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Abstract: Three-point tiling is the problem to cover all the lattice points in a triangular region of the triangular lattice
with triangle tiles that connect three adjacent lattice points. All the lattice points must be used by exactly one triangle
tile. In this paper, we enumerate all the solutions and rotation symmetric solutions using ordered binary decision dia-
grams. In addition, the number of essentially different solutions, any two of which do not become identical by rotating
and turning over, is computed.
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1. Introduction

Tiling is the problem to tile the plane or a finite region by a
finite kinds of tiles [1], [2]. It is one of the most basic problems in
combinatorial theory. Three-point tiling [3], [4], [5] is the prob-
lem to cover all the lattice points of the triangular lattice in a tri-
angular region with tiles that connect three adjacent lattice points.
In a tiling, all the points must be used by exactly one tile. This
problem can also be considered as a problem to tile the hexagonal
regular lattice by tiles which consist of three hexagons. Among
the tiles that connect three adjacent points, we consider the trian-
gle tile that covers a unit triangle.

Let the number of lattice points on an edge of the region be n.
An example of a three-point tiling with triangle tiles for n = 11 is
shown in Fig. 1. It is shown in Ref. [4] that the three-point tiling
with triangle tiles is possible if and only if n (mod 12) is either
0, 2, 9, or 11. However, the number of solutions for a region with
n points on an edge is not known.

In this paper, we compute the number of solutions for the prob-
lem. To count the number of solutions, we use Ordered Binary
Decision Diagrams (OBDDs) [6], [7]. An OBDD is a graph rep-
resentation of a Boolean function. OBDDs are widely used in
many applications due to their good properties [8]. Especially,
OBDDs are very useful for enumerating all the solutions of com-
binatorial problems. To solve a combinatorial problem using
OBDDs, we construct an OBDD that represents the restrictions
to be a solution for the problem. Therefore, we can obtain the
OBDD that represents all the solutions of the problem. Even
though there are many solutions, they can often be represented
by a compact OBDD because many of the solutions usually have
partially the same structure. In addition, it is possible to extract
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Fig. 1 An example of tiling.

the solutions with some property by operations on an OBDD.
Some solutions of the three-point tiling problem may be es-

sentially the same. Two solutions are essentially the same if a
solution becomes identical to the other solution by rotating and
turning over the solution. In this paper, we enumerate all the so-
lutions and the rotate symmetric solutions using OBDDs. Also,
we have computed the number of essentially different solutions
for n ≤ 33.

2. Preliminaries

2.1 Three Point Tiling of the Triangular Lattice
A plane can be completely covered by equilateral triangles of

the same size with a regular layout as shown in Fig. 2 (a). A tri-
angular lattice is the planar layout of triangles. The points in
the plane where the corners of triangles are placed at are called
lattice points. That is, the lattice points are the points repre-
sented by the linear combination ie1 + je2 of two unit vectors
e1 and e2 in Fig. 2 (a) with integers i and j. The lattice point
ie1+ je2 is represented by two-dimensional coordinates (i, j). Us-
ing the coordinates, unit triangles are the triangles that connect
points (i, j), (i, j + 1) and (i + 1, j), or those that connect points
(i, j + 1), (i + 1, j) and (i + 1, j + 1). The former ones are called
upward and the latter ones are called downward.

In this paper, we consider the triangular region of the lattice. A
triangular region is a part of the triangular lattice that consists of
lattice points (i, j) satisfying i ≥ 0, j ≥ 0 and i + j ≤ n − 1 for
some integer n. Here, n is the number of lattice points on an edge
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of the triangular region. Figure 2 (b) is the triangular region with
n = 9.

A three point tiling of a region of the triangular lattice with
triangular tiles is a placement of triangular tiles with the size of
a unit triangle such that each corner of a tile is placed on a lat-
tice point and exactly one corner of a tile is placed on each lattice
point.

2.2 Ordered Binary Decision Diagrams
An OBDD is a directed acyclic graph that represents a Boolean

function. It has one source node and two sink nodes called con-

stant nodes that are labeled by Boolean values 0 and 1 respec-
tively. The nodes that are not sinks are called variable nodes. A
variable node is labeled by a variable and has two outgoing edges
called a 0-edge and a 1-edge respectively.

On any path from the source to a constant node, variables ap-
pear according to a total order of variables. The total order of
variables is called the variable order.

Given an assignment to all the variables, the value of the func-
tion is computed by traversing from the source to one of the con-
stant nodes according to the values of the variables. At a variable
node, if the variable labeled to the node has value 1 (0 resp.),
leave the node along the 1-edge (0-edge resp.). The value of the
function is 1 (0 resp.) if the constant node is labeled 1 (0 resp.).

A node whose 1-edge and 0-edge point to the same node is
called a redundant node. Nodes that are labeled by the same
variable and represent the same function are called equivalent
nodes. An OBDD which has no equivalent nodes and no redun-
dant nodes is called a reduced OBDD. In this paper, OBDDs are
assumed to be reduced. A Boolean function is uniquely repre-
sented by a reduced OBDD if the variable order is fixed. Figure 3
is an example of the OBDD that represents a Boolean function
f = x1 x2 x3 + x1x2 + x2x3. The variable order of the OBDD is
x1x2x3.

Fig. 2 Triangular grid and its triangular region.

Fig. 3 An example of an OBDD.

3. Enumeration of Three-Point Tilings

3.1 Enumeration of All the Tilings
In this section, we propose the method to enumerate all the so-

lutions of the three-point tiling problem with triangle tiles using
OBDDs. The only input is a positive integer n, the number of
lattice points on an edge of the triangular region.

Variables ti, j and rti, j are defined as follows.

ti, j=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if there is a tile using points (i, j), (i, j+1) and (i+1, j),

0 otherwise.

(0 ≤ i, j ≤ n − 2, 0 ≤ i + j ≤ n − 2)

rti, j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1 if there is a tile using points (i, j + 1), (i + 1, j)

and (i + 1, j + 1),

0 otherwise.

(0 ≤ i, j ≤ n − 3, 0 ≤ i + j ≤ n − 3)
The triangles corresponding to variables ti, j are upward and those
corresponding to rti, j are downward as shown in Fig. 4.

The condition of the proper tiling is that each point is used by
exactly one tile. That is, exactly one of the variables correspond-
ing to the unit triangles around each point should be true. The
condition for point (i, j) (0 ≤ i, j ≤ n − 1, 0 ≤ i + j ≤ n − 1) is
represented by the following function Pi, j.

Pi, j = (ti, j−1 ∧ rti, j−1 ∧ ti, j ∧ rti−1, j−1 ∧ ti−1, j ∧ rti−1, j)

∨ (ti, j−1 ∧ rti, j−1 ∧ ti, j ∧ rti−1, j−1 ∧ ti−1, j ∧ rti−1, j)

∨ (ti, j−1 ∧ rti, j−1 ∧ ti, j ∧ rti−1, j−1 ∧ ti−1, j ∧ rti−1, j)

∨ (ti, j−1 ∧ rti, j−1 ∧ ti, j ∧ rti−1, j−1 ∧ ti−1, j ∧ rti−1, j)

∨ (ti, j−1 ∧ rti, j−1 ∧ ti, j ∧ rti−1, j−1 ∧ ti−1, j ∧ rti−1, j)

∨ (ti, j−1 ∧ rti, j−1 ∧ ti, j ∧ rti−1, j−1 ∧ ti−1, j ∧ rti−1, j).

Note that there are less than six unit triangles around the points
that are on the edges of the triangular region. Thus, for such (i, j),
Pi, j includes the variables whose indices are not valid. We fix the
variables with non-valid indices to false. As tiles must be placed
on the triangles at the corners of the region, we can fix the values
of t0,0, t0,n−2 and tn−2,0 to be 1.

An assignment represents a three-point tiling if and only if the
value of the following function F for the assignment is 1.

F =
∧

0≤i, j≤n−1,0≤i+ j≤n−1

Pi, j

The OBDD representing the Boolean function F is obtained by
repeatedly executing logical operations on OBDDs, starting from
the OBDDs representing the variables.

Fig. 4 Variables.
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Fig. 5 Variables for rotation symmetric tilings.

3.2 Enumeration of Rotation Symmetric Tilings
We call a tiling to be rotation symmetric if it is identical with

the original tiling after rotation of 120◦ and 240◦. In this sec-
tion, we show how to enumerate the rotation symmetric tilings
efficiently. On a rotation symmetric tiling, three variables cor-
responding to the triangles that overlap when rotated must have
the same value. Thus we can decrease the number of variables to
about one-third of the general case.

The triangles on which we have to assign variables depend on
n. The variables to be used are as follows. When n (mod 12) is 2
or 11, the used variables are
t(n−2)/3,(n−2)/3,
ti, j (0 ≤ i ≤ (n − 5)/3, 0 ≤ i + j ≤ n − 3) and
rti, j (0 ≤ i ≤ (n − 5)/3, 0 ≤ i + j ≤ n − 4).
When n (mod 12) is 0 or 9, the used variables are
rt(n−3)/3,(n−3)/3,
ti, j (0 ≤ i ≤ (n − 3)/3, 0 ≤ i + j ≤ n − 3) and
rti, j (0 ≤ i ≤ (n − 3)/3, 0 ≤ i + j ≤ n − 4).
For example, when n = 9 and n = 11, we assign variables to the
triangles in the gray area of Fig. 5.

The functions Pi, j are similar to the general case. However, we
have only to construct Pi, j for the points that are in the middle or
on the edges of the gray areas except the points on the right (top
resp.) edge when n (mod 12) is 2 or 11 (0 or 9 resp.). That is,
points (i, j) satisfying 0 ≤ i ≤ (n−2)/3 and 0 ≤ i+ j ≤ (2n−4)/3
when n (mod 12) is 2 or 11, and those satisfying 0 ≤ i ≤ (n−3)/3
and 0 ≤ i+ j ≤ (2n− 3)/3 when n (mod 12) is 0 or 9, The points
are shown by black dots in Fig. 5. When variables are not as-
signed to some of the unit triangles around a point, the variables
that overlap with the triangles by rotation are used instead to com-
pute Pi, j.

4. Number of Essentially Different Tilings

4.1 Duplicate Tilings
A tiling may become identical with another tiling by rotating

it or by turning it over. We call a tiling which become identical
with a given tiling, including the given tiling itself, is a duplicate
of the tiling. The number of different duplicates depends on the
tiling.

We divide the tilings into rotation symmetric ones and the other
ones. For the tilings that are not rotation symmetric, there exist at
most six duplicates as shown in Fig. 6. The left top tiling of the
figure is the original tiling. The other tilings in the top row are
obtained by rotating the original tiling. The tilings in the bottom
row are obtained by turning over the above tiling.

Fig. 6 Duplicate tilings.

Fig. 7 Tiling patterns near the corner.

Lemma 1 For any tiling that is not rotation symmetric, there
exist six different duplicates.
Proof As the tiling is not rotation symmetric, any two of the
three tilings obtained by rotation are not identical. By the same
reason, any two of the three tilings obtained by turning them over
are not identical. We will show that any of the three tilings ob-
tained by rotation is not identical with any of the three tilings
obtained by turning them over.

For any tiling, the pattern of tiles near the corners of the trian-
gular region must be either of Fig. 7. The point at the top of the
figure is the corner of the triangular region. Let the left one be
pattern A and the right one be pattern B. Let a tiling which has
three corners of pattern A be a AAA tiling and a tiling which has
two corners of pattern A and one corner of pattern B be a AAB

tiling. Similarly, BBB and ABB tilings can be defined. The tiling
patterns on the corners do not change by rotation. For example,
if a tiling is an AAA tiling, it remains to be an AAA tiling after
rotation. We can observe that, by turning over a tiling, pattern
A becomes pattern B and vice versa. Thus, after turning over a
tiling, an AAA tiling becomes a BBB tiling and an AAB tiling be-
comes an ABB tiling. Therefore, no tiling can be identical with
any of the three tilings obtained by turning it over. �

Lemma 2 For any rotation symmetric tiling, there exist only
two different duplicates.
Proof As shown before, the tiling obtained by turning over a
given tiling is not identical with the original one because they
have different patterns on the corners. As a rotation symmetric
tiling is identical with the ones obtained by rotation, there are
only two duplicates that are not identical. �

4.2 Counting the Number of Essentially Different Tilings
In this section, we consider how to count the number of essen-

tially different tilings.
Theorem 1 Let q, r, s be the number of all the AAA tilings,

the number of rotation symmetric AAA tilings, and the number
of AAB tilings which have pattern B at a fixed corner of the re-
gion, respectively. Then, the total number of essentially different
tilings is r + (q − r)/3 + s = 1

3 (q + 2r + 3s).
Proof First, we classify the tilings we have to count. As any

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.3

Table 1 Number of tilings.

n Ntotal NAAA NAAB Nrot Ndi f f

2 1 − − − 1

9 2 1 0 1 1

11 8 1 1 1 2

12 12 3 1 0 2

14 72 9 9 0 12

21 185,328 23,634 23,010 0 30,888

23 4,736,520 587,676 593,528 0 789,420

24 21,617,456 2,722,666 2,695,354 112 3,602,984

26 912,370,744 113,597,576 114,195,932 488 152,062,116

33 3,688,972,842,502,560 461,440,189,850,352 461,015,410,466,976 59,808 614,828,807,123,632

35 433,136

36 1,116,160

38 5,913,328

45 13,382,425,344

BBB (ABB resp.) tiling is obtained by turning over an AAA (AAB

resp.) tiling, we have only to count the number of AAA and AAB

tilings. No AAB tilings can be rotation symmetric because the
position of the corner with pattern B changes after rotation. Thus
a rotation symmetric tiling must be an AAA tiling. Hence, the
tilings we have to count can be classified into the following three
cases.
• Rotation symmetric AAA tilings.
• AAA tilings that are not rotation symmetric.
• AAB tilings.
Now we consider the number of essentially different tilings for

each case. First, all of the r rotation symmetric AAA tilings are
essentially different. It is because non-identical rotation symmet-
ric tilings never become identical after rotation. Next, we con-
sider AAA tilings that are not rotation symmetric. As each tiling
of this kind has three duplicate AAA tilings, the number of es-
sentially different tilings is one-third of the total number of such
tilings. The number of AAA tilings that are not rotation symmet-
ric is q− r. Thus the number of essentially different tilings of this
kind is (q− r)/3. Finally, similarly to the previous case, the num-
ber of essentially different AAB tilings is one-third of the total
number of AAB tilings. As three AAB tilings obtained by rotat-
ing an AAB tiling have pattern B at different corners, the number
of essentially different AAB tilings equals the number s of AAB

tilings which have pattern B at a fixed position. In total, the total
number of essentially different tilings is r + (q − r)/3 + s. �

The number of all the tilings can also be represented by q and
s. As each AAA tiling has two duplicate tilings and each AAB

tiling with pattern B at a fixed corner has six duplicate tilings, the
number of all the tilings is 2q + 6s.

5. Experimental Results

We have implemented programs to enumerate the following
tilings using OBDDs.
• All the tilings.
• All the AAA tilings.
• All the AAB tilings which have pattern B at a fixed corner.
• All the rotation symmetric AAA tilings.
The number of the tilings are denoted by Ntotal,NAAA,NAAB and

Nrot respectively. Also the number of essentially different tilings

Fig. 8 Variable order.

Fig. 9 Variable order for rotation symmetric tilings.

is denoted by Ndi f f .
The variable orders we used are shown in Fig. 8 and Fig. 9.

Figure 9 shows the variable orders for enumerating rotation sym-
metric tilings. The variable orderings are the best ones among
some orderings we have experimented. Note that values of some
variables near the corner are fixed when we enumerate the tilings
with fixed patterns of corners.

The experiments are executed on SUNW UltraSPARC-IIIi*2
(1.6 GHz) with 16 GB memory using CUDD package [9]. The
number of tilings obtained by the enumeration programs are
shown in Table 1. The rightmost column is the number of es-
sentially different tilings computed from the results.

We could enumerate the rotation symmetric AAA tilings for
n ≤ 45 and other tilings for n ≤ 33. The entries with − means
that such tilings do not exist clearly. Empty entries mean that the
OBDD size became too large to handle on the memory. Note that
we can confirm that the number of all the tilings equals to 2q+6s

as claimed in the previous section.
We have also implemented enumeration programs using zero-

suppressed BDDs (ZDDs) [10], which is a variation of OBDDs,
and compared the efficiency with the implementation using OB-
DDs. The number of nodes representing all the solutions and the
execution time for enumerating all the solutions are shown in Ta-
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Table 2 Comparison of implementations using OBDDs and ZDDs.

number of nodes execution time(s)
n OBDD ZDD OBDD ZDD

9 120 29 0.00 0.02

11 440 100 0.00 0.05

12 674 149 0.00 0.08

14 2,155 473 0.01 0.19

21 100,036 21,934 0.55 2.10

23 320,482 70,654 2.16 4.15

24 561,698 123,974 4.18 6.61

26 1,819,043 403,296 20.15 17.07

33 111,801,774 — 1548.03 —

ble 2. When we used ZDDs, the size of the ZDD became too
large to handle for n = 33. Though the numbers of nodes of
the obtained ZDDs are smaller than those of OBDDs, the peak
number of nodes is larger on ZDDs.

6. Conclusions

In this paper, we enumerated three-point tilings with triangle
tiles using OBDDs and computed the number of essentially dif-
ferent tilings for n ≤ 33. Also we enumerated rotation symmetric
tilings for n ≤ 45.

Though we could count the number of essentially different
tilings, we did not obtain the OBDDs that represent only the
tilings. To obtain such OBDDs, we must be able to extract one
tiling among three AAA tilings which become identical by rota-
tion. It still remains as a challenging problem to represent the
number of solutions as a function of n.
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