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Abstract: Among many variations of pencil puzzles, Latin square Completion-Type puzzles (LSCPs) are quite pop-
ular for puzzle fans. Concerning these puzzles, the solvability has been investigated from the viewpoint of time com-
plexity in the last decade; it has been shown that, in most of these puzzles, it is NP-complete to determine whether a
given puzzle instance has a proper solution. In this paper, we investigate the approximability of three LSCPs: Sudoku,
Futoshiki and KenKen. We formulate each LSCP as a maximization problem that asks to fill as many cells as possible,
under the Latin square condition and the inherent condition. We then propose simple generic approximation algorithms
for them and analyze their approximation ratios.
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1. Introduction

Pencil puzzles are now very popular all over the world,
and even specialized magazines are published (e.g., Ref. [20]).
Among many variations of pencil puzzles, Latin square

Completion-Type puzzles (LSCPs) are quite popular for puzzle
fans. Even the most influential newspapers such as The Times
and The New York Times deal with Sudoku, Futoshiki, KenKen,
and their variants.

In a typical LSCP, we are given an n × n partial Latin square.
An n × n partial Latin square is an assignment of n integers (i.e.,
1, 2, . . . , n) to n2 cells on the n × n grid such that the Latin square

condition is satisfied. The Latin square condition requires that, in
each row and in each column, every integer in {1, 2, . . . , n} should
appear at most once. Then we are asked to fill all the empty cells
with n integers so that the Latin square condition and the con-
straints peculiar to the puzzle are satisfied.

In this paper, we investigate the approximability of LSCP. We
formulate an LSCP as a maximization problem that asks to fill as
many empty cells as possible, under the Latin square condition
and the inherent condition. Focusing on Sudoku, Futoshiki and
KenKen, we present three generic algorithms for approximately
solving these puzzles. The generic approximation algorithms are
standard ones: a greedy approach, a matching-based approach
and a local search approach.

Let us describe the reason why we study the approximability.
First we are motivated by our observation on children’s behavior
in solving LSCPs. The first author once participated as an orga-
nizer in an event where ten- or eleven-year-old children are en-
couraged to solve many LSCPs [13], [18]. We found that some of
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them solve the puzzles by a greedy method, that is, focusing on an
arbitrary empty cell, they fill the cell with an arbitrary integer that
does not match the value in the true solution, but that does not vio-
late the rule of the puzzle to the extent of the interim solution. On
the other hand, reasonable puzzle solvers solve LSCPs by utiliz-
ing a kind of inference rule; they assign an integer k to an empty
cell when they find out that k is the unique integer assignable to
the cell, as a result of the inference. Then we are interested in
how the greedy method or other simple strategies, which adults
do not usually use, solve LSCPs approximately. This invokes our
first motivation.

Concerning pencil puzzles, puzzle approximability has rarely
been studied before. It is solvability (in terms of time complexity)
that has been a key issue in the literature of theoretical computer
science or discrete mathematics. It has been shown that, in most
pencil puzzles, it is NP-complete to determine whether a given
puzzle instance has a proper solution; e.g., Hashiwokakero [1],
Kurodoko [17], Shakashaka [5]. For LSCP, Sudoku [21] is NP-
complete. KenKen is also NP-complete since it includes a cer-
tain NP-complete puzzle called BlockSum as a special case [10].
Hearn and Demaine [12] investigated the computational complex-
ity of not only pencil puzzles but also other types of puzzles.

Approximability might provide useful information for puzzle

solvers. It might be more fun for them to know that a certain strat-
egy (or algorithm) always fills 50% of the empty cells, or that it is
NP-hard to fill 99% of the empty cells. The NP-completeness of
solvability is not necessarily useful information because the puz-
zle solvers are usually given solvable puzzle instances. The com-
plexity of solvability could be meaningful rather for puzzle cre-

ators. They should create solvable puzzle instances, often those
having unique solutions. The intractability might imply that the
task is difficult even if they can use computers.

This work is partially supported by JSPS KAKENHI Grant Number
24106004, 25104521 and 25870661. The preliminary version of this
paper appeared in the proceedings of FUN 2014 [11].
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Fig. 1 Instances (upper) and solutions (lower) of Sudoku, Futoshiki and KenKen: n = 4, n0 = n1 = 2 for
Sudoku, and shaded cells indicate integers given in the instances.

This paper is organized as follows. We prepare terminologies
and formulate the three LSCPs as maximization problems in Sec-
tion 2. In Section 3, we review the previous results on compu-
tational hardness of the LSCPs and present our new results on
Futoshiki. Then in Section 4, we present generic approximation
algorithms for the LSCPs, along with their approximation ratios
for the respective puzzles. Finally we give concluding remarks in
Section 5.

2. Preliminaries

2.1 Latin Square
Let n ≥ 2 be a natural number. First we introduce notations

on the n × n grid of cells. Let us denote [n] = {1, 2, . . . , n}. For
any i, j ∈ [n], we denote the cell in the row i and in the column
j by (i, j). We say that two cells (i, j) and (i′, j′) are adjacent if
|i − i′| + | j − j′| = 1. The adjacency defines the connectivity of
cells. A block is a set of connected cells. We denote a block by
B ⊆ [n]2. We call B a τ-block if it consists of τ cells. When the
cells in the block form a p×q rectangle, we call it a (p×q)-block.

Next we introduce notations on assignment of values to the
grid. The values to be assigned are the n integers 1, 2, . . . , n. We
represent a partial assignment of values by an n × n array, say A.
For each cell (i, j), we denote the assigned value by Ai j ∈ [n]∪{0},
where Ai j = 0 indicates that (i, j) is empty. When all the cells are
empty, we call A empty. We define the size of A as the number
of non-empty cells of A. We denote the size of A by |A|, that is,
|A| = |{(i, j) ∈ [n]2 | Ai j � 0}|. We call A a partial Latin square

(PLS) if it satisfies the Latin square condition that we introduced
in Section 1. In particular, if all the cells are assigned values,
then we simply call A a Latin square (LS). Two PLSs A and L are
compatible if the following two conditions hold:
(i) For every cell (i, j) ∈ [n]2, at least one of Ai j = 0 and Li j = 0

holds. (i.e., (i, j) is empty in at least one of A and L.)
(ii) The assignment A ⊕ L defined as follows is a PLS:

(A ⊕ L)i j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Ai j if Ai j � 0 and Li j = 0,
Li j if Ai j = 0 and Li j � 0,
0 otherwise.

When A and L are compatible, we can construct a PLS by “merg-
ing” A and L. A PLS L′ is an extension of a PLS L (or equiva-
lently, L is a restriction of L′) if L′i j = Li j whenever Li j � 0. When
L′ is an extension of L, we write L′ � L. One readily sees that
L′ � L holds iff there is a PLS A such that A and L are compatible
and L′ = A⊕L. Given a PLS L, the partial Latin square extension

(PLSE) problem asks to construct a PLS A of the maximum size
such that A and L are compatible. We analyze the approximabil-
ity of the LSCPs by utilizing some previous results on the PLSE
problem.

2.2 Sudoku, Futoshiki and KenKen as Maximization Prob-
lems

First we describe the rules of Sudoku, Futoshiki and KenKen.
We illustrate instances and solutions of the three puzzles in Fig. 1.
Sudoku asks to complete a given PLS so that, in each block indi-
cated by bold lines, every integer appears exactly once. Futoshiki

asks to complete a given PLS so that the assigned integers satisfy
all the inequalities in the grid. KenKen asks to complete a given
PLS *1 so that, in each block indicated by bold lines, the summa-
tion (+), subtraction (−), multiplication (×) or division (÷) of the
assigned integers over the block should be equal to a certain inte-
ger given to the block, which we call the goal value of the block.
A block is also given the calculation type, where (−) and (÷) are
given only to 2-blocks. The given goal value and the calculation
type are depicted in each block.

We formulate the three puzzles as maximization problems. We
call the problems MaxSudoku, MaxFutoshiki, and MaxKenKen

respectively. The problems ask not to complete the given PLS
but to fill as many empty cells with integers as possible. An op-
timal solution is not necessarily an LS, whereas puzzle instances
that are given to human solvers usually have unique LS solutions.
Each problem is a special type of the PLSE problem in the sense
that, given a PLS L and possibly additional parameters, we are
asked to construct a PLS A of the maximum size so that A and L

are compatible, and at the same time, A⊕L satisfies the condition

*1 In the KenKen instance in Fig. 1, the empty PLS is given.

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.3

C peculiar to the puzzle. The extra condition C is peculiar to each
puzzle, arising from the rule of the puzzle.

Below we explain the condition C and what is given as an in-
stance along with a PLS L in the respective problems. Given C
and L, we call a PLS A a solution to the given instance if A and L

are compatible and A ⊕ L satisfies C with respect to the instance.
In MaxSudoku, the grid length n is assumed to be a compos-

ite number. We are given two positive integers n0 and n1 such
that n = n0n1. Note that the n × n grid can be partitioned into n

(n0 × n1)-blocks.
Sudoku Condition CSUD: In every (n0×n1)-block, each integer

in [n] appears at most once.

We call an n × n PLS a Sudoku PLS if it satisfies CSUD with re-
spect to given n0 and n1. Given n0, n1, and a Sudoku PLS L, the
MaxSudoku problem asks to construct a Sudoku PLS A of the
maximum size such that A and L are compatible, and that A ⊕ L

is a Sudoku PLS as well.

Problem MaxSudoku

Input: Two positive integers n0 and n1 such that n = n0n1

and an n × n Sudoku PLS L.
Output: An n×n Sudoku PLS A of the maximum size such

that A and L are compatible, and at the same time, A⊕ L

is a Sudoku PLS.

In MaxFutoshiki, we are given not only a PLS L but also a set
of inequality signs such that each inequality sign is located be-
tween two adjacent cells. Let QL be the set of all the ordered
pairs of two adjacent cells such that at least one of them is empty
in L, that is,

QL =
{
((i, j), (i′, j′)) ∈ [n]2 × [n]2 |
(i, j) and (i′, j′) are adjacent, and

at least one of (i, j) and (i′, j′) is empty in L
}
.

We call a subset Q of QL a sign set when ((i, j), (i′, j′)) ∈ Q im-
plies ((i′, j′), (i, j)) � Q. Each ((i, j), (i′, j′)) ∈ Q represents a
“smaller than” inequality sign such that (i, j) should be assigned
a smaller integer than (i′, j′). Note that Q contains at most one
inequality sign between any two adjacent cells, and in particular,
it contains no inequality sign between two adjacent cells such that
both cells are given integers by L; such an inequality sign would
be redundant in the puzzle. The MaxFutoshiki problem asks to
construct a PLS A of the maximum size such that A and L are
compatible and A ⊕ L satisfies the following condition.
Futoshiki Condition CFUT: For every pair ((i, j), (i′, j′)) of ad-

jacent cells in Q, either (i) or (ii) holds:

(i) (A ⊕ L)i j = 0 or (A ⊕ L)i′ j′ = 0, or

(ii) (A ⊕ L)i j < (A ⊕ L)i′ j′ .

Problem MaxFutoshiki

Input: An n × n PLS L and a sign set Q ⊆ QL.
Output: An n × n PLS A of the maximum size such that A

and L are compatible, and at the same time, that A ⊕ L

satisfies CFUT.

In MaxKenKen, we are given a PLS L, a partition B of n2

cells into blocks, a function σ : B → Z
∗, and a function

π : B → {+,−,×,÷}. For any block B ∈ B, the non-negative

integer σ(B) represents the goal value of B, and the sign π(B)
represents the calculation type of B. The π is a function such that
π(B) ∈ {−,÷} only when |B| = 2. The MaxKenKen problem asks
to construct an n × n PLS A of the maximum size such that A

and L are compatible and that and A ⊕ L satisfies the following
condition.
KenKen Condition CKEN: Let us denote X = A ⊕ L. For every

block B = {(i1, j1), (i2, j2), . . . , (ip, jp)} in the partition B, the

following should hold:

∑

(i, j)∈B

Xi j ≤ σ(B) if π(B) = +,

Xi1 j1 = 0, Xi2 j2 = 0, or

max{Xi1 j1 − Xi2 j2 , Xi2 j2 − Xi1 j1 } ≤ σ(B) if π(B) = −,∏

(i, j)∈B: Xi j>0

Xi j ≤ σ(B) if π(B) = ×,

Xi1 j1 = 0, Xi2 j2 = 0, or

max{Xi1 j1

Xi2 j2
,

Xi2 j2

Xi1 j1
} ≤ σ(B) if π(B) = ÷.

(1)

In Eq. (1), we relax the original condition of KenKen by replac-
ing equalities with inequalities in order to admit not only an LS
but also a PLS as a solution.

Problem MaxKenKen

Input: An n×n PLS L, a partition B of n2 cells into blocks,
a goal value function σ : B → Z∗, and a calculation type
function π : B → {+,−,×,÷}.

Output: An n × n PLS A of the maximum size such that A

and L are compatible, and at the same time, that A ⊕ L

satisfies CKEN.

We have finished explaining the three maximization problems.
In each problem, one can easily confirm the solution monotonic-
ity such that, when A is a solution, any restriction A′ � A is a
solution as well. Given A, we say that an integer k is assignable

to an empty cell (i, j) if we can extend A by assigning k to (i, j)
without violating any constraints. If no integer is assignable to
any empty cell, or equivalently, if no extension A′ of A (A′ � A)
is a solution. we say that A is blocked.

Let us denote a maximization problem instance by I and its
global optimal solution by A∗(I). For a real number ρ ∈ [0, 1],
a solution A to the instance I is a ρ-approximate solution if
|A|/|A∗(I)| ≥ ρ holds. A polynomial time algorithm is called a
ρ-approximation algorithm if it delivers a ρ-approximate solution
for any instance. The bound ρ is called the approximation ratio

of the algorithm.

3. Hardness

We review previous studies on computational complexity of
the problems described so far. We then present our new results
on MaxFutoshiki.

First we mention that the ordinary PLSE problem is computa-
tionally expensive.

Theorem 1 (Colbourn [3]) The PLSE problem is NP-hard.

Theorem 2 (Easton et al. [6]) The PLSE problem is NP-

hard even if at most three empty cells exist in any row or in any

column, and only three values are available.
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Theorem 3 (Hajirasouliha et al. [8]) The PLSE problem is

APX-hard.

MaxSudoku is NP-hard in general [21]. Interestingly, it is still
NP-hard even if each row (or column) is either empty or full,
whereas the PLSE problem in this case can be solved in polyno-
mial time [2].

MaxKenKen is NP-hard because it includes a certain NP-hard
problem as a special case. It is the maximization problem version
of BlockSum, in which the calculation type π(B) of any block B

is restricted to summation, i.e., π(B) = +. The decision problem
to ask whether a given BlockSum instance has a solution or not is
NP-complete even if every block is either 1-block or 2-block [10].

We investigate the computational hardness of MaxFutoshiki in
the rest of the section. We summarize the result in Table 1. A
MaxFutoshiki instance is given in terms of (L,Q) such that L is a
PLS and Q ⊆ QL is a sign set.

When L is empty, we know nothing about the hardness except
the trivial case of Q = ∅; in this case, any LS is as an optimal
solution. We leave the case of Q � ∅ open.

Let L be a non-empty PLS. When Q = ∅, the problem is equiv-
alent to the ordinary PLSE problem, and thus is NP-hard by The-
orem 1. When Q is a non-empty subset of QL, it is NP-hard by
the following Theorem 4.

Theorem 4 MaxFutoshiki is NP-hard if L is a non-empty

PLS and Q is a non-empty subset of QL.

Proof: We prove the theorem by reduction from the PLSE prob-
lem. We transform a PLS L into a MaxFutoshiki instance on the
2n×2n grid. The 2n×2n grid consists of four gadgets: (i) the cells
(2k− 1, 2�− 1)’-s whose row order and column order are odd, (ii)
the cells (2k, 2�)’-s whose row order and column order are even,
(iii) the cells (2k − 1, 2�)’-s whose row order is odd and column
order is even, and (iv) the cells (2k, 2� − 1)’-s whose row order
is even and column order is odd. Note that each gadget forms an
n × n subgrid.

We copy the PLS L to the gadget (i), fill all the cells in (ii) with
an arbitrary Latin square ranging from 1 to n, and fill all the cells
in (iii) and those in (iv) with an arbitrary Latin square ranging
from n+ 1 to 2n respectively. The assignment defined in this way
is a 2n × 2n PLS. The point is that empty cells appear only in
(i) and that any two of them are not adjacent; any empty cell is
adjacent to cells in (iii) and/or (iv), all of which are given integers
from n+1 to 2n. Then we allocate “smaller than” inequality signs
around the empty cells arbitrarily.

Clearly, the PLSE instance L has an LS solution iff the con-
structed MaxFutoshiki instance has an LS solution. The construc-
tion time is polynomial. �

In the above proof, we can set the sign set Q to the full sign set.
Corollary 1 When L is non-empty, MaxFutoshiki is still NP-

Table 1 Computational hardness of MaxFutoshiki.

Sign set Q ⊆ QL

(empty) (non-empty)

PLS L (empty) trivial ?

(non-empty) NP-hard NP-hard
(Theorem 1) (Theorem 4)

hard even if Q is restricted to Q = QL.

4. Approximation Algorithms

In this section, we present approximation algorithms for the
puzzle maximization problems. The algorithms generalize exist-
ing ones for the PLSE problem. We borrow three types of al-
gorithms from the literature: greedy algorithm, matching based
approach, and local search. We show the result of our analyses in
Table 2.

4.1 Greedy Algorithm
The greedy algorithm in this case refers to an algorithm as fol-

lows; starting from an empty solution, we repeat assigning an
integer k to an empty cell (i, j) such that k is assignable to (i, j)
until the solution is blocked. The algorithm runs in O(n3) time;
we need O(n3) time to construct the list of triple (i, j, k)’-s such
that k is assignable to (i, j). We then pick up at most n2 triples
from the list. Once we pick up one triple, O(n) time is required to
update the list.

For the PLSE problem, Kumar et al. [19] showed that it is a
1/3-approximation algorithm.

Theorem 5 (Kumar et al. [19]) For any instance of the

PLSE problem, any blocked solution is a 1/3-approximate

solution.

To extend this theorem, we give a detailed proof of the theo-
rem.

Proof: Let A be a blocked solution and A∗ be an optimal solu-
tion. Suppose substituting the value k = A∗i j of any cell (i, j) in
the optimal solution to Ai j in the blocked solution. Of course we
cannot do so since A is blocked. More concretely, in A, (i, j) is
already filled with an integer or the integer k is already assigned
to a certain cell (i, j′) in the row i or (i′, j) in the column j. Then
one sees that each value Ai j in the blocked solution A “prevents”
us from copying at most three values in the optimal solution A∗ to
the same cells in A. We denote by S i j(A, A∗) the set of cells such
that Ai j prevents the copy in that way;

S i j(A, A
∗) ={(i, j)} ∪ {(i′, j) | Ai′ j = 0 and A∗i′ j = Ai j}
∪ {(i, j′) | Ai j′ = 0 and A∗i j′ = Ai j}. (2)

Since |S i j(A, A∗)| ≤ 3, we have an upper bound of the summation
of |S i j(A, A∗)| over A, that is,

Table 2 Approximation ratios: ε denotes any positive real number, δ de-
notes the largest number of inequality signs around a cell, and Δ
denotes the largest block size. The bound ∗ can be achieved only
for special instances which are explained in Section 4.2.

Problem Greedy Matching Local search
PLSE 1/3 1/2 2/3 − ε

(Theorem 5) (Theorem 9) (Theorem 14)
3/4 − ε

(Theorem 16)

MaxSudoku 1/4 1/2 3/5 − ε
(Theorem 6) (Theorem 12) (Theorem 17)

MaxFutoshiki 1/(3 + δ) 1/2 -
(Theorem 7) (Theorem 10)

MaxKenKen 1/(2 + Δ) 1/2∗ -
(Theorem 8) (Theorem 11)
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Fig. 2 Tight examples: blocked solution (upper) and optimal solution (lower).

∑

(i, j)∈[n]2: Ai j>0

|S i j(A, A
∗)| ≤ 3|A|.

We claim that the size of the optimal solution should give a lower
bound of the summation, that is,

|A∗| ≤
∑

(i, j)∈[n]2: Ai j>0

|S i j(A, A
∗)|.

If not so, A∗ would have a non-empty cell (p, q) such that (p, q) �⋃
i j S i j(A, A∗). Then in A, (p, q) is empty and is not prevented by

any Ai j from copying the integer A∗pq to (p, q), which contradicts
the fact that A is blocked.

Finally we have |A∗| ≤ 3|A|, which proves that A is a 1/3-
approximate solution. �

The point is the size of S i j(A, A∗) in Eq. (2). Since it is at most
three, any blocked solution is a 1/3-approximate solution. Then
for a puzzle maximization problem with a peculiar constraint C,
designing the similar set S Ci j(A, A

∗) appropriately, we can prove
any blocked solution to be a 1/βC-approximate solution in the
analogous way, where βC denotes an upper bound on the size of
S Ci j(A, A

∗).
For MaxSudoku, we can set the upper bound to βSUD = 4 by

taking the set S SUD
i j (A, A∗) as follows:

S SUD
i j (A, A∗) =S i j(A, A

∗) ∪ {(p, q) | Apq = 0, A∗pq = Ai j,

and (i, j) and (p, q) belong to

the same (n0 × n1)-block}.

Theorem 6 For any MaxSudoku instance, any blocked solu-

tion is a 1/4-approximate solution.

For MaxFutoshiki, the approximation ratio depends on how
many inequality signs are around a cell. Let δ denote the maxi-
mum number of inequality signs that surround an empty cell over
the given instance. Clearly we have δ ∈ {0, 1, . . . , 4}. Then we
can set the bound to βFUT = 3 + δ by taking the set S FUT

i j (A, A∗)
as follows since, in the right hand, the size of the second set is at
most δ.

S FUT
i j (A, A∗) =S i j(A, A

∗) ∪ {(p, q) | Apq = 0,

(p, q) is adjacent to (i, j), and

either (A∗pq > Ai j and ((p, q), (i, j)) ∈ Q)

or (A∗pq < Ai j and ((i, j), (p, q)) ∈ Q)}.

Theorem 7 Suppose that we are given a MaxFutoshiki in-

stance such that the number of inequality signs around a cell is

at most δ. Then any blocked solution is a 1/(3 + δ)-approximate

solution.

For MaxKenKen, the approximation ratio depends on the max-
imum size of the block over the instance, which we denote by Δ.
We set the bound to βKEN = 2 + Δ, taking the set S KEN

i j (A, A∗) as
follows. In the right hand, the size of the second set is at most
Δ − 1.

S KEN
i j (A, A∗) =S i j(A, A

∗) ∪ {(p, q) | Apq = 0,

(i, j) and (p, q) belong to the same block B,

and A∗pq is not assignable to (p, q) in A}.

Theorem 8 Suppose that we are given a MaxKenKen in-

stance such that the block size is at most Δ. Then any blocked

solution is a 1/(2 + Δ)-approximate solution.

The above bounds on approximation ratios are tight. We show
tight examples in Fig. 2. In the figure, we see δ = 4 for MaxFu-

toshiki and Δ = 3 for MaxKenKen.

4.2 Matching Based Approach
Another approximation algorithm is based on matching. Let

us call this algorithm Matching. First we describe how Matching
behaves for the PLSE problem. Given an instance, it assigns the
value k to empty cells in the order k = 1, 2, . . . , n. Let A(k−1) be an
interim solution such that the values from 1 to k − 1 are assigned
by Matching. Initially, A(0) is set to the empty PLS. Which empty
cells are assigned k is determined by a maximum matching in a
bipartite graph G(k) = (R ∪ C, E(k)) such that R = {r1, r2, . . . , rn}
and C = {c1, c2, . . . , cn} are the node sets that represent rows and
columns of the grid respectively, and

c© 2015 Information Processing Society of Japan



Electronic Preprint for Journal of Information Processing Vol.23 No.3

Fig. 4 Tight examples: Matching solution (upper) and optimal solution (lower).

Fig. 3 MaxKenKen instances to which the algorithm Matching is not appli-
cable (left) and is applicable (right).

E(k) = {(ri, c j) ∈ R ×C | k is assignable to (i, j)}
is the edge set. Computing a maximum matching M ⊆ E(k),
Matching extends A(k−1) by assigning k to (i, j) for each edge
(ri, c j) ∈ M, which is used as the next solution A(k). Matching re-
peats this process from k = 1 to n and then halts, outputting A(n).
The algorithm runs in O(n3.5) time; for each value k = 1, 2, . . . , n,
we need O(n2) time to construct the bipartite graph G(k) and
O(n2.5) time to compute a maximum matching [14].

Theorem 9 (Kumar et al. [19]) The algorithm Matching is a

1/2-approximation algorithm for the PLSE problem.

See the proof for Ref. [19]. The point is that any matching in
G(k) provides a set of cells to which k can be assigned simultane-
ously. This property holds because, in the PLSE problem, Ai j = k

never prevents any other cells out of row i and column j from
taking k, i.e., the set S i j(A, A∗) in Eq. (2) contains no (p, q) ∈ [n]2

such that both p � i and q � j. To a puzzle maximization prob-
lem that has the property, we can apply the algorithm Matching
directly so that the approximation ratio remains 1/2. Then it is
applicable to MaxFutoshiki in general.

Theorem 10 The algorithm Matching is a 1/2-

approximation algorithm for MaxFutoshiki.

The algorithm is not applicable to MaxKenKen in general be-
cause it does not have the above property. See the instance in
the left of Fig. 3. The integer 4 is assignable to shaded cells, that
is (1, 4) and (2, 3), but we cannot assign 4 to both cells simulta-
neously since it would violate Eq. (1) in the KenKen Condition.
However, when every block is closed in one row or in one col-
umn, as in the right of Fig. 3, the algorithm is applicable so that

the same approximation ratio is achieved.
Theorem 11 Suppose that we are given a MaxKenKen in-

stance such that each block is either a (1× �)-block or an (� × 1)-
block. To such an instance, the algorithm Matching delivers a

1/2-approximate solution.

We cannot apply Matching to MaxSudoku directly since, in
MaxSudoku, a matching may correspond to a set of cells to which
the same values cannot be assigned simultaneously; we have the
constraint such that the values in an (n0 ×n1)-block should be all-
different. However, we can apply the algorithm by modifying it in
the following way. Recall that the roles of row, column and value
in a Latin square are interchangeable. Even if we interchange
their roles, the approximation ratio remains the same. Specif-
ically we run the algorithm not by determining the location of
each value k = 1, 2, . . . , n based on maximum matchings in row-
column bipartite graphs, but by determining how the values are
assigned in each row i = 1, 2, . . . , n based on maximum match-
ings in value-column bipartite graphs. In each row, any matching
in a value-column bipartite graph provides a feasible assignment
because it satisfies the all-different constraint in the row, as do the
all-different constraints in the blocks that intersect the row.

Theorem 12 MaxSudoku is 1/2-approximable by the match-

ing based approach.

For all the three problems, the approximation ratio of Matching
is 1/2. This bound is tight. We show tight examples in Fig. 4.

4.3 Local Search
Let t ≥ 1 denote a positive integer. We introduce the t-set pack-

ing problem; Let S be a finite set of elements. Suppose that we
are given a family F = {F1, . . . , Fq} of q subsets of S such that
each Fi ∈ F contains at most t elements. A collection F ′ ⊆ F is
called a packing if any two subsets in F ′ are disjoint. The prob-
lem asks to find a largest packing in F , belonging to Karp’s list
of 21 NP-hard problems [16].

For this problem, we consider a local search algorithm that be-
haves as follows. Let r ≥ 1 be a positive integer. We use r as a pa-
rameter that represents the “radius” of local search. Let F ′ ⊆ F
be an arbitrary packing. Then repeat replacing r′ ≤ r sets in F ′

c© 2015 Information Processing Society of Japan
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with r′ + 1 sets in F such that F ′ continues to be a packing, as
long as the replacement is possible. The following result is well-
known.

Theorem 13 (Hurkens et al. [15]) Suppose that an instance

of the t-set packing problem is given in terms of a family F of

subsets of an element set S . For any parameter r ≥ 1, there exists

a constant ε > 0 such that the local search algorithm delivers a

(2/t − ε)-approximate solution within a polynomial time.

Hajirasouliha et al. [8] applies the local search to the PLSE
problem by reducing it to the 3-set packing problem. Given
a PLSE instance in terms of a PLS L, the packing problem
instance F is constructed as follows. Let the element set be
S = (R × C) ∪ (R × [n]) ∪ (C × [n]). Then let F contain a
subset {(ri, c j), (ri, k), (c j, k)} ⊆ S iff the value k is assignable to
(i, j). Obviously there is one-to-one, size-preserving correspon-
dence between the solution sets of the two problem instances.

Theorem 14 (Hajirasouliha et al. [8]) For any parameter

r ≥ 1, there exists a constant ε > 0 such that the local search

is a (2/3 − ε)-approximation algorithm for the PLSE problem.

Naı̈vely implemented, this local search runs in O(n3r+5) time;
We have |F | = O(n3). Given a solution, we need O(

( |F |
r+1

)
) time to

decide whether replacement is possible or not. The solution size
is at most O(n2). Recently, Haraguchi [9] developed how to im-
plement the local search efficiently for the PLSE problem, where
we can identify whether replacement is possible or not in O(n2)
time (resp., O(n3) time) when r = 1 (resp., r = 2).

We can apply the local search to MaxSudoku, regarding it
as the 4-set packing problem. Suppose that a MaxSudoku in-
stance is given. Let B = {B1, . . . , Bn} denote the set of (n0 × n1)-
blocks in the grid, and the element set be S SUD = S ∪ (B × [n]).
We then construct the family F so that it contains a subset
{(ri, c j), (ri, k), (c j, k), (Bp, k)} ⊆ S SUD iff k is assignable an empty
cell (i, j) that belongs to the block Bp. The solution correspon-
dence is immediate.

Theorem 15 For any ε > 0, there exists a (1/2 − ε)-
approximation algorithm for MaxSudoku.

Recently, Cygan [4] improved the approximation ratio for the
t-set packing problem from 2/t − ε to 3/(t + 1) − ε by means of
bounded pathwidth local search. Further, Martin and Huiwen [7]
improved its running time. This improves the approximation ra-
tios for both PLSE and MaxSudoku.

Theorem 16 For any ε > 0, there exists a (3/4 − ε)-
approximation algorithm for the PLSE problem.

Theorem 17 For any ε > 0, there exists a (3/5 − ε)-
approximation algorithm for MaxSudoku.

5. Concluding Remarks

We have studied the computational hardness of MaxFutoshiki

and the approximabilities of puzzle maximization problems. The
results are summarized in Table 1 and Table 2 respectively.

We describe future work. We showed that, when the given sign
set is non-empty, MaxFutoshiki is NP-hard if the given PLS is
non-empty (see Theorem 4). Still, the complexity is open in the
other case such that the given PLS is empty. It is interesting to
improve the approximation ratios in Table 2. For the PLSE prob-
lem, since it is APX-hard (Theorem 3), there exists a constant

ρ∗ ∈ (0, 1) such that no ρ∗-approximation algorithm exists un-
less P=NP; Table 2 implies ρ∗ ≥ 3/4. For puzzle maximization
problems, whether they are APX-hard or not is open.

We have not made any assumption on whether a puzzle in-
stance has an LS solution or not. As pointed out in the introduc-
tory section, however, a puzzle instance given to a human solver
usually has a unique solution. Hence it may be more meaningful
to restrict our attention to such puzzle instances. This suggests an
interesting direction for our future research.

References

[1] Andersson, D.: Hashiwokakero is NP-Complete, Information Pro-
cessing Letters, Vol.109, No.19, pp.1145–1146 (2009).
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