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Abstract: This paper presents a new partial two-player game, called the cannibal animal game, which is a variant of
Tic-Tac-Toe. The game is played on the infinite grid, where in each round a player chooses and occupies free cells.
The first player Alice can occupy a cell in each turn and wins if she occupies a set of cells, the union of a subset of
which is a translated, reflected and/or rotated copy of a previously agreed upon polyomino P (called an animal). The
objective of the second player Bob is to prevent Alice from creating her animal by occupying in each round a trans-
lated, reflected and/or rotated copy of P. An animal is a cannibal if Bob has a winning strategy, and a non-cannibal
otherwise. This paper presents some new tools, such as the bounding strategy and the punching lemma, to classify
animals into cannibals or non-cannibals. We also show that the pairing strategy works for this problem.
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1. Introduction

Variants of the Tic-Tac-Toe game have been the focus of a num-
ber of studies in the area of recreational mathematics [1], [2], [4],
[5], [7], [8], [9], [10]. Probably the most studied among these
games is an achievement game, a class of generalized Tic-Tac-
Toe games presented by Harary [5], [7]. A polyomino or an ani-

mal is a set of connected cells (in the 4-neighbor topology) of the
infinite grid. In the Harary games [5] defined by a given animal,
two players Alice and Bob alternatively occupy one cell in each
round of the game (we assume that Alice is the first player), and
the first player who occupies a translated copy of the given animal
is the winner. By the strategy stealing argument, Bob cannot win
in these type of games. Thus, his objective is to obstruct Alice’s
achievement.

Here we present a new achievement game called the cannibal

animal game. As with Harary’s game, it is played on the infi-
nite grid whereby players alternate turns to occupy free cells of
the grid. This means that in each round the player must choose
grid cells that are not yet occupied. Once a cell is occupied, it
remains so until the end of the game. In contrast to the gener-
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alized Tic-Tac-Toe, the cannibal animal game is a partial game:
the roles and legal moves of Alice and Bob are different. Al-
ice’s legal move is to occupy one cell of the infinite grid in each
round, and she wins if she occupies a translated copy of an animal
given beforehand (this move is the same as that of the first player
of Harary’s generalized Tic-Tac-Toe). Bob’s role and allowed
moves, however, are different: in each round he must occupy a
copy of the given animal (i.e., occupy a subset of the grid cells),
and his objective is to prevent Alice from achieving the animal.
Neither Alice nor Bob’s moves are allowed to overlap with al-
ready occupied regions, even partially. The animal achieved or
that Bob occupies may be a translation, a mirror image and/or a
90, 180, or 270-degree rotation of the given animal. Each such
translation/rotation/reflection is called a copy of the animal. Fig-
ure 1 shows an example of the progress of the game where the
animal is El, an L-shaped triomino.

Any animal of n cells is called an n-cell-animal (alternative,
we refer n as the size of the animal). Also, let [xmin, xmax] ×
[ymin, ymax] be the rectangular region defined by the corner cells
(xmin, ymin), (xmax, ymin), (xmin, ymax), and (xmax, ymax). We call
an animal a cannibal or a loser if Bob has a winning strategy
(Bob’s animal eats Alice’s animal) and a non-cannibal or a win-

ner otherwise. And hence the game is called the cannibal animal

game. The region in which Alice and Bob place their pieces will
be called board and grid indistinctively.
Our Results.

In this paper we study the following animals (see Fig. 2 for
examples): R(n,m) is an n × m rectangle. We also define
O(n,m, k) (for n,m, k ∈ N such that k < min{n/2,m/2}) as a
2k(n + m − 2k)-cell-animal having the shape of R(n,m) but with
a (n − 2k) × (m − 2k) rectangular hole in the center (that is, an an
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Fig. 1 (a) The animal El (an L-shaped triomino), (b) An example of the
progress of the game: cells depicted in black are occupied by Alice,
and animals depicted in gray correspond to Bob’s moves. In both
cases, the numbers on the cells represent the order in which the cells
are occupied. In the example, Alice wins.

Fig. 2 Examples of animals: R(4, 6), R(4, 4), O(7, 8, 2), U(6, 5, 1), and L(2)
(from left to right).

O-shaped animal of thickness k). Animal U(h, w, k) (for h ≥ 2,
w ≥ 3, and k < min{h, w/2}) is defined as a k(2h + w − 2k)-cell-
animal having a U-shape with height h, width w, and thickness
k. The L(n) animal (for any n ∈ N) consists of the concatenation
of n copies of the El-animal, translated horizontally so that they
touch, but do not overlap.
( 1 ) The following animals are cannibals:

( a ) R(n, n) with holes if at least one of the holes is at least
�n/4� cells away from the boundary for n ≥ 4 (and no
hole is on the boundary)

( b ) O(n,m, k) for n,m ∈ N, and k < min{n/2,m/2}
( c ) U(h, w, 1) for h ≥ 2, w ≥ 3, except U(2, 4, 1)
( d ) L(n) for n ≥ 2

( 2 ) The following animals are non-cannibals:
( a ) Animals with at most three cells
( b ) R(n,m) for any n,m ∈ N

2. Non-cannibal Animals (Winners) and the
Bounding Strategy

In this section we present some non-cannibal animals. First we
start by observing that when an animal is small, Alice can easily
win.
Observation 1. Any animal P of three or fewer cells is non-

cannibal.

We also conjecture that polyominoes of size 4 are all non-
cannibal, but we have not been able to construct a winning strat-
egy for all of them. In the following we give winning strategies
for Alice for the case in which the polyomino is a rectangle.
Theorem 1. R(n,m) is a non-cannibal (for any n,m ∈ N).

To prove the theorem, we first give a strategy for the case in
which the board is bounded. This will afterwards be used for the
unbounded board.

Lemma 1. In any finite board, the rectangle R(n,m) is non-

cannibal provided that at least one copy of R(n,m) can be placed

on the empty board.

Proof. At the beginning of each round we define S =

{s1, . . . , sk} as the set of copies of R(n,m) not occupied by Bob
that fit on the board (note that some of these positions may be
occupied by Alice’s previous moves). The set S will be treated
as a set of potential positions in which Alice may form her ani-
mal. Note that Bob’s moves must be at some s ∈ S. Also, let
S′ ⊆ S be the set of animals that stab all elements of S (that is,
s′ ∈ S′ ⇔ s′ ∩ s � ∅, ∀s ∈ S). Note that the set S initially is
nonempty at the beginning of the game, and whenever Bob plays,
the size of S is reduced. Moreover, the set S will only become
empty if and only if Bob manages to place his copy occupying
the cells of some s′ ∈ S′.

The key observation is the fact that S′ is a collection of pair-
wise intersecting rectangles, and as such it must have at least a
common intersection point cS′ that intersects all rectangles of S′.
Alice’s strategy is as follows: if the set S′ is empty, Alice occu-
pies any empty cell of some s ∈ S. Otherwise, Alice plays at cS′ ,
preventing Bob from playing at S′.

With this strategy, Alice makes sure that the set S never be-
comes empty (since Bob can never occupy s′ ∈ S′). Since the
number of Bob’s possible moves only decreases after each of Al-
ice’s moves, after a finite number of turns Bob will be unable to
play inside the bounded board (and Alice will be able to complete
a copy of the animal). �

Observe that the proof of Lemma 1 makes no assumptions on
the shape of the finite board (other that a copy of R(n,m) fits in-
side, and that Alice plays first). In the following we extend this
result to an infinite board. The first step in Alice’s strategy will
be to construct a bounded region big enough so that the set S is
nonempty, and then apply the bounded region strategy. From this
idea we have the proof of Theorem 1 as follows:
Proof of Theorem 1 (Bounding strategy). We construct a re-
gion on the board large enough that at least one copy of R(n,m)
can be constructed inside. The objective is to create an N × N

square for a sufficiently large N (the exact value will be deter-
mined later). Alice can surround the boundary of the square with
at most 4(N − 1) moves (note that the four corners of the square
of sidelength 4(N + 1) need not be occupied). Let I be the inte-
rior of the square. Notice that at least (N − (n − 1))(N − (m − 1))
copies of R(n,m) fit inside I. Each of Bob’s animals stabs at most
(2n−1)(2m−1)+ (n+m−1)2 ≤ n2 +m2 +6nm copies of R(n,m).

During the (at most) 4N rounds in which Alice surrounds the
boundary of the square, Bob can stab at most 4N(n2 +m2 + 6nm)
animals of S. Thus, if (N−n+1)(N−m+1) > 4N(n2+m2+6nm),
the set S will be non-empty even after Alice has completed sur-
rounding the boundary of the square. Because the first term is
quadratic in N and the second is linear, for a sufficiently large N

the inequality holds. �
The key property of this strategy is the fact that any collec-

tion of pairwise intersecting rectangles has a common intersec-
tion point. Hence, this approach could be extended to any other
animal that also satisfies this property. This property is often re-
ferred as the 2-Helly (or simply the Helly) property [6] in the lit-
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Fig. 3 Alice’s strategy is to occupy locations (0, 0), (n, 0), (2n, 0), and
(3n, 0).

erature. Unfortunately, in a companion paper [3] we show that
the rectangles are the only 2-Helly polyominoes.

Observe that the above strategy might take many moves, since
Alice starts by enclosing a large region. In the following, we pro-
vide a strategy that uses fewer moves for the particular case in
which the animal is an n×n square. Let S n(x, y) be the connected
square region of the grid such that its bottom-left cell is located at
position (x, y); that is, S n(x, y) occupy the square region defined
by the rectangular region [x, x + n − 1] × [y, y + n − 1].
Lemma 2. For any n > 0, Alice can construct R(n, n) using at

most n2 + 3 moves.

Proof. We will describe Alice’s strategy for constructing
R(n, n): Alice will try to play at locations (0, 0), (n, 0), (2n, 0)
and (3n, 0), forming a horizontal strip with none of Bob’s pieces
(see Fig. 3). By virtually rotating the board we can certify that
Bob’s first move will be to the left of Alice’s. Hence, she can oc-
cupy positions (0, 0) and (n, 0) with her first two moves. Alice’s
strategy now depends on whether Bob allows Alice to play in the
third and fourth positions.
Two cells occupied The only case in which Alice cannot oc-

cupy position (2n, 0) in her third move is if Bob plays his
second move occupying position (2n, 0). We claim that in
such a case, Alice will win in at most n2+2 moves. To prove
the claim, let S n(bx, by) be the position in which Bob placed
his second move. Observe that we must have n+1 ≤ bx ≤ 2n

and −n + 1 ≤ by ≤ 0. Then Alice plays her third move at
position (bx − n, n − 1).
At this point, note that the cells inside the rectangular region
[bx − n, bx − 1]× [0, by + n− 1] can no longer be occupied by
Bob since the (horizontal and vertical) distance between any
two of the cells occupied by Alice within this region is less
than n (Fig. 4). The width of this region is large enough to fit
a copy of R(n, n), but the height is n if and only if by = 0. For
all other cases, we will need an additional move to enlarge
the forbidden region for Bob.
Thus, it suffices to consider the case in which −n + 1 ≤ by <

0. In this case, it suffices if Alice plays at either position
(bx − 1, n − 1) or (bx − n, by). After playing in either of the
two positions, the region in which Bob cannot play enlarges
to include a square(regions S n(bx − n, 0) and S n(bx − n, by),
respectively). However, Bob can only occupy one of the two
positions in one move. Thus, regardless of Bob’s choice Al-
ice will be able to secure a region large enough to construct
a copy of R(n, n).
Among the four moves, at most two will be outside Bob’s
forbidden region. Hence, Alice will win using at most n2 + 2

Fig. 4 If Bob forbids Alice from occupying (2n, 0) with his second move
B2 having its bottom-left cell at (bx, by), then Alice plays her third
move at A3 = (bx − n, n − 1). The striped rectangular area is a region
that Bob cannot occupy. Alice can enlarge the forbidden region to fit
a square by either playing at (bx − 1, n − 1) or (bx − n, by) (light blue
squares in the figure).

Fig. 5 If Bob forbids Alice from occupying (3n, 0) with his third move B3,
Alice plays her fourth move in the either region above or below the
horizontal strip (whichever is free of Bob’s animals). In the exam-
ple, B3 is below the strip, hence Alice plays above. The two cells
(1, n − 1) and (2n − 1, n − 1) are cells one of which Alice will try to
occupy next in order to win.

moves.
Three cells occupied Now, suppose Alice is able to occupy

(2n, 0) with her third move, but then Bob occupies location
(3n, 0). As always, we assume that Bob’s first move is in the
halfplane x < 0. We also know that another one must be
in the halfplane x > 2n. Therefore, Bob can have played at
most once in the rectangular region R = [0, 2n] × [−n, n].
Since Alice occupies positions (0, 0), (n, 0), and (2n, 0),
Bob’s move in R (if any) must either be strictly above the
halfplane y > 0 or strictly below. Without loss of generality,
we assume that the region [0, 2n] × [0, n] is empty of Bob’s
moves. In this case, Alice’s third move will be (n, n− 1) (see
Fig. 5). Similar to the previous case, Alice can prevent Bob
from playing inside an n × n region by occupying either po-
sition (1, n − 1) or (2n − 1, n − 1). Since Bob’s fourth move
can only block one of the two positions, Alice can play in
the other one and construct a copy of R(n, n).

Four cells occupied Finally, assume Alice manages to occupy
the four locations (0, 0), (n, 0), (2n, 0), (3n, 0). Similar to the
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Fig. 6 If Alice plays the four locations (0, 0), (n, 0), (2n, 0), and (3n, 0) then
with her fifth move A5 she will play inside the region above or be-
low the horizontal strip that has at most one of Bob’s animals: in this
example at A5 is above this strip. The striped rectangular area is a
region that Bob can no longer occupy.

case in which three cells were occupied, consider the rectan-
gular region R′ = [0, 3n] × [−n, n].
After four turns, Bob can place at most three blocks in R′

(recall that Bob’s first move is at a location to the left of the
vertical line at (0, 0)). Moreover, Bob cannot occupy any
cell of the horizontal strip between (0, 0) and (3n, 0). Hence,
either the region above or below the horizontal strip will con-
tain at most one of Bob’s animals. Without loss of generality,
we can assume that it is the upper one.
If this half is empty of Bob’s animals, Alice will proceed as
in the case where three cells are occupied. Her fifth move
will be to play at position (n, n − 1) and afterwards (1, n − 1)
or (2n − 1, n − 1) depending on Bob’s move. In either of the
two cases, n2 +3 moves will be sufficient to construct a copy
of the square.
Finally, it remains to consider the case in which Bob has
placed a single animal S n(bx, by) for some 0 ≤ bx ≤ 3n

and 0 < by ≤ n − 1. Additionally, we assume that bx ≥ n

(if necessary, we can flip the board vertically to obtain this
property, see Fig. 6). In this case, Alice plays her fifth move
at position (bx − n, n − 1). This move will prevent Bob from
occupying any position of the region S n(bx−n, 0). Moreover,
only three out of the five moves of Alice have been placed
outside S n(bx, by), hence Alice wins again in n2 + 3 moves.

�
Observe that n2 is a trivial lower bound on the number of moves

of any winning strategy or R(n, n). Our strategy only uses at most
3 additional moves, which leads us to believe that our strategy is
optimal (in the sense that no other strategy can construct R(n, n)
with fewer moves).

3. Cannibal Animals (Losers) and Pairing
Strategy

In this section we demonstrate several strategies for Bob that

Fig. 7 Winning strategy for Bob for O(n,m, k) (in this example, for
O(4, 6, 1)). Alice’s moves are marked in black and Bob’s in gray.
The numbers on the cells represent the order in which the cells are
occupied. Since the block inside which Alice’s 4th move is played
already includes Bob’s animal, Bob’s 4th move is played in another
arbitrary block.

prevents Alice from winning. By Observation 1, The game be-
comes more interesting when the animal has 5 or more cells, since
we will show that there exist both winning and losing polyomi-
noes.

We start by using the well-known concept of pairing strategy.
We note that this strategy has been successfully used in many
other combinatorial games [1]. We start with a simple strategy
for Bob that works for the O(n,m, k) animal:
Theorem 2. O(n,m, k) is a cannibal for any n,m ≥ 3 and

k < min{n/2,m/2}.
Proof. Bob virtually partitions the playing-board into blocks of
size (n + k) × (m + k). That is, we define the block Bi j as the
rectangle [i(n+ k), (i+1)(n+ k)−1]× [ j(m+ k), ( j+1)(m+ k)−1]
(as shown in Fig. 7). The strategy for Bob is to place his animal
inside the block where Alice played her last move. After Alice
plays, Bob checks which block her last move belongs to; if he
has already played an animal in the same block, he simply plays
in an arbitrary empty block (e.g., Bob’s 4th move in Fig. 7). Note
that since the playing board is infinite, Bob can always play these
moves. Further note that, with this strategy any rectangular region
free of Bob’s pieces has either height or width at most 2k. Since
k < min{n/2,m/2}, Alice will never be capable of constructing a
copy of O(n,m, k). �

This pairing strategy can also be applied to other animals, such
as the L(n).
Theorem 3. For any n ≥ 2, the L(n) animal is cannibal.

Proof. The proof is analogous to the proof of Theorem 2. This
time we partition the board into blocks of size 2n × 2. Observe
that, if Alice plays in an empty block, Bob also can place a copy
of L(n) in the block (with the appropriate reflection). With this
strategy, it is easy to see that Alice will not be able to create a
connected polyomino of size five or larger. In particular, she will
not be capable of constructing any copy of L(n) (other than L(1)).
Recall that by Observation 1, the L(1) is non-cannibal. Hence, no
pairing strategy can work for L(1). �

In Section 2 we showed that squares are non-cannibals. Sur-
prisingly, the removal of a single interior cell from a square ani-
mal can transform it into a cannibal.
Lemma 3. For any integer n ≥ 4, let A be the R(n, n) animal in

which a single interior cell whose distance to the boundary is at

least �n/4� units has been removed. Then A is a cannibal.

Proof. The proof of this claim also uses the pairing strategy,
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Fig. 8 Examples of failed partitions.

Fig. 9 Tiling and shift size t.

where this time we partition the board into blocks of size (n +
�(n − 1)/2�) × (n + �(n − 1)/2�). It is easy to see that if the re-
moved cell is at least �n/4� units away from the boundary, then
Bob can always play his animal inside the same block as Alice’s
last move.

Assume that Alice is able to construct a copy of the animal
on the board. Observe that this animal can intersect with at
most 4 blocks. By the pigeonhole principle, there would be
a block in which Alice’s pieces form a square of size at least
�n/2� × �n/2� (possibly with interior cells removed). However,
this cannot occur since Bob also occupies the same block with an
n × n square. �

We note that we have been unable to use a similar pairing strat-
egy when the hole is close to the boundary. In all the partitioning
strategies we considered, Alice was able to create a copy of the
polyomino. This pairing strategy works for many types of poly-
ominoes. However, in some cases we might need a more careful
partitioning of the grid into blocks:
Theorem 4. For any h, w ∈ N (other than (h, w) = (2, 4)), the

U(h, w, 1) animal is cannibal.

Proof. Bob virtually partitions the playing board into blocks of
size (w + 1) × h. But if he arranges these blocks naively, there
might be “cracks” between Bob’s animals in which Alice could
construct her animal (see Fig. 8). To avoid such cracks, Bob must
slant his partition, thus tiling the grid with blocks with a shift of
size (distance) t (Fig. 9). We define the block Bi, j as the rectangle
[i(w+ 1)+ jt, i(w+ 1)+w+ jt]× [ jh, jh+ h− 1]. The exact value
of the slant depends on the parameters w and h:
h = 2 (and w � 4) t = 2.
h ≥ 3 and w ≥ h − 2 t = �(w + 1)/2�.
h ≥ 3 and w > h − 2 No slant is necessary (i.e., t = 0).

In the following we show that neither of these cases, Alice will

be able to construct her animal. Assume, for the sake of con-
tradiction, that Alice can indeed construct her animal while Bob
follows this pairing strategy, and consider the cells that are occu-
pied by the animal created by Alice.

Before studying each animal separately, we give some basic
observations that apply to all cases. Clearly, Alice’s animal can-
not be included in a single block, hence it must occupy several
adjacent blocks. Further note that if the animal by Alice occupies
two horizontally adjacent blocks, then the width of the animal
is at most two. Also, if the animal only occupies one block (and
possibly others vertically adjacent), then it can have width at most
w− 1. Thus, we conclude that Alice’s animal must be rotated 90◦

or 270◦ (since it cannot fit horizontally otherwise). This in par-
ticular implies that h < w.

Now, we do a similar analysis on the y-axis. Since h < w, Al-
ice’s animal must occupy two blocks that are vertically adjacent.
Note that whenever t � 0 the animal can occupy at most 3 verti-
cal cells. Whenever t = 0, the animal can occupy infinitely many
vertical cells (but the width is restricted to two).

The case h = 2 is done by a counting argument. Since the
polyomino is rotated, Alice needs to create two vertically parallel
segments of length two with a spacing of w between them. Be-
cause of the strategy and size of the blocks, Alice cannot occupy
two cells horizontally adjacent in the same block. Thus, the only
way for Alice to have these segments is when h = 4, and the
animal occupies 5 blocks.

Now we study the case in which h ≥ 3 and w > 2h − 2. In
this situation, both h and w are larger than two, hence Alice’s an-
imal cannot occupy two horizontally adjacent cells (since limits
the width to 2). In this case we have no shift in the tiling pattern.
Thus, the animal can only occupy two vertically adjacent cells.
Bob will have played in both cells, hence Alice’s animal must be
included in a rectangle of width w−2 and height 2h−2. However,
this gives a contradiction since we assumed that w > 2h − 2.

Naturally, this approach does not hold whenever w ≤ 2h − 2
(see Fig. 8), hence we must introduce a slant for this case. Re-
call that a previous argument showed that h < w, hence the only
way Alice’s animal must occupy two or three vertically adjacent
cells. However, notice that the horizontal segments cannot be
longer than either t or (w + 1) − t depending on which rotation of
the polyomino is used. Regardless of that, the fact that we chose
t = �(w + 1)/2� makes sure that the segments cannot be occupied
by Alice. �

By combining Theorems 3 and 4 we can prove the existence
of cannibal animals of any size. For example, the polyomino
U(2, n − 2, 1) is a cannibal animal of size n for any n ≥ 5 (ex-
cept for n = 6). If n = 6, an example of a cannibal animal would
be L(2). The above result combined with Theorem 1 allows us to
show the existence of both cannibal and non-cannibal animals of
any size.
Corollary 1. For any n ≥ 5, there exists a cannibal and a non-

cannibal polyomino of size n.

We now introduce another idea to generate new cannibal ani-
mals from known cannibal animals. Let A be an animal and let
C be a subset of cells of A. Then A \ C is an animal created by
removing C from A (this operation will only be considered when
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Fig. 10 A and B are inner pieces. C and D are outer pieces since a second
copy covers a part of the piece as seen in the right examples.

A \ C is connected). We say that C is an outer piece if we can
locate a second disjoint copy of A \C that overlays with a part of
the removed piece C of the first copy (even if partially); we call
C an inner piece otherwise. See Fig. 10.

Notice that even if C and C′ are both inner pieces, C ∪C′ need
not be so. However, the superset of an outer piece must be an
outer piece.
Lemma 4 (Punching Lemma). Let A be a cannibal and let C be

an inner piece of A. The animal A \C is also a cannibal.

Proof. Assume otherwise that A \C is non-cannibal; By defini-
tion, Alice is capable of constructing a copy of A \C without Bob
preventing it. Consider now the removed piece C of the animal
Alice constructed. Because C is an inner piece, this position can-
not be occupied by Bob. Hence, Alice can afterwards occupy this
position in subsequent rounds to form animal A. Thus, we obtain
a contradiction. �

Note that the reciprocal is not always true (see for example
Lemma 3 and Theorem 1). As a simple application of this lemma,
we have the following result:
Theorem 5. For any integer n ≥ 4, let S ′ be an animal R(n, n)
in which any number of interior cells have been removed. If at

least one of the removed cells has distance �n/4� or more to the

boundary, then S ′ is a cannibal.

4. Concluding Remarks

In Harary’s generalized tic-tac-toe, some monotone properties
hold; these properties include “increasing the size of the board
helps Alice” and “increasing the animal helps Bob.” However,
such properties do not hold for the cannibal animal game, mak-
ing it deeper and more interesting. We also note that the cannibal
property of many other animals is still left unsolved. Among them
is the U(2, 4, 1) animal, which we conjecture to be a cannibal. We
conjecture that all 4-cell-animals are also non-cannibals, and con-
sequently, the 5-cell-animal U(2, 3, 1) would be the smallest can-
nibal. Another problem that remains open is what happens with
the squares R(n, n) in which one or more interior cells have been
removed, and the distance of these removed cells to the boundary
is less than �n/4� units away from the boundary.

We have also barely studied optimality questions. That is, we
believe that Lemma 2 is the strategy that uses the least number of
moves to create a square polyomino. However, it remains open
to find similar strategies for other polyominoes or for other opti-
mization variations (such as the strategy that needs less space).

Finally, we conclude with an open problem posed by an anony-
mous referee; observe that the only arbitrarily large non-cannibal
animals that we know of are rectangles. So, it would be interest-
ing to know if there exist arbitrarily large non-cannibal animals
(other than rectangles).
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