, the rack size k, and the board
construction B are defined in the same way as in the proof of
Lemma 3.1. The bag sequence σ and the dictionary Δ are again
defined almost identically as before, apart from the addition of a
2-letter word ## in the dictionary and the symbol # at the very
end of the bag (this will give player 1 the chance to take the lead
by forming a 2-letter word at the very end of the game if the for-
mula is satisfiable). The scores are s1 = s2 − 1 (i.e., player 2 has
a lead of 1 point) and it is the first player’s turn.

The two players will be playing a normal game of Scrabble
(starting by player 1) using a board obtained by applying the pre-
vious construction to the duplicated formula. Observe that, while
the number of variable gadgets is the same, their sizes are doubled
since each literal appears in twice as many clauses as in φ.

In the assignment phase, the two players will assign truth val-
ues to the variables x1, x2, . . . , xn interchangeably. Since n is
even, player 2 is the last player to put an “assignment” word on
the board, leaving player 1 to begin phase 2.

For the satisfaction part, observe that, for every clause cu there
is an identical clause c′u. If there is a literal li that satisfies cu, then
li also satisfies c′u. That means that player 2 cannot be left without
an available word to play since she can always match player 1’s
move.

If the formula is satisfiable, then the bag will eventually empty.
The last player to place a word will be player 1 using symbol # to
create a two-letter word ## anywhere on the board. In this case
player 1 wins with s1 = s2 + 1.

On the other hand, if the formula is not satisfiable, then the
last player to place a word will be player 2, leaving the score
s1 = s2 − 1 and making player 2 the winner of the game. �

4. Hardness due to Formation of the Words

In this section we present the second reduction, where the hard-
ness stems from the fact that there is more than one word to form
(despite having essentially a unique place to position them on the
board). Furthermore, we will optimize this reduction so that it
works even for constant-size Σ,Δ and k.

Theorem 4.1 Scrabble is PSPACE-complete even when re-
stricted to instances with a constant-size alphabet, dictionary and
rack.

Proof. We will proceed in steps. In Section 4.1, we sketch
the high-level idea, which consists of a board construction that
divides play into two phases, the value-assigning and the satis-
faction phase. In Sections 4.2, and 4.3, we sketch how the assign-
ment and satisfaction works.

4.1 Construction Overview
Our reduction is from 3-CNF-QBF. Suppose that we have a

3-CNF-QBF formula ∃x1∀x2∃x3 . . . φ with n variables x1, x2, . . . ,

xn, where φ has m clauses c1, c2, . . . , cm. We first double the for-
mula by taking each clause twice (this will allow player 2 to copy
player 1’s moves throughout the game). Then, we create an in-
stance of (Σ,Δ, k, π)-Scrabble, as follows.

The board will be separated in n roughly horizontal segments
which correspond to variables and 2m vertical segments which
correspond to clauses (see Fig. 4).

Play will be divided into two phases: the value-assigning phase
and the satisfaction phase. In the value-assigning phase, the two
players will play within the horizontal segments placing words
that encode the truth values of the variables of the formula. With
appropriately placed walls we keep the players on track in this
phase making sure that each player, during her turn, has only
one available position to place a word (but possibly two avail-
able words to place if it is her turn to decide on a variable’s truth
value).

For the satisfaction phase, the players place words in the ver-
tical segments. The doubling of the clauses ensures that player
1 should be the one responsible for checking the satisfiability of
each of the clauses (player 2 just repeats player 1’s moves for the
duplicate clauses). We have encoded the structure of the formula
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Fig. 4 A high level view of the game.

Table 1 The Dictionary Δ. All valid words appear as regular expressions,
together with their definitions. Synonyms are grouped together.

Dictionary
Word Definition
FTFTFTFTFTZFTF,

Value preserving words
(true)

TFTFTFTFTFZTFT (false)
FTFZTTTTTFFFFF,

Value assigning words
(true)

TFTZTTTTTFFFFF,
FTFZFFFFFTTTTT,

(false)
TFTZFFFFFTTTTT

#PZ
Turn indicating word during
the value-assigning phase

#ST Start indicating word
#P, #c (c ≤ 2k)

Wall words
#3Q#6, #7Q#10, (Q ∈ {+,−,�,×})
0N−1T20, 0N−1F20, 0N+1T20, No unsatisfied literals in the
0M×1T20, 0M×1F20, 0M�1T20 clause so far
1N−2T01, 1N−2F01,
1N+2T01, 0N+2F01, One unsatisfied literal in the
1M×2T01, 1M×2F01, clause so far
1M�2T01, 0M�2F01
2N−0T12, 2N−0F12,
2N+0T12, 1N+0F12, One unsatisfied literal in the
2M×0T12, 2M×0F12, clause so far
2M�0T12, 1M�0F12
0N120, 1N201, 2N012, Symbols’ 0, 1, 2 order-
0M120, 1M201, 2M012 preserving words

by placing a different character on the intersections between a lit-
eral and a clause, depending on whether the corresponding literal
appears in that particular clause. The word formation also de-
pends on the chosen assignment. Being able to place a word in
these intersections means that the clause has not been unsatisfied
by the assignment yet. Player 1 shall be able to completely fill a
clause segment if and only if the chosen truth assignment satisfies
the clause.

Let us now describe the game in more detail. We create a game
of Scrabble, where the alphabet is Σ = {#, +, −, �, ×, P, S, T, F,
Z, N, M, 0, 1, 2, @}. The rack size k shall be a constant odd num-
ber (in particular, k = 13). The dictionary Δ is shown in Table 1
and the initial position π is described below.

For the following descriptions refer to Fig. 4 (or for a more de-
tailed but still abstract preview to Fig. 5).

The initial board B consists mainly of words containing the
dummy symbol # (we call them “wall words”). We use these
words to build walls inside the board that will restrict the players’

Fig. 5 An abstract view of the board. Duplicate clauses have been omitted.

available choices.
There is also a starting word #ST placed on the board, which

indicates the starting point, where the first player is going to put
her first word.

Attached on the wall, there are several appearances of the sym-
bol P. The position of P in the left side indicates whether it is
the first or the second player’s turn to choose truth assignment
(player 1 assigns values to the variables x2i+1 whereas player 2 to
the variables x2i for every i ≤ � n

2 ).
Last, we need to construct the clauses. For every original

clause in φ there is a corresponding column as shown in the fig-
ures. We place the symbols + and − at the intersections with liter-
als (horizontal lines) in order to indicate which literals appear in
the particular clause (if a literal appears in the clause we put a +
whereas if it doesn’t we put a −). In Fig. 5, c1 = (x1∨¬x2∨¬x3).
For the corresponding duplicate clauses, instead of + and − we
use the symbols � and × (as shown in Fig. 4).

In the initial position π of the game we also have:
• r1 = r2 = r = {T,F} k−1

2 ∪ {Z};
• σ =

(
(TF)

k−1
2 Z
)a−1

012N@k−4012M@k−4(012N012M)
s
2−1#,

where a = O(mn) indicates the number of turns played dur-
ing the value-assigning phase and s = O(mn) the number of
turns played during the satisfaction phase (see Sections 4.2
and 4.3);

• Player 2 has a lead of 1 point and it is first player’s turn.
In order for the proof to work for constant size words and
rack, the walls should create a zig-zag pattern through the
clauses (see Fig. 9 at the end of the paper for a detailed view).
The walls too should consist of constant size parts, as wall
words are part of the dictionary.

4.2 Value-assigning Phase
In the first phase of the game (the value-assigning phase), play-

ers will repeatedly draw the following letters: k−1
2 pairs (T,F) and

a single Z. The only words that they can form with these symbols
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Fig. 6 The role of symbol P. In the first case a value preserving word is
played, whereas in the second a value assigning word is played,
changing the assignment.

are the “assignment” words from Δ (given in the first three lines
of Table 1).

The main words that the players will be playing (first two lines)
have length k + 1, so in every turn during this phase the players
should be emptying their racks completely. The word #PZ is only
an auxiliary word: no player would choose to play it as their main
word. If some did, that player would refill her rack with a single
T, and her rack would now consist only of T’s and F’s; however,
without a Z symbol the player would have no word to play in her
next turn and would lose the game.

Observe that player 1 is always forced to play horizontally
whereas player 2 only plays vertically. The assignment to the
variables is performed depending on the position of the symbol P
as follows (see Fig. 6): players are only allowed to play their Z
symbol next to a P and form the auxiliary word #PZ. Thus, de-
pending on the position of P, the players can either form a value
preserving word (first line of the dictionary) or a value assigning
word (second line of the dictionary).

Player 1 plays first and has to choose among two possible
value assigning words, the one that assigns the value true to x1

(TFTZTTTTTFFFFF), and the one that assigns the value false
(TFTZFFFFFTTTTT). Once the assignment is fixed, players’
unique choices (value preserving words) are predetermined by
the board construction and the dictionary (FTFTFTFTFTZFTF
for true and TFTFTFTFTFZTFT for false). The crucial part
in the assignment is the letter that will be placed at the intersec-
tion between the “assignment” word and the clauses columns (see
Fig. 7). We say that a word assigns the value true (resp. false) to
a variable if the intersections of the positive literal’s line with the
clauses columns contain the symbol T (resp. F). Appropriate zig-
zagging ensures that the value of ¬x1 is negated (for more details
see Fig. 9). When variable x1 has been played completely, it is
player 2’s turn to play a value assigning word before entering the
x2 segment. Play continues in a similar manner and, after the end
of this phase, the two players will have gained an equal amount

Fig. 7 The value-assigning phase. In this example x1 = T , and x2 = F.

Fig. 8 The satisfaction phase.

of points, and player 2 will have the lead in the score.

4.3 Satisfaction Phase
After the value-assigning phase, the bag begins with a long

string of the symbols 0, 1, 2, N, 0, 1, 2, M, padded in its first
appearance with two k − 4-long sequences of @,one after the N
and one after the M (@ is a garbage symbol not contained in any
words). Satisfaction is realized by forming “satisfaction” words
(the last four lines in the dictionary). A clause is considered sat-
isfied when the corresponding vertical segment is fully filled with
words.

The most crucial step of the satisfaction phase is the placement
of the words in the original clauses that intersect with literals (see
Fig. 8). The numbers 0, 1, 2 indicate the number of false literals
the clause currently has. The possible combinations of {+, −},
{T, F} and {0, 1, 2} give a unique vertical proper word to play at
the intersection of a literal (horizontal) segment with the clause
(vertical) segment. The ending symbol of the played word is the
number of false literals we have seen in the clause so far. The
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Fig. 9 A more detailed view of the board. Duplicate clauses have been omitted.
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combination {num, +, F} (where num = 0, 1) is important, be-
cause it forms the word num N + * F * (num + 1), which is the
only one that increases num (the clause contains a false literal).
Additionally, in the gadget corresponding to the duplicate clause
the combination {num, �, F} will appear, which will accordingly
cause an increase in num by one in the duplicate clause as well.

The words which contain only the symbols 0, 1, 2, and N (or
M) preserve the order of the numbers and by doing so enforce the
appropriate number to begin the next intersection word.

The two players fill in words in turn, beginning with player 1.
Because of the doubling of the clauses in φ, player 2 can always
copy player 1 by playing at the duplicate clauses on the board.
Observe that the order-preserving words are worth only 5 points
whereas the rest are worth 7. However, the allowed combina-
tions force player 2 to get no more than half of the 7-point words
(she can only play these words in the sections corresponding to
duplicate clauses). Furthermore, observe that the only way that a
player won’t be able to play a word is when faced with the combi-
nation {2,+, F} (or {2,�, F} accordingly) at an intersection, which
indicates a third false literal in the clause.

We argue now that if there is a satisfying assignment for the
first order formula then player 1 wins, else player 2 wins.

In each turn, a player uses all the useful symbols she has in
hand {0, 1, 2, N} or {0, 1, 2, M} to form one of the “satisfaction”
words and refills her rack with another copy of the same symbols.
As it was argued above, player 2 always has an available move to
perform (copy player 1), and since she starts with an 1-point ad-
vantage, she will continue to have the lead throughout the game
until the end of the satisfaction phase.

If there is no satisfying assignment, the two players will even-
tually be left with one set of {0, 1, 2, N} and {0, 1, 2, M} in hand
(padded with k − 4 useless copies of the symbol @). Player 2 is
the last player to place a word on the board and player 1 will be
unable to perform a proper play. So player 2 wins the game with
a score s2 = s1 + 1.

On the other hand, if there is a satisfying assignment, we al-
ready argued that player 2 can never lead with more than 1 point
(the two players are forced to play the same number of 7-symbol
words). However, during the very last turn, player 1 shall get the
last symbol in the bag (a #), and form some wall word anywhere
on the board, which will make her the winner of the game.

�

5. Conclusions and open Questions

We have established the PSPACE-hardness of (deterministic)
Scrabble in two different ways. The main ingredients for our two
proofs are the possibility of placing formed words in more than
one places on the board in the first, and the possibility of forming
more than one possible words to play in the second. We have also
established that hardness remains even when all relevant parame-
ters are small constants.

Several interesting questions can be posed. First observe that,
although the proofs are not affected by the pass move, they can-
not incorporate exchanging tiles. It would be interesting to see a
proof where this additional rule of the game can be applied, al-
though in reality it is uncommon to use (from the official website

of Hasbro: “SCRABBLE players don’t ever exchange their tiles,
but it can be to your benefit to refresh your rack”).

Second, Theorem 4.1 proves the hardness of the game even
when the alphabet size is constant. It would be interesting,
though, to find the minimum value so that the problem remains
PSPACE-hard. In particular, what happens when the alphabet
contains just one letter? Does the problem become tractable in
this case, or is the complexity of placing the tiles on the board
enough to make the problem hard?

Another interesting question was posed by Demaine and
Hearn [3]: is there a polynomial-time algorithm to determine the
move that maximizes the score achieved in some given round?
Of course, in the case of a bounded-size rack the problem is im-
mediately in P, but deciding how to place n letters on the board
optimally could be a much harder problem.

Last, in this paper we study an artificial perfect-information
model with made-up alphabet and dictionary. It would be in-
teresting to study some model where words are taken from the
English (or some other existing) language. Proving hardness for
such a model will probably be quite harder, unless the dictionary
contains only a subset of the words of the language, otherwise it
might prove difficult to verify that no words are formed by acci-
dent while placing tiles on the board. It will also be interesting to
study a model which allows imperfect-information.
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