Vol.35 No.5

Transactions of Information Processing Society of Japan

Regular Paper

Design and Implementation of User-centered Application
Software Systems in a Distributed Computing
Environment

TETSUO KINOSHITA,! KENJI SUGAWARA, " MASAHIRO UKIGAL '
NORIO SHIRATORI'" and NoOBUYOSHI MivyAzAKki'

This paper proposes a new method for designing and implementing application software systems
in a distributed computing environment. In the proposed method, a model for the design of
distributed application software systems, called a user-centered application software model, is
proposed as a means of designing and implementing heterogeneous software modules for user-
centered application software systems. According to the design model, heterogeneous software
modules are realized as pluggable software modules according to the users’ requirements. Combina-
tion of these modules makes it possible to create a user-centered application software system in a
distributed computing environment. In addition, this paper gives an example of the design of a
user-centered application software system in a local-area-network-based distributed computing

May 1994

environment, and discusses the advantages of the proposed method.

1. Introduction

Distributed computing environments provide
users and designers with various facilities for
computation and communication. Through the
use of these facilities, many kinds of application
software system have been developed and uti-
lized in various domains such as information
retrieval, scientific/engineering computation,
on-line transaction processing, and multi-media
communications.! Owing to the advances in
both users’ needs and the technologies of dis-
tributed processing, efficient development of
various application software systems for a dis-
tributed computing environment according to
users’ requirements has become an important
and difficult problem. In general, an application
software system consists of many software mod-
ules that are executed by various computer sys-
tems in a distributed computing environment.
Thus, the designers have to develop various
software modules by using different program-
ming languages on different computing plat-
forms, combine the heterogeneous software
modules, and realize an application software

' Systems Laboratories, Oki Electric Industry Co.,
Ltd.
'" Department of Computer Science, Chiba Institute of
Technology
T*T Research Institute of Electrical Communication,
Tohoku University

677

system for users.!® Moreover, they have to
consider the reuse and sharing of scarce or
valuable resources in a distributed computing
environment. As a result, it is necessary not only
to utilize the design knowledge of skilled
designers, but also to reduce the development
costs of application software systems.?~%

Recently, several kinds of methods for design-
ing software systems have been proposed with
respect to dedicated computer systems®-7 and
the object-oriented method has also been
introduced and utilized as a useful technique for
designing and implementing application
systems.®~11) However, a systematic and
effective framework for developing distributed
application software systems that satisfy the
various requirements of users and customers in a
target distributed computing environment has
not yet been proposed. This paper therefore
proposes a new method for designing a distribut-
ed application software system according to
various users’ requirements. Hereafter, a dis-
tributed application software system realized in
accordance with the proposed method is called a
user-centered application software system
(UAS).

As elements of the proposed method, we
propose a design object model of a UAS, called
a user-centered application software model
(UASM), and a framework for using and shar-



678 Transactions of Information Processing Society of Japan

ing the distributed resources of a target distribut-
ed computing environment, based on a concept
of pluggable software modules.’® According to
the users’ requirements and design conditions, a
design specification of the UAS is defined and
represented by using the UASM. In accordance
with the design specification, various heterogene-
ous software modules of the UAS are designed
and implemented as pluggable software mod-
ules. Finally, the UAS of the target distributed
computing environment is realized by harmoni-
ously combining the heterogeneous software
modules. Section 2 introduces the UASM and a
model for the process of designing a UAS, and
proposes a method for designing a UAS. Sec-
tion 3 gives an example of the design of a UAS
in a local-area-network-based (LAN-based)
distributed. computing environment, using the
proposed method. - Section 4 gives details of the
implementation of the UAS and evaluates the
proposed method.

May 1994

2. Method for the Design of a User-cen-
tered Application Software System in a
Distributed Computing Environment

2.1 Model for the Design of a Distributed
Application Software System

A distributed application software system
consists of various heterogeneous software mod-
ules running on distributed platforms in a dis-
tributed computing environment. A software
module has a service function (Fi) consisting of
an application task and a plug-in function
(PFi), which combines several service functions
to deal with a user’s request, as shown in Fig. 1
(a). Since these software modules may be im-
plemented by using different programming lan-
guages on different platforms, many expert
designers are sometimes needed to develop soft-
ware modules for various design tasks (Di).

One promising approach may be to utilize
software modules or products as components of
a distributed application software system, in

& N N\ ¢
{ D1 Y i \ { bn Y
H I ! H N
! Pl i ! i
sotware L Fn | Rz | e |
Modules Pl 4 i !
i Pl ! i {
i P i i i
1] y I3 N
il PR 1| PR2 |} v PPn |
3 LA : 3 3

T

/
/
H
H
H
H

Cl’arget Distributed Computing EnvironmenD

(a) Conventional Distributed Application Software System

User's Interface

Distributed Software Modules

Module

(D1 | b2 ) {on
Pluggable |} \ ;:

H H 1 H ' N
r%u%féﬁf F1 ‘ F2 ' Fn §

\ T o
P S o
S

Target Distributed Computing Environment

N
{
;
Environment |
i
1y

evsrrarrreares

DESE

(b) User-centered Application Software (UAS) System

Fig. 1 Design model of an application software system
in a distributed computing environment.



Vol.35 No.5

order to reduce the burden on designers and
minimize the development costs of distributed
application software systems. However, most
existing software modules have been developed
in accordance with both a particular application
software system, and a particular distributed
computing environment. It is therefore difficult
to plug existing software modules into a dis-
tributed application software system to be
designed. Moreover, it is still difficult to design
and implement pluggable and reusable heteroge-
neous software modules for distributed applica-
tion software systems.!2»1%

In order to overcome the difficulties of design-
ing and organizing pluggable heterogeneous
software modules according to the users’ require-
ments, we propose a model for the design of
distributed application software systems, called
a user-centered application software system
model (UASM), and a process for designing
user-centered application software systems on
the basis of the UASM.

Within the framework of the proposed design
method, the service functions and plug-in func-
tions of distributed software modules are
specified uniformly on the basis of the UASM
and developed independently as shown in Fig. 1
(b). By decomposing the UASM, the service
functions (Fi) are then realized as distributed
software modules for various design tasks (Di).
One of the software modules provides a user
interface environment for a computer terminal,
and the others provide service functions plugged
into the user interface environment.

To improve the pluggability and reusability of
distributed software modules, the design of plug-
in functions is separated from the design of
distributed software modules, and the plug-in
functions are realized as an execution support
environment (ESE) for dedicated design tasks
(DESE).

Finally, a user-centered application software
system (UAS) is constructed in the target dis-
tributed computing environment by combining
the distributed software modules and the execu-
tion support environment.

2.2 User-centered Application Seftware

Model : UASM

From a user’s viewpoint, a distributed appli-

cation software system can be modeled as a set of

Transactions of Information Processing Society of Japan 679

software modules of two types, namely, internal
software modules and external software mod-
ules. An internal software module runs on a
user terminal and provides user-oriented facil-
ities such as user interface control, small-scale
computation, and local file management. On the
other hand, an external software module runs on
a distributed platform and provides service func-
tions such as application-oriented functions,
large-scale computation, and data base facilities.

According to the above modeling, a user-
centered application software model (UASM) is
defined as a design object model that represents
a design specification of a UAS in a target
distributed computing environment. By means
of the UASM,

1. the external software modules of the target
UAS are designed and implemented as plugga-
ble software modules, and

2. existing software modules and products
can be selected and assigned as external software
modules of the target UAS.

Formally, the UASM is defined as follows :
UASM=JIPG, EPG).

IPG={ipg|ipg=<IPN, IPA)}, where
IPN={ipn|ipn&IFN UVFN},
IPA={ipalipa=<ipa-id, ipn_i, ipn_j»;ipn i,

ipn jEIPN},
IFN={ifn|ifn=<ifn-id, if-c, if-in, if-out,
if-cond>},
VEN={vin|vfn=<vfn-id, cfn-id, vf-in,
vf-out, vf-cond);
cfn-ide CFNEEPG).
EPG={epglepg=<(EPN, EPA>}, where
EPN={epnlepn& EFN UCFN]},
EPA={epalepa=<epa-id, c-typ, cfn, efn):
cfnEeCFN, efn€EFN, c-type
TYPE},

EFN={efn|efn=/<efn-id, ef-c, ef-in, ef-
out, ef-cond, ef-ipg>},
CFN={cfn|cfn={cfn-id, vfn-id, {efn-

id}, vf-in, vf-out, {ef-in}, {ef-
out}, cfn-cond); ef-id, ef-in, ef-
outcefnEEFN}.

In the UASM, the logical processing structure
of both internal software modules and external
software modules are represented by sets of
process graphs of two kinds: a set of internal
process graphs (IPG) and a set of external
process graphs (EPG).

An internal process graph (ipg) consists of



630 Transactions of Information Processing Society of Japan

nodes of two kinds: a set of internal function
nodes (IFN) and a set of virtual function nodes
(VFN), and an external process graph (epg)
also consists of nodes of two kinds: a set of
communication function nodes (CFN) and a set
of external function nodes (EFN), as shown in
Fig. 2. The ipg and epg are constructed by using
a set of internal process arcs (IPA) and a set of
external process arcs (EPA), respectively.

An internal function node (ifn) represents a
function or task of an internal software module.
The ifn is specified by an identifier (ifn-id), a
function class (if-c), input (if-in), output (if-
out), and conditions (if-cond):

An if-c specifies a class selected from the
tree-structured function classes that provide the
background knowledge for describing the design
specifications of internal software modules. The
background knowledge is organized as a set of
standardized functions called generic func-
tions.'®

An if-in and an if-out are specified by the
attributes of data objects of the ifn, such as the
name (identifier), type, format, and volume,
while, an if-cond specifies the processing condi-
tions, such as the processing time margin, loca-
tion of computing platforms, and auxiliary
resources. According to the specifications of
if-in, if-out, and if-cond, a detailed if-c is selected
or defined in a design process of the target UAS.

On the other hand, an external function node

e N )
ipai-1
ipai
|

\_ PG ) A\ EPG )

Fig.2 User-centered Application Software Model
(UASM).

May 1994

(efn) represents an external software module
running on a distributed computing resource.
The following elements are defined in the same
way as for the inf: identifier (efn-id), function
class (ef-c), input (ef-in), output (ef-out), and
conditions (ef-cond). Note that an ef-c is
selected from a set of predefined function classes
that provide the background knowledge for
specifying the service functions of external soft-
ware modules. Moreover, if an external function
consists of a set of external software modules
and the design specification of the external func-
tion is represented recursively by a process
graph, then a pointer to the process graph is
specified by an ef-ipg.

To allow an external software module to be
designed as a pluggable software module of an
internal software module, a virtual function
node (vihne& VFN&IPG) and a communication
function node (cfn & CFN & EPG) are
introduced into the UASM. According to the
design specifications of both CFN and VFN, an
execution support environment of the target
UAS is implemented.

A virtual function node (vfn) specifies a func-
tion that accesses a service function provided by
an external software module. Although a vfn is
defined in the same way as an ifn of an ipg, its
function is specified by the identifier of the
corresponding cfn (cfn-id) of an epg.

On the other hand, a communication function
node (cfn) specifies a function that plugs in
external software modules to an internal soft-
ware module specified by a vfn. A cfn is defined
by an identifier (cfn-id), a vfn’s identifier (vin-
id), a set of efns’ identifiers ({efn-id}), the input
and output of a vfn (vf-in and vf-out), the efns’
input and output ({ef-in} and {ef-out}), and
processing conditions (cfn-cond). The cfn may
be connected to one or more external function
nodes by using external process arcs (epas
EPA). Hence, each epa has a control type
(c-typ) selected from a set of control types
(TYPE) that specify the control scheme of
external software modules. For example, the
parallel execution control of external software
modules is specified by a c-typ named “PAR.”

By means of the UASM, (1) heterogeneous
software modules can be specified homogeneous-
ly, (2) harmonic combinations of heterogeneous
software modules can be specified explicitly, (3)



Vol.35 No.5

pluggable software modules can be designed
systematically, and (4) cooperative or collabo-
rative development of distributed software mod-
ules can easily be carried out by expert designers
using various programming languages on dis-
tributed platforms.

2.3 Process of the Design of User-center-

ed Application Software Systems

The proposed method for the design of user-
centered application software systems (UASs) is
given by a design process model defined in
accordance with a generic design process model
of the knowledge-based design methodology
(KDM).? As shown in Fig. 3, the proposed
design process model of the UAS consists of the
following four design phases: (1) a requirement

\i

IHequirement Definition Phase I

Requirement Specification

[ Conceptual Design Phase I

Design Specification
Based on UASM
Detailed Design Phase \ \

/ " Y

Design Conditions for
Jarget Distributed Computing
Environment

Detailed Detailed Detailed Detailed
Design Design Design Design
Process Process | . . . | Process Process
for for for for
F1 F2 Fn ESE
— 7
Protot);ping Phase l
“ N

l Run-Time Support System (RTSS) l<_
Prototype of Target UAS System

Target UAS System

Fig.3 Design process for user-centered application soft-
ware systems.

L preeeesrereereres.,

Transactions of Information Processing Society of Japan 681

definition phase, (2) a conceptual design phase,
(3) a detailed design phase, and (4) a prototyp-
ing phase. Designers define and use a dedicated
process for the design of the target UAS by
applying the design process model to the design
of a UAS in a target distributed environment.

In the requirement definition phase, a require-
ment specification of the target UAS is defined in
accordance with users’ requests and the design
conditions of the target distributed computing
environment. The requirement specification can
be represented by using the existing models and
methods for requirement specification, such as a
requirement graph model, object-oriented
specification models and methods, knowledge-
based requirement definition methods.2?

In the conceptual design phase, the require-
ment specification of the target UAS is transform-
ed into a design specification. According to the
UASM, the design specification is defined and
represented by the designers. Within the frame-
work of the KDM, the designers can also access
and utilize two kinds of knowledge, namely, a
set of design rules called mappings and back-
ground knowledge. The mappings provide
knowledge for manipulating and transforming
the requirement specification, and the back-
ground knowledge also provides knowledge
referred by the mappings. The derived descrip-
tion of the design specification is called an in-
stantiated UASM of the target UAS.

In the detailed design phase, the design
specification, that is, the instantiated UASM, is
decomposed into several parts consisting of the
design specifications for the service functions
and an execution support environment of the
target UAS. Heterogeneous software modules
are realized by respective design processes corre-
sponding to design specifications. The decompo-
sition of the design specification and the detailed
design of heterogeneous software modules are
done by designers using the design knowledge
given by a set of mappings and the background
knowledge, as in the conceptual design phase.

Finally, in the prototyping phase, designers
code and implement heterogeneous software
modules and realize a prototype of the target
UAS. In the prototype system, the service func-
tions are realized as a set of pluggable software
modules (SMi), and the execution support envi-
ronment is also realized as a run-time support



682 Transactions of Information Processing Society of Japan

system (RTSS), as shown in Fig. 3. Since the
logical combinations of heterogeneous software
modules are given by the instantiated UASM,
the target UAS can be constructed systemat-
ically. The validation and testing are also done
by using this prototype system.

3. Design of User-centered Application
Software in a LLAN-based Distributed
Computing Environment

3.1 Overview of the Target Distributed
Computing Environment
A LAN-based .distributed environment is
selected as the target environment for applica-
tion of the proposed design method. A brief
overview of the target environment is now given.
The target distributed environment consists of
several platforms such as user workstations, and
distributed computing resources such as a trans-
puter system, a file server, and a print server. A
user workstation provides a user interface envi-

User User User
Workstation Workstation e Workstation

I I |

ETHERNET-LAN . {{ |

| | l

Host || Transputer File Print
Computer| |System Server Server
Fig.4 Target Distributed Computing Environment

(DCE).

Instantiated UASM of Target UAS
(Design Specification)

Detailed ISM Detailed
Design Design Design
of ISM KB of ESM

May 1994

ronment and the distributed platforms also pro-
vide various facilities such as parallel computa-
tion and file management. These platforms are
connected by an Ethernet-LAN, as shown in
Fig.4. In the target environment, many pro-
gramming languages are provided for users and
designers. For instance, a user workstation
provides general purpose programming lan-
guages such as C and Smalltalk-80,'¥ and a
transputer system also provides a parallel pro-
gramming language, OCCAM2.'%

3.2 Process for the Design of a Target
User-centered Application Software
System

We now explain the process for the design of
a target UAS, focussing on the detailed design
phase and the prototyping phase.

A dedicated design process is defined by
applying the design process model in Fig. 3 to
the design of the target UAS, as shown in Fig. 5.
Design knowledge and background knowledge
can be acquired, represented, and stored in the
knowledge bases, namely, the ISM-Design-KB,
ESM-Design-KB, and CSM-Design-KB, respec-
tively. Since the management facilities of the
knowledge bases are now being developed, the
design knowledge for our experimental develop-
ment of the target UAS has been used without
the knowledge bases.

As explained in section 2.3, the dedicated

ESM Detailed CSM
Design Design Design
KB of CSM KB

Y

Interface Module SM Library of
(01 User WorkstauorD (D|stnbuted Platform) C”" Time Support Sysw)

Y Y

i

] Prototype Implementation |

Prototype of Target UAS System

Fig.5 Process for the dedicated design of the target
UAS in a target DCE.



Vol.35 No.b

design process of the target UAS has been for-
malized as a set of separate design processes in
which an upstream design object, that is, an
instantiated UASM, is decomposed and trans-
formed into downstream design objects, namely,
internal software modules (ISMs), external soft-
ware modules (ESMs), and communication
software modules (CSMs). The ISMs corre-
spond to the software modules of a user interface
environment on a user workstation. The ESMs
correspond to the application software modules
on distributed platforms such as transputer sys-
tems. These ESMs are organized and managed
as a data base called the ESM Library. The
CSMs correspond to the software modules of a
run-time support system of the target UAS.

In the detailed design of various software
modules, designers can select and use suitable
design methods and tools, such as object-
oriented design methods,® and various CASE
tools.2? Knowledge-based design methods based
on KDM can also be applied; for instance, a
knowledge-based interface design method
(KDM/UI)'® can be used to develop a user
interface system, and a knowledge-based proto-
col design method (KDM/P)'? can be used to
design a special purpose communication proto-
col for communication software modules.

In the prototyping of the target UAS, the user
interface modules, application software modules,
and communication software modules are
cooperatively implemented as heterogeneous

Get_lInitial_Parameter

ipa#t4
VEN#1

Compute_Mandelbrot).-.....seen
15 (sec)

ipa#5
IFN#5

Display_Fractal

CFN#1

Plugin_Mandelbrot
5 (sec

Transactions of Information Processing Society of Japan 633

software modules on distributed platforms by
their respective designers. A prototype system of
the target UAS is then generated by combining
these software modules in accordance with the
instantiated UASM.

3.3 Design Specification of the Target

UAS

As an example, a UAS that generates and
displays computer graphics of fractals?® has
been designed and implemented in the target
distributed environment. A user requests a
transputer system to compute a fractal set and
display it graphically in a window of a user
workstation. Therefore, the target UAS has to
provide the following functions: (1) setting up
parameters for computing a fractal set, (2)
generating fractal graphics by using a transputer
system, and (3) displaying the graphics on a
user workstation.

A design specification of these functions has
been defined and represented as an instantiated
UASM. A part of the descriptions of internal
process graphs and external process graphs of
the instantiated UASM is shown in Fig. 6.
Although a specification description language is
now being developed, the instantiated UASM
has been formally represented by using a frame-
based knowledge representation language,'” as
shown in Fig. 7.

Given the instantiated UASM, the functions
of both setting up parameters and displaying
fractal graphics, are specified as internal soft-

EFN#1

-¢——|SM ————p»4¢——CSM———pt———ESM —— o

Fig. 6 Part of the design specification of the target UAS

(Instantiated UASM).



684

IFN10004
SUP
IF-ID
PRE~N
PST-N
IF-C
IF-IN

IF-0UT
TAT
P-LOC
AUX-F

VFN10001
SUP
VF-ID
PRE-N
PST-N
CFN-ID
F-CLS
VF-IN
VE-QOUT
TAT
SEF
P-LOC
AUX-F

CFN10001
SUP
CF-ID
VF-ID
EF-ID

VE-IN
VF-0UT
EF-IN

EF-0UT

TAT
CNT-T
SEF
P~-LOC
AUX~-F

spo

H Hh

ps

spo

hHh ng Hhth & th Hh Hh <

spo

Ps

Hh Hh

ps

Transactions of Information Processing Society of Japan

IFN
IFN00O4
IFN10003
VEN10001
Get-Data
("Prompt-Txt",
Character,
Text,

36)
D10011
(nil, s)
USER-330
nil

VEN
VEN(0OO1
IFN10004
IFN10005
CFN10001
"Fractal-CG"
D10011
D10012

(15, s)
ERR-Demon=-1
USER-330
nil

CFN
CFN0001
VFN10001
(EFN11001, PAR)
(EFN11002, PAR)
(EFN11040, PAR)
D10011

D10012

(D10011, EF-ID,

ncc (Broadcast-D)

(D20001, EF-ID,

ncc (Make-Array)

(5, s)

1-N
ERR-Demon-101
USER-330

nil

D10011
SUP
D-NAM
D-TYP
D-FORM
D-VOL

D10012
sup
D-NAM
D~-TYP
D~-FORM
D-VOL

D20001
sup
D-NAM
D-TYP
D-FORM
D-VOL

EFN11001
SUP
EF-ID
EF-C
PRE
PST
CFN-ID
EF~IN
EF-0UT
EF-IPG
TAT
SEF
P-LOC
AUX-F

spo

< thoHh g

o}

spo

< HhoHh 4

]

spo

< H o<

spo

!‘h?‘h?‘h"gfh!‘hl'hi'hl"h?‘hf‘h<

Fig.7 Example of frame descriptions of the design
specification of the target UAS.

May 1994

D-FORM
"Parameter-list"
Real-Num
list

10

D~-FORM
"F-CG-Data™"™
Real-Num
Array

16384

D-FORM
"Part-CG-Data™
Real-Num

list

200

EFN

EFN1001
Mandelbrot-F
nil

nil

CFN10001
D10011
D20001
DEFN11001
(10, s)
ERR-Demon-21
CIT-TP

nil



Vol.35 No.b5

ware modules (ISMs). For example, a virtual
function node named “Compute_Mandelbrot”
specifies that the input (vf-in) is a set of numeri-
cal parameters of a fractal function, the output
(vf-out) is a set of numerical data of fractal
graphics, and the processing time margin in a
vf-cond is set to 15 seconds. Furthermore, the
function for computing fractal set is specified as
a set of pluggable external software modules
(ESMs) running on a transputer system. For
instance, an efn named ‘“Mandelbrot# 1”
specifies that its function class (ef-c) is a fractal
function class named “Mandelbrot,” the input
(ef-in) is a set of parameters given by a vfn
named “Compute_Mandelbrot,” an output (ef-
out) is a partial data set of fractal graphics, and
the processing time margin in ef-cond is set to 10
seconds.

A communication function node (cfn) is also
specified, to connect the ESMs on a transputer
system with the ISMs on a user workstation.
For example, a cfn named “Plugln_Mandelbrot”
specifies that the input data of “Compute_Man-
delbrot” are broadcast as the input data of the
ESMs, that is, “Mandelbrot # 1 and so on, and
that the output of the ESMs are unified in the
form of the output of “Compute_Mandelbrot.”
The processing time margin (cfn-cond) is set to
5 seconds. Moreover, each external processing
arc (epa) has a control type (c-typ) named
“PAR?” to activate and execute respective ESMs
in parallel.

3.4 Design of ISMs for User Worksta-

tions

According to the instantiated UASM, an inter-
nal software module (ISM) is developed by a
designer of a user interface environment. In the
target UAS, two kinds of ISM, that is, functional
ISMs (F-ISMs) and virtual ISMs (V-ISMs), are
designed and implemented as a set of class
objects of Smalltalk-80, as follows.

An F-ISM is realized as a class object with
respect to an internal function node (ifn). For
instance, if a function class (if-c) of “Get_Ini-
tial_Parameter” in Fig. 6 is specified by “get_
value,” which receives data input by a user on a
keyboard, then an F-ISM is defined as a sub-
class named “Get_initial_parameter” as a class
named “FilllInTheBlank” of Smalltalk-80.
Because of the design specification of input
(if-in), output (if-out), and condition (if-cond),

Transactions of Information Processing Society of Japan 685

Computation
Fractal

instance
creation

message
passing

Instance Object of
<Comp_Mandelbrot”

Fig.8 ISM_Class of the target UAS.

the class methods of “Get_initial_parameter” are
then defined to accept an initial parameter of a
fractal function from the keyboard. By using
Smalltalk-80’s existing classes, various F-ISMs
can be incrementally defined and attached to
provide a user-specific interface environment.

On the other hand, a V-ISM is realized as a
class object in a special class called ISM_Class.
According to the user’s requests, many kinds of
V-ISM such as “DotwiseComputationFractal,”
“SignalProcessing,” and “SymbolicManipula-
tion” can be defined as shown in Fig. 8. More-
over, in thetarget UAS, several fractal computa-
tion functions such as “Mandelbrot,” “Julia-
Fractal,” and “FatouFractal” are implemented
as ESMs. Hence, for instance, by means of a vin
named “Compute_Mandelbrot” in Fig. 6, a class
object named “Comp_Mandelbrot” is defined as
a sub-class of “DotwiseComputationFractal,” as
shown in Fig. 8, in order to utilize the fractal
computing function “Mandelbrot.” Once the
instance objects of V-ISMs have been created
during UAS run-time, the V-ISMs can be access-
ed in the same way as the F-ISMs.

3.5 Design of ESMs for Transputer Sys-

tems

A parallel computing program in OCCAM?2
for a transputer system is a typical example of
the design of external software modules for a
target UAS.

In accordance with the design specification
regarding the computation of fractals, the exter-
nal software modules (ESMs) are designed and
implemented as parallel software modules of the



686

transputer system by a skilled OCCAM2 pro-
grammer. Since the transputer system in the
target environment consists of a transputer array
with 40 transputers, the OCCAM?2 programmer
also has to design the structure for assignment of
the ESMs over the transputer array.

The ESMs are designed and implemented as
load modules and stored in the ESM Library,
which is allocated to a host computer of the
transputer system. For instance, forty parallel
software modules are realized as load modules
of ESMs for the parallel computation of a
Mandelbrot-set.

According to a request issued by an ISM, a set
of ESMs is extracted from the ESM Library and
loaded onto the transputer array by a root trans-
puter. The plug-in function that connects these
ESMs with the ISM is realized as a set of com-
munication software modules (CSMs) of the
target UAS, as explained in section 3.6.

Various parallel software modules can be

Fig.9 Detailed structure of a Communication Software
Module (CSM).

Transactions of Information Processing Society of Japan

May 1994

developed and stored in the ESM Library in
advance. As explained in section 3.4, in our
target UAS, several fractal functions for Mandel-
brot, JuliaFractal, and so on, have been devel-
oped and stored into the ESM Library. Thus, if
a set of parallel software modules which satisfies
the instantiated UASM is stored in the ESM
Library, then the designer only selects and
assigns these modules as ESMs of the target
UAS.

3.6 Design of CSMs

In this section, an example of the design of a
communication software module (CSM) that
manages the communication between a virtual
software module (V-ISM) of a user workstation
and a set of external software modules (ESMs)
of a transputer system is explained.

By means of a communication function node
(cfn) of the instantiated UASM, the following
functions of the CSM can be designed: (f1)
setting up the pluggable ESMs, (f2) activating
the ESMs, (f3) controlling the execution of
ESMs, (f4) exchanging data with the V-ISM,
and (f5) exchanging data with the ESMs.

In the target'UAS, the CSM is realized by two
kinds of software module: (1) CSM/STs, which

message - ., instance i instance F-ISM
*creation creation
C°“”e°‘—ST#1’ Instance Object of Y~ message
3 "Comp_Mandelbrot" passing
%, instance
V-ISM ", creation |
..... message )
Y passing
CSM/ST . Instance Object of
{User Workstation) "Connect_PP"
message
CSM ‘ passing
CSM/PPs

(Host Computer of
Transputer System)

Instance Object of
"Connect_ST#1"

Instance Object of
"Connect_ST#40".

4

|

A

i

ESMs \

message
¥ | passing

Mandelbrot#1

Mandelbrot#40

Fig. 10 Detailed design of a CSM/ST and a CSM/PP.



Vol.35 No.5

provide functions f 1, f3 and f4, and (2) CSM/
PPs, which provide functions f2 and f5, as
shown in Fig. 9.

For instance, a ¢fn named “Plugin_Mandel-
brot” in Fig. 6 is realized by a CMS/ST running
on the user workstation and a set of CSM/PPs
running on a host computer of the transputer
system, for the parallel computation of a
Mandelbrot-set. As shown in Fig. 10, the CSM/
ST is realized as a class object named “Connect_
PP,” and forty CSM/PPs are also realized as a
set of class objects such as “Connect ST#1.”
On the other hand, the functions for exchanging
data and messages between a V-ISM (“Comp_
Mandelbrot™) and the ESMs (“Mandelbrot # 17
and so on) are realized by the class methods of
both CSM/ST and CSM/PPs.

4. TImplementation and Evaluation of a
User-centered Application Software
System

4.1 Prototype of a User-centered Applica-
tion Software System

The configuration of a prototype of the target
UAS is shown in Fig. 11. In order to support
the design and implementation of the target
UAS, a design support facility called UAS-
Browser was also developed and provided to the
designers. By using the UAS-Browser, the
designers can efficiently retrieve, inspect, select,
and modify the design specifications of the ISMs,
ESMs, and CSMs.

The CSMs have been organized as a run-time
support system (RTSS) of the target distributed
environment. As explained in section 3.6, the

Transactions of Information Processing Society of Japan 687

RTSS consists of dedicated class objects of both
CSM/STs and CSM/PPs that run on a user
workstation and a host computer of the trans-
puter system, respectively.

During a run-time of the target UAS, the
ESMs are plugged into the ISM by using the
RTSS. For instance, as shown in Figs. 10 and
11, first, when a V-ISM named “Comp_Mandel-
brot” receives a create message sent from an
F-ISM, an instance of “Comp_Mandelbrot” is
created. Next, an instance object of a CSM/ST
named “Connect_PP” and forty instance objects
of the CSM/PPs, namely, “Connect_ST # 1” and
so on, are also created as an RTSS of the target
UAS. Then, the RTSS sends a set-up message to
a host computer to extract a set of ESMs from
the ESM Library. After that, the load modules
of ESMs such as “Mandelbrot# 1” are loaded
onto the transputer array and the transputer
system is initialized. Finally, the connections
between the V-ISM and the ESMs are estab-
lished and computation of a Mandelbrot-set will
start.

By means of the above mechanisms in our
target UAS, the user can freely and quickly
generate and display various graphics of fractals
in the windows of a workstation, using the
parallel computation capability of the transputer
system.

4.2 Evaluation of the User-centered Appli-

cation Software System

Use of a prototype, the target UAS has
confirmed the following advantages of the
proposed design method:

1. Heterogeneous software modules can eas-

User Workstation Host Computer of ~ Transputer
Transputer System  System
Runtime Root Transputer Transputer
FisM Support System Array
] of 1 of £
vasm CSM/ST,§\ * csmpp | »(Esm)
N
Method
CSM/PP »{_ ESM
V-ISM L/ : :
F-ISM I 1 e
Method SM/ST] > »
fosws] | CSMPP | »(Esm)
‘‘‘‘‘‘‘ »
setup | Esm load/
7| Library initialize

Fig. 11 Configuration of the target UAS.



688 Transactions of Information Processing Society of Japan

ily be designed and implemented. According to
a design specification given by an instantiated
UASM, the design and implementation of heter-
ogeneous software modules can be done sepa-
rately and cooperatively by designers and pro-
grammers of distributed platforms. In our exper-
iments, a Smalltalk-80 programmer can concen-
trate on the design of user interface environ-
ments for displaying fractal graphics. An
OCCAM?2 programmer can also concentrate on
the design of parallel software modules for
computing fractals. As a result, rapid prototyp-
ing was-done on the basis of cooperative work
by a Smalltalk-80 programmer and an
OCCAM?2 programmer, and the productivity of
the UAS was raised two or three times with
respect to the development time, as compared
with a design and development of the UAS done
by an application designer.

2. Heterogeneous software modules can be
harmoniously combined. By designing V-ISMs
and CSMs based.on the instantiated UASM, a
harmonious combination of the ESMs in
OCCAM2 and the ISM in Smalltalk-80 can
easily be attained in the target UAS. Moreover,
by using a run-time support system, dynamic
linkage of ISMs and ESMs can be done system-
atically. As a result, the usability of distributed
computing resources such as a transputer system
can be increased, and the development costs of
distributed application software systems can also
be reduced.

3. An efficient distributed application soft-
ware system can be developed. Through the use
of dedicated heterogeneous software modules
running on distributed computing resources, a
high-performance UAS has been realized. Usu
ally, the problem in generating computer graph-
ics of fractals is the large amount of process-
ing time required. For instance, an application
program coded only in Smalltalk-80 takes about
60 minutes to compute a Mandelbrot-set and
display the fractal graphics. On the other hand,
by using a prototype of the target UAS with a
transputer system, the execution terminated in 18
seconds, of which the ESMs used about 7 sec-
onds to calculate a Mandelbrot-set, the ISM used
about 7 seconds to display the graphics of the
Mandelbrot-set, and the CSMs used about 4
seconds to exchange data among ISMs and
ESMs. As a result, the design specification of

May 1994

the target UAS, which required a maximum of
20 seconds for processing this task, has fully
been satisfied, and the turnaround time for
obtaining fractal graphics has been remarkably
improved.

Through the experimental design of a UAS in
a target distributed computing environment, it
has been confirmed that the proposed design
method is useful for systematic development of
efficient user-centered application software sys-
tems. However, many problems remain to be
solved, such as refinement of the UASM, design
of a requirements specification description lan-
guage based on the UASM, acquisition of a
variety of knowledge to improve the design of
the UAS, and development of a knowledge-
based design support system for the UAS.

5. Conclusion

A new method for the design of distributed
application software systems, using the frame-
work of the knowledge-based design methodol-
ogy, has been proposed and used to design and
implement a distributed application software
system with various software components in a
distributed computing environment. In the
proposed method, a design object model, called
a user-centered application software model, is
proposed to allow the formalization and repre-
sentation of the design specifications of heteroge-
neous software modules of a distributed applica-
tion software system. A design process model of
a user-centered application software system is
also proposed to facilitate the design of various
software components' as pluggable software
modules running on distributed platforms. On

~the basis of the proposed method, a design

example of a user-centered application software
system was demonstrated by using a LAN-based
distributed computing environment. In the
design example, two kinds of heterogeneous
software module, namely, a user interface mod-
ule realized in Smalltalk-80 on a user worksta-
tion and parallel application modules realized in
OCCAM2 on a transputer system, were cooper-
atively designed and harmoniously combined.
As a result, an efficient user-centered application
software system was realized. The advantages of
the proposed design method were also been
confirmed.



Vol.35 No.b5

References

1) Coulouris, G. and Dollimore, J.: Distributed
Computing Systems : Concepts and Design,
Addison-Wesley, Reading, Mass. (1988).

2) Kinoshita, T., Sugawara, K. and Shiratori, N.:
Knowledge-based Design Support System for
Computer Communication System, IEEE Jour-
nal on Selected Areas in Communications, Vol.
6, No. 5, pp. 850-861 (1988).

3) Shiratori, N, Takahashi, K., Sugawara, K. and
Kinoshita, T.: Using Artificial Intelligence in
Communication System Design, IEEE Software,
Vol. 9, No. I, pp. 38-46 (1992).

4) Nii, N. P., Aiello, H., Bhansali, S., Guidon, R.
and Peyton, L.: Knowledge Assisted Software
Engineering  (KASE) : An Introduction and
Status-June 1991, Technical Report No. KSL
91-28, Knowledge Systems Laboratory, Dept. of
Computer Science, Stanford Univ. (1991).

5) Wu, M. Y. and Gajski, D. D.: Hypertool: A
Programming Aid for Message-passing Systems,
IEEE Trans. on Parallel and Distributed Sys-
tems, Vol. 1, No. 3, pp. 330-343 (1990).

6) Gabber, E.: VMMP : A Practical Tool for the
Development of Portable and Efficient Programs
for Multiprocessors, IEEE Trans. on Parallel
Distributed Systems, Vol. 1, No. 3, pp. 304-317
(1990) .

7) Marzullo, K., Cooper, R,, Wood, M. D. and
Birman, K. P.: Tools for Distributed Applica-
tion Management, IEEE Computer, Vol. 24, No.
8, pp. 42-51' (1991).

8) Coad, P. and Yourdon, E.: Object-Oriented
Analysis, Prentice-Hall (1988).

9) Sernadas, C. and Fiadeiro, J.: Towards Object-
Oriented Conceptual Modeling, Chen, P.P.
(ed.), Data & Knowledge Engineering 6, pp. 479
-508, North-Holland (1991).

10) Lewis, J. A., Henry, A. M., Kafura, D. G. and
Schulman, R.S.: An Empirical Study of the
Object-oriented Paradigm and Software Reuse,
Rroc. OOPSLA 91, pp. 184-196, ACM (1991).

11) Yau, S.S, Jis;~X-—and Bae, D-H.: Software
Design Methods for Distributed Computing
Environments, Computer Communications, Vol.
15, No. 4, pp. 213-224, Butterworth (1992).

12) Notkin, D., Hutchinson, N., Sanislo, J. and
Schwartz, M. : Heterogeneous Computing Envi-
ronments : Report on the ACM SIGSOPS Work-
shop on Accommodating Heterogeneity, CACM,
Vol. 30, No. 2, pp. 132-140 (1987).

13) Notkin, D., Black, A.P., Lazowska, E.D.,
Levy, H. M., Sanislo, J. and Zahorjan, N. : Inter-

Transactions of Information Processing Society of Japan 689

connecting Heterogeneous Computing Systems,
CACM, Vol. 31, No. 3, pp. 258-273 (1988).

14) Goldberg, A. and Robson, D.: Smalltalk-80 :
The Language and Its Implementation, Ad-
dison Wesley (1983).

15) May, D. and Shepherd, R.: Communicating
Process Computers, Inmos Tech. Note 22, Inmos
Ltd. (1987).

16) Fukushima, M., Ukigai, M., Sugawara, K. and
Miida, Y.: Pluggable Parallel Processing Mod-
ules in a Distributed Processing Environment,
Proc. ISMM Inter. Symp..on Computer Applica-
tions in Design, Simulation and Analysis, Inter-
national Society for Mini and Micro Com-
puters, pp. 242-245 (1991).

17) Kinoshita, T. and Nakazawa, O.: Experimental
Knowledge Base System based on the Frame
Model, Oki Tech. Rev., Vol. 52, OKI Elec., pp. 1
-8 (19853).

18) Kinoshita, T., Iwane, N., Sugawara, K. and
Shiratori;, N.: Formalization of the Interface
Design Method and Construction of the Design
Support System based on the Knowledge-based
Design Methodology, Trans. IPSJ, Vol. 31, No.
6, pp. 906-915 (1990).

19) Kinoshita, T., Sugawara, K. and Shiratori, N.:
Knowledge-based Protocol Design for Computer
Communication Systems, I[EICE Trans. Inf. &
Syst., Vol. E75-D, No. 1, pp. 156-169 (1992).

20) Kinoshita, T., Sugawara, K. and Shiratori, N. :
Knowledge-based Requirements . Specification
and Definition Method for Computer Com-
munication System Design, IEICE Trans. Fun-
damentals, Vol.J76-A, No.3, pp.528-539
(1993).

21) Mandelbrot, B. B.: The Fractal Geometry of
Nature, V. H. Freeman and Company (1977).

22) Norman, R. J. and Forte, G. (eds.) : CASE in
the "90s, Commn. ACM, Vol. 35, No. 4, (Special
Section), Apr. (1992).

(Received November 26, 1992)
(Accepted December 9, 1993)



690 Transactions of Information Processing Society of Japan

Tetsuo Kinoshita is a
research manager of the systems
laboratories, Oki Electric Industry
Co., Ltd., Tokyo. He received a
B.E. degree in electronic engineer-
ing from Ibaraki University,
Japan, and the M.E. and Dr. Eng.
degrees in mformatlon engineering from Tohoku
University, Japan. His research interests include
knowledge representation model;, knowledge-based
system, cooperative distributed processing system
and human interfaces. ~ He received the IPSJ
Research Award in 1989.: Dr. Kinoshita is a member
of the IPSJ, IEICE, JSAI, Society for Cognitive
Science of Japan, Association for Computational
Linguistics and AAAL

Kenji Sugawara received the
B.E., M.E. and Dr. Eng. degrees in
electrical engineering from Toho-
ku University, Sendai, Japan, in
1973, 1977, and 1983, respectively.
He is now a professor in the
department of computer science,
Chiba Institute of Technology, Chiba, Japan. His
research interests are in the area of computer commu-
nication networks, knowledge engineering, distribut-
ed artificial intelligence, CAI, and human interfaces.
Prof. Sugawara is a member of the IEEE, IEICE,
IPSJ, JSAI Society for Cognitive Science of Japan,
and Robotic Society of Japan.

Masahiro Ukigai is an asso-
ciate professor in the department
of computer science, Chiba Insti-
tute of Technology, Chiba, Japan.
He received a B.E. in electronic
engineering from Chiba Institute

. of Technology in 1978. He
recelved a Dr. Eng. degree in electrical engineering
from Keio University, Japan, in 1986. His research
interests include advanced technology on computers
in education and parallel processing applications.
Prof. Ukigai is a member of the IPSJ, Japan Society
for CAL the Acoustical Society of Japan, IEICE and
1EEE.

May 1994

Norio Shiratori After receiv-
ing his doctorate degree at the
Tohoku University, Dr. Shiratori
joined the research institute of
electrical communication (RIEC)
of Tohoku University in 1977,
and is now a professor of the
RIEC. He has been engaged in research on an
intelligent distributed processing system, based on a
computer communications network, including soft-
ware design. He is also working on human inter-
faces, CSCW and advanced intelligent networks.
Prof. Shiratori received the 25th Anniversary IPSJ
Memorial Prize-Winning Paper Award in 1985 and
the 6th Telecommunications Advancement Founda-
tion Incorporation Award in 1991. Prof. Shiratori is
a member of the 1EEE, IEICE, IPSJ and JSAI.

Nobuyoshi Miyazaki re-
ceived the B.S. from Kyoto
University in 1973, the M.S. in
Computer Science from Univer-
sity of Illinois at Urbana-
Champaign in 1979, and Dr. Eng.
from Kyoto University in 1990,
He has been working for Oki Electric Industry Co.,
Ltd. since 1973 and is currently a department man-
ager at Media Laboratory. He was a senior
researcher at Institute for New Generation Computer
Technology from 1982 to 1985. His research inter-
ests include databases and knowledge information
processing. He is a member of IPSJ, IEICE, JSAI,
IEEE/CS and ACM.




