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Abstract: A parallelohedron is a convex polyhedron which fills the space by translations only. There are five fami-
lies of parallelohedra. A pentadron is a pentahedron whose copies compose at least one member of every family of
parallelohedra. A pentadral complex is a convex polyhedron which is constructed by combining copies of pentadra in
a face-to-face gluing manner. In this paper, reversibilities and tessellabilities of pentadral complices and their related
topics are studied.
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1. Introduction

A pentadron is a convex pentahedron one of whose nets is as
in Fig. 1. Note that there is a pair of ‘male’ pentadron and ‘fe-
male’ pentadron which are mirror image of each other. A pen-
tadral complex, or simply pc, is a convex polyhedron which is
constructed by copies of pentadron in a face-to-face gluing man-
ner. In a pentadral complex, we do not distinguish male and fe-
male pentadra, i.e., a pc may include both male and female pen-
tadra (Fig. 2).

A parallelohedron is a polyhedron which fills the space
by translations only. There are five families of parallelohe-
dra, namely, parallelepiped, hexagonal prism, truncated octa-
hedron, rhombic dodecahedron, elongated rhombic dodecahe-
dron [1], [2], denoted by Fi (i = 1, 2, 3, 4, 5), respectively (Fig. 3).
An affine stretching transformation is a transformation, includ-
ing affine transformation, which preserve parallelism of sides.
The following theorem is proved in Ref. [3].

Theorem A For all parallelohedra P in a family Fi (i =
1, 2, 3, 4, 5), there exists an affine stretching transformation φ such
that φ(P) is a pentadral complex pi ∈ Fi (Fig. 4).

On the other hand, regular polyhedra (polytopes) are not com-
posed of single polyhedron (polytope). See Refs. [4], [5] for the
minimum number of elements (polyhedra or polytopes) required
to construct all the regular polyhedra (polytopes).

Theorem 1 There exists a convex pentadral complex P such
that P includes pcs qi ∈ Fi (i = 1, 2, 3, 4, 5) as its subcomplices.
Proof:

An elongated rhombic dodecahedron p5 made by 384 pentadra
as in Fig. 4 includes a pc qi ∈ Fi for each i = 1, 2, 3, 4, 5 as a
subcomplex (Fig. 5). �
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2. Reversion Problems on Pentadral Com-
plices

Given two convex polyhedra α and β, we say that a pair α and β
is reversible, denoted by α ∼ β, if α and β have dissections into a
common finite number of hinged pieces which can be rearranged
to form β and α respectively, under the following conditions [6]:

(1) The entire surface of one polyhedron gets into the interior
of the other and

(2) The set of dissection planes of each polyhedron is con-
nected and does not include any (part of) edge of it.

A pair of pcs α and β is called reversible if α ∼ β and every
pieces involved in the reversion are pcs.

A pc α is called reversible if there is a pc β such that α ∼ β.
A pc α is called self-reversible if α ∼ α.
Theorem 2 There exist self-reversible pentadral complicies

fi ∈ Fi (i = 1, 2, 3, 4, 5).
Proof:

The pentadral complex fi ∈ Fi for each i = 1, 2, 3, 4, 5 as shown
in Fig. 6 is self-reversible. �

Problem 1 Make a self-reversible pentadral complex fi ∈ Fi

for each i = 1, 2, 3, 4, 5 whose pieces preserve a ring-structure by
piano-hinges.

It is shown in Ref. [7] that a self-reversible cube which is a
pentadral complex has a ring-structure (Fig. 7).

Theorem 3 There exist pentadral complices f1, f ′1 , f ′′1 , f ′′′1 ∈
F1, f2, f ′2 , f ′′2 ∈ F2, f3 ∈ F3, f4 ∈ F4, f5 ∈ F5 which satisfy
f1 ∼ f2, f ′1 ∼ f3, f ′2 ∼ f3, f ′′1 ∼ f4, f ′′′1 ∼ f5, f ′′2 ∼ f5.
Proof:

One can compose reversible pairs of pcs analogously to Theo-
rem 2. �

Problem 2 It is not known whether there exists a reversible
pair of pentadral complices between two families stated as dotted
edges in Fig. 8. Determine whether there exist pentadral com-
plices g2 ∈ F2, g3, g

′
3 ∈ F3, g4, g

′
4, g
′′
4 ∈ F4, g5, g

′
5 ∈ F5 which

satisfies the following relations or not.
(1) g2 ∼ g4,
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Fig. 1 A symmetric pair of pentadra and their nets.

Fig. 2 A decomposition of a cube into 12 pentadra. All the polyhedra appearing in this figure are pen-
tadral complices.

(2) g3 ∼ g′4, g3 ∼ g5,
(3) g′′4 ∼ g′5.

3. Seeds of a Space-filler

A convex polyhedron is called a space-filler if its copies fills
the space in a face-to-face gluing manner. For a given polyhedron
P, a P-complex is a convex polyhedron which is constructed by

copies of P (including mirror images of P) in a face-to-face glu-
ing manner. We say a polyhedron P is a seed of a space-filler
(briefly seed) if any P-complex is a space-filler.

Problem 3 Every cuboid is trivially a seed, since any
cuboidal complex is also a cuboid (Fig. 9). Are there any seeds
other than cuboids?
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Fig. 3 The five families of parallelohedra by Fedorov.

Fig. 4 Parallelohedra as pentadral complices.

Fig. 5 An elongated rhombic dodecahedron including pcs qi ∈ Fi (i = 1, 2, 3, 4, 5) as a subcomplex.

3.1 Pentadral Complices and Their Tessellability
Note that there is unique way to fill the space by pentadra in

a face-to-face gluing manner. The tessellation by pentadra is de-
noted by TP (Fig. 10).

A quasi-pc is a (possibly concave) polyhedron constructed by
copies of pentadron in a face-to-face gluing manner.

Proposition 1 There exist seven combinatorially possible

quasi-pcs consisting of two pentadra.
In a pentadral complex, every pair of adjacent pentadra, sharing
a common face, forms either a turtle foot (when the two pentadra
have the same sex) or one of four quasi-pcs S a

2, S
b
2, S

c
2, S

d
2 as in

Fig. 11 (when the two pentadra have different sexes).
One quasi-pc for the same sex and one quasi-pc for different sexes
does not appear in a pentadral complex (Fig. 12).
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Fig. 6 Self-reversible pentadral complices fi ∈ Fi (i = 1, 2, 3, 4, 5).

Fig. 7 Self-reversible cube which is a pentadral complex with ring-structure.

Fig. 8 Bold edges indicate that there exist reversible pairs of pentadral complices between corresponding
pair of families.

Fig. 9 An example of a seed.

Lemma 1 Every pentadral complex is a subcomplex of TP.
Proof:

Note that all of the five types in Propositon 1 are a part of TP.
By the uniqueness of TP, every pentadral complex is a subcom-
plex of TP. �

Each pentadron in TP belongs to exactly one turtle foot with
unique partner of it. Such two pentadra with the same sex in the
same turtle foot are called a coupled pair of pentadra.

Lemma 2 If a pentadral complex C includes one coupled pair
as a subcomplex, then all the pentadra in C should be coupled,
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Fig. 11 All the possibilities of concatenations of 2 pentadra in pcs.

Fig. 12 Impossible concatenations of 2 pentadra in pcs for different sexes (left) and for the same sex
(right).

Fig. 10 The tessellation TP by pentadra.

i.e., C is a turtle foot complex.
Proof:

Let C be a pc including at least one turtle foot as a subcomplex.
Suppose that C is not a turtle foot complex. Then there ex-

ists a turtle foot T which is a subcomplex of C and is adjacent
with a non-coupled pentadron. Thus C is not convex and this is a
contradiction. �

3.2 Characterizations of Solo Complices
If a pentadral complex C includes no coupled pairs, C is called

a solo complex.
Let TO be the truncated octahedron which is a pentadral com-

plex p3 of 48 pentadra as in Fig. 4.
Theorem 4 A solo complex can never be extended further

than the truncated octahedron TO, i.e., any solo complex is a sub-
complex of TO.
Proof:

Consider the space tessellation by TOs in a face-to-face gluing
manner (See Fig. 3). Any adjacent TOs sharing a hexagonal face
have coupled complices on their intersection.

Suppose that a solo complex includes pentadra included in dif-
ferent TOs. Then the complex should include a pair of pentadra
sharing a part of a hexagonal face of some TO in order for the
complex to be convex. This results in a coupled pair, which is a
contradiction. �

Fig. 13 Two kinds of half-TOs.

We call the minimal pc including given combination of pen-
tadra in TP a pc convex hull of the combination of pentadra.

Note that TO itself is a solo pentadral complex which fills the
space. Any proper subcomplex of TO should be a subcomplex of
one of the two half-TOs as in Fig. 13 by the convexity.

Both of the half-TOs are space-fillers. Furthermore, any proper
subcomplex of a half-TO is a subcomplex of the other half-TO.
Thus we need to consider proper subcomplices of only one kind
of half-TO. One can list up every translational, rotational, and
reflectional equivalent classes of them by using pc convex hull
and appropriate symmetry, although it is enough to list up solo
complices with 1, 2, or 3 pentadra for our purpose. In fact, we
have the complete list for the cases of solo complices with 1 or 2
pentadra so far.

Proposition 2 Every solo pentadral complex consisting of 3
pentadra is either S N

3 or S T
3 (Fig. 14).

S N
3 does not fill the space whereas S T

3 is a space-filling pc.
Thus S N

3 is the non-space-filling pentadral complex with mini-
mum number of pentadra, which is unique up to mirror reflection.

3.3 Seeds of a Space-filler and Pcs
Pentadron is not a seed since the solo complex S N

3 is not a
space-filler. If we add partners for each of the three pentadra to
S N

3 , we have a coupled complex consisting of 6 pentadra, denoted
by MN

6 (See Fig. 16). The following proposition follows directly
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Fig. 16 Completions Mα4 , Mβ4 , MN
6 and MT

6 .

Fig. 14 The list of all the solo complices with 3 pentadra.

Fig. 15 Tetrapaks packed in the equilateral triangular prism.

from the definition of seed and the fact that MN
6 is also a not

space-filler.
Proposition 3 If MN

6 is a P-complex then P is not a seed.
Especially, turtle foot, which is a space-filling tetrahedron in

Fig. 2, is not a seed.
Any coupled complex is a completion of (not necessarily one)

solo complices, i.e., they can be attained by adding partners for
each pentadra to solo complices. Two solo pcs with the same
completion are said to complement each other.

Tetrapak, also known as Sommerville tetrahedron (Ref. [8],
Fig. 7), is a tetrahedron which can be made by 8 pentadra as in
Fig. 15.

Conjecture 1 A tetrapak is a seed.
Note that any coupled complex with 2, 4, or 6 pentadra are not

seeds, which can be confirmed by complementing the list of solo
complices with 1, 2, or 3 pentadra. Couple pcs with 2 pentadra
are completion of a pentadron, which is just a turtle foot. The pair
S a

2 and S b
2 and the pair S c

2 and S d
2 have the same completion Mα4

and Mβ4 , respectively; pcs in each pair complement each other.
Solo pcs S N

3 and S T
3 have completions MN

6 and MT
6 , respectively

(Fig. 16).
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