
IPSJ SIG Technical Report

Secret Sharing-based Key Distribution with Dummy Tags
in RFID-enabled Supply Chains

Kentaroh Toyoda1,a) Iwao Sasase1,b)

Abstract: In the RFID-enabled supply chains, it is crucial to securely convey products between parties to avoid
counterfeits from being distributed. Recently, many schemes has been proposed to realize this by encrypting EPCs
(Electronic Product Code) and distributing a secret key with a secret sharing scheme. However, we point out that two
problems exist. The first one is that an attacker might recover the legitimate key by collecting sufficient secret shares
when products are carried in the public transportation. The second one is that simply encrypting EPCs with a symmet-
ric cipher scheme does not ensure that an encrypted EPC fits into EPC memory bank. In this paper, we first propose
a secure secret key distribution scheme to solve the first problem by introducing sufficient number of dummy tags
which possess a bogus secret share. Since an attacker cannot see the tags themselves from the outside of the carrying
vehicle, he/she cannot distinguish between the legitimate tags and dummy tags and thus, he/she has to find out the
correct key by iteratively trying each combination of secret shares. On the other hand, the party who receives products
can distinguish dummy tags since they are not attached to any product. We also propose to introduce an FPE (Format
Preserving Encryption) to solve the second problem. We prove that our construction is secure in both the privacy and
robustness aspect. We confirm that our scheme is easily implemented with the off-the-shelf RFID reader and tags.

1. Introduction
RFID (Radio Frequency IDentification) is a fundamental tech-

nology to realize the object or product management. Especially,
RFID technology is receiving much attention in supply chains to
ease many complicated operations e.g., traceability, recall prob-
lem, and quality management. In RFID-enabled supply chains, a
manufacturer attaches RFID tags into products and ships toward
distributors or retailers. However, the counterfeit in the RFID-
enabled supply chains is an open issue in the industrial and the
academia due to the nature of RFID: the RFID reader can freely
interrogate tags without authentication. This could be a problem
once the genuine tags are interrogated by an attacker since he/she
can create counterfeits that have genuine IDs. Anti counterfeit
technology is an urgent demand throughout the world. For ex-
ample, an OECD (Organisation for Economic Co-operation and
Development) announced that the counterfeit goods in interna-
tional trade could amount about $250 billion in 2007 [1]. In or-
der to combat counterfeits, it is valid to store an encrypted EPC
(Electronic Product Code) instead of a raw EPC [2].

However, in any case, the way to securely distribute the key
to recipient parties is still unsolved since it is difficult to estab-
lish secure connection between the parties due to dynamic rela-
tionships in the large scale supply chains. Recently, Juels et al.

1 Department of Information and Computer Science, Keio University,
Yokohama, Kanagawa, 223-8522 Japan
This work is partly supported by the Grant in Aid for Scientific Research
(No.26420369) from Ministry of Education, Sport, Science and Technol-
ogy, Japan.

a) toyoda@sasase.ics.keio.ac.jp
b) sasase@ics.keio.ac.jp

proposed a novel key distribution scheme by splitting a key into
multiple shares and writing them to tags with a (τ, n) secret shar-
ing scheme [2]. The secret sharing scheme realizes that one can
extract the key if he/she can obtain more than τ unique shares out
of n shares [3]. Especially, any information about the key is not
revealed from less than τ shares if the secret sharing has perfect
secrecy. After [2] is published, many schemes were proposed to
improve the secret sharing based key distribution. For instance,
Cai et al. proposed a secret updating scheme to avoid an attacker
from tracking paths that tags follows [4]. Lv et al. proposed an
XOR based secret sharing scheme to reduce the computational
cost to distribute and recover the key from shares [5].

However, we notice that there are two problems in the con-
ventional schemes. The first one is that there is a chance that
an attacker can recover the legitimate key by collecting sufficient
secret shares when tag-attached products are carried in the pub-
lic area. For example, an attacker can interrogate tags inside a
truck while he/she is chasing abreast from it. Therefore, more se-
cure and robust approach is necessary to deploy the secret sharing
based key distribution scheme in RFID-enabled supply chains.
As the second problem, when encrypting EPCs, an encrypted
EPC may not fit into the EPC memory block. Since the length of
encrypted message takes multiples of the block size and we can-
not ensure that an encrypted EPC fits into the EPC memory bank.
Considering the fact that there exist several EPC lengths (even
exists user-defined variable length), the conventional schemes do
not take this into consideration. Therefore, we must propose a
more flexible approach to deal with any type of EPC formats.

In this paper, we propose a secret sharing based unidirectional
key distribution scheme with a sufficient number of dummy tags

c⃝ 2015 Information Processing Society of Japan 1

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

Manufacturer Distributor

Distributor

Distributor

Retailer

Retailer

Retailer

Retailer

Fig. 1: Example of supply chains.

in the RFID-enabled supply chains. When tag-attached products
are conveyed, we attach dummy tags which possess a bogus but
plausible-looking secret share. A recipient party can put dummy
tags aside when interrogating legitimate tags since they are not
attached to any product. On the other hand, since an attacker can-
not see tags themselves from the outside of the carrying vehicle,
he/she cannot distinguish between the genuine tags and dummy
ones, and thus, he/she has to find out the correct key by itera-
tively checking each combination of secret shares. In addition,
we solve the second problem by introducing an FPE (Format Pre-
serving Encryption) scheme [6, 7]. FPE ensures that the format
of ciphertext is the same format of its plaintext. Therefore, we
can deal with any type of EPC formats by specifying the format
of EPC to an FPE scheme. Moreover, we argue that constructing
FPE carefully provides not only the flexibility but also another
security aspect, that is, by taking the possible EPC formats into
consideration, any decrypted EPCs are plausible-looking even if
they are decrypted with a wrong key, and thus, an attacker cannot
distinguish which decrypted EPCs are correct. Our scheme is ap-
plicable to any secret sharing scheme e.g., [2, 5, 8] and thus it is
flexible. In addition, we discuss the way to securely store a share
in a tag against an attacker who wants to tamper shares.

We give the security analysis in the privacy and robustness as-
pect and clarify how many dummy tags are required to achieve
sufficient security. We also measure the process time to split a
key, extract a key from shares, encrypt and decrypt EPCs, and to
read EPCs and shares from tags.

The rest of this paper is constructed as follows: we summa-
rize the preliminary and related work in Section 2 and Section 3,
respectively. The proposed scheme is described in Section 4. Se-
curity analysis is shown in Section 5. We evaluate our scheme in
Section 6. We conclude our discussion in Section 7.

2. Preliminaries
2.1 RFID-enabled Supply Chains

RFID-based supply chains roughly consists of three parties,
which are manufacturers, distributors, and retailers. Fig. 1 shows
an example of RFID-enabled supply chains. Manufacturers cre-
ate products, compose them in cases, and ship toward distributors.
They also generate an EPC to each product, write it into an RFID
tag, and attach it to a product. After distributors receive products,

Table 1: Example of SGTIN-96 EPC.
Field name Example value

Header (8 bits) 00110000
Filter Value (3 bits) 010
Partition Value (3 bits) 001
Company Prefix (20-40 bits) 10010001· · ·
Item Reference (4-24 bits) 10011111· · ·
Serial Number (38 bits) 11010010· · ·

they decompose cases and recompose products to deliver them
to retailers. Finally, retailers stock and sell them to customers.
Every party equips RFID readers and interrogates tags when they
arrive and leave to manage products flow.

2.2 EPC Standard
EPC Gen2 is the de-facto standard air interface protocol for

the RFID-enabled supply chains management [9]. A Gen2 sys-
tem operates on UHF band (860-960 MHz), where a reader can
interrogate tags from within about 10 meters. The most popu-
lar tag does not equip battery and operates by receiving continu-
ous waves from the reader and backscatters the waves to send an
EPC, TID, and some additional data. The first Gen2 specification
was ratified in 2004. Then, GS1 updated a Gen2 specification as
Gen2v1.2 in 2008 and then Gen2v2 in 2013 [9], respectively. In
order to deal with several needs, many EPC formats e.g., SGTIN,
SSCC (Serial Shipping Container Code), CPI (Component and
Part Identifier), and GID, are defined by GS1 [10]. For exam-
ple, SGTIN is used to assign an identifier to an item or a product
and SSCC is used for containers. Table 1 shows the example of
SGTIN-96. The type of EPC can be identified by the first 8 bits
header. As we can see from Table 1, ‘00110000’ indicates that
the EPC type is SGTIN-96. The length of each format varies.
For instance, there are two lengths for SGTIN which are 96 bits
(SGTIN-96) and 198 bits (SGTIN-196). Other cases include 170
bits GRAI-170 (Global Returnable Asset Identifier) and variable
length CPI.

2.3 Privacy Problem in Gen2
As we described, penetration of counterfeits goods are serious

concern in the world [1]. In order to avoid counterfeits goods
from being distributed in the market, it is necessary to securely
hide EPCs. One solution is that a manufacturer writes encrypted
EPCs into tags instead of raw EPCs and ships toward a recipient
party [2]. However, the way to securely distribute a key to a re-
cipient party is still an open issue. The most naı̈ve approach is
to construct a key management server between parties. This ap-
proach is obviously infeasible since it is difficult to decide who
manages the key management server. We can also consider to
simply send the password itself via secure connection over the
Internet. However, it is also difficult to establish a secure con-
nection between the parties due to dynamic relationships in the
large scale supply chains. In the following section, we summa-
rize some key distribution schemes in the RFID-enabled supply
chains.

c⃝ 2015 Information Processing Society of Japan 2

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

3. Related Work
Recently, the secret sharing scheme is found to be effec-

tive against a key distribution problem in RFID-enabled sup-
ply chains. To date, many researchers propose a secret-sharing
based key distribution in RFID-enabled supply chains. They are
classified into (1) types of secret sharing schemes being used
[2, 5, 11, 12] and (2) the way to securely update contents of tags
[4, 8, 13, 14].

3.1 Types of Secret Sharing Schemes Being Used
Before we summarize the unidirectional key distribution

schemes in RFID-enabled supply chains, we give the fundamen-
tal of the secret sharing scheme. A. Shamir proposed the first
secret sharing scheme based on the polynomial interpolation over
the finite Galois Field [3]. The intuition behind this scheme is
that one can determine the polynomial curve whose degree is τ
when more than or equal to τ points on the curve are given while
one cannot determine it when less than τ points are given. More
specifically, let f (x) denote a secret and a degree τ− 1 curve over
finite field Zq where q is a prime. One can construct f (x) as fol-
lows:

f (x) = s + a1x + a2x2 + · · · + aτ−1xτ−1, (1)

where s ∈ GF(q) denotes a secret and ai ∈ GF(q), i ∈ [1, τ − 1]
denotes coefficients, respectively. Then, one can find n points
(xi, f (xi)), i ∈ [1, n] on Eq. (1) and we call them as ‘shares’. If
one can possess more than or equal to τ points on f (x), he/she
can reconstruct the intercept of f (x), i.e., the secret s = f (0) by
Lagrange interpolation as follows:

f (x) =
τ∑

j=1

Lj(x) f (x j), (2)

where

Lj(x) =
τ∏

l=1,l! j

x − xl

x j − xl
. (3)

By using Shamir’s secret sharing, Langheinrich and Marti pro-
posed a secret sharing based interrogation scheme [11]. The se-
cret information e.g., an EPC is distributed into shares and they
are concatenated and written into the tag. When the reader inter-
rogates a tag, it gradually releases the part of shares over time.
After all bits are disclosed, the reader can extract the true EPC.
This way avoids a hit-and-run attacker, which is an attacker who
can stay close to a tag with only a limited time, from extracting
a true EPC. They also proposed to distribute shares into multiple
tags [12].

Juels et al. proposed a unidirectional key distribution scheme
[2]. The manufacturer generates a key and splits it into shares by
using a secret sharing scheme. A share is written into each tag
which is attached to a product. They adopt the Reed-Solomon
ECC based secret sharing scheme [15] instead of Shamir’s one to
reduce the size of share and to enable the party to recover the key
even some shares are in erasure or error.

However, Lv et al. point out that Shamir’s secret sharing
scheme or Reed-Solomon ECC based scheme are computation-
ally heavy due to the computation e.g., multiplication and divi-

Truck carrying
 products

Manufacturer Distributor

Attacker's accessible zoneAttacker's
inaccessible zone

Attacker's
inaccessible zone

(a) Attacker’s accessible zone.

Truck
carrying products

Attacker's
vehicle

(b) Example of attacker’s position in
the accessible zone.

Fig. 2: Attacker’s accessible area.

sion over the finite field [5]. In order to reduce the computation
cost, they proposed a secret sharing scheme that only requires
XOR and addition operations.

3.2 Way to Securely Update Contents of Tags
Many researchers point out that the content of tags is un-

changed throughout the supply chains and thus tags can be
tracked by an attacker. Therefore, many schemes were proposed
to securely update the contents of tags e.g., a written share and
an encrypted EPC. Cai et al. proposed a tag-reader authentica-
tion scheme to securely update the contents of tags [4]. Although
this scheme realises the secure update of tags contents, it needs
modification on tags and extra hash value. Alfaro et al. proposed
another approach to securely update the contents of tags by using
a proactive (τ, n) secret sharing scheme [8]. Abughazalah et al.
proposed to use two keys, one for cases’ tags and the other for
products’ tags [14]. If the distributor ships tag-attached products,
it newly generates the keys for cases, re-encrypts cases’ EPC, and
divide the cases’ keys with the secret sharing scheme to avoid an
attacker from tracking products.

3.3 Unsolved Problems
There are two fundamental problems that must be solved. The

first one is that even though a key is split into shares and written
into multiple tags, an attacker can recover the key when he/she
collects sufficient (more than or equal to τ) shares. In general,
the secret sharing based unidirectional key distribution is secure
against a so-called “hit-and-run” attacker, which cannot interro-
gate sufficient shares [4,11]. However, in reality, an attacker may
be able to easily collect desired shares. For instance, when prod-
ucts are delivered from a manufacturer to a distributor or retailer
as shown in Fig. 2, if a truck carries products through highway,
an attacker may interrogate products’ tags from a vehicle chasing
abreast of the truck. Since EPC Gen2 tags operate on UHF, they
could be interrogated from less than about 10 meters and within a
few seconds. In this example, a metal container acts like a Fara-
day cage and so tags would be unreadable anyway from the out-
side. However, we can consider the case that a container is made

c⃝ 2015 Information Processing Society of Japan 3

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

from non-metal material or attached tags are on-metal tags e.g.,
Xerafy’s metal RFID tags [16]. Moreover, if an attacker can ac-
cess and tamper more than or equal to n−τ+1 tags, the distributor
that receives products cannot recover the key without fail. There-
fore, in order to deploy a unidirectional key distribution scheme
in the real supply chains, we have to propose a new key distribu-
tion scheme against an attacker who can collect unbound shares
rather than the limited number of shares.

The second problem is that an encrypted EPC may not fit into
the EPC memory block when we naı̈vely encrypt it. As shown
in Section ??, there exist several EPC lengths (even user-defined
variable length). Let us consider the following case: a manufac-
turer would like to encrypt EPCs with AES (Advanced Encryp-
tion Standard) with a 128 bits key. In this case, since the min-
imum block size of AES is 128 bits, the encrypted EPC takes a
multiple of 128 bits and thus it cannot be written into the 96 bits or
198 bits EPC memory bank. Blowfish has many block length op-
tions though it cannot completely solve the problem yet. There-
fore, since we can consider the variable types of EPC are con-
veyed, we must propose a more flexible approach to overcome
the variable lengths problem.

4. Proposed Scheme
Here, we introduce two proposals to solve the above two prob-

lems. In order to solve the first problem, we first propose a
secure unidirectional key distribution scheme by introducing a
sufficient number of dummy tags. When tag-attached products
are conveyed, we attach dummy tags which possess a bogus and
plausible-looking secret share. Since an attacker cannot distin-
guish between the genuine tags and dummy ones, he/she has to
find out the desired key by the brute-force manner that tries each
combination of secret shares until the correct key is obtained. On
the other hand, distributors or retailers who receive products can
distinguish dummy tags since they are not attached to any prod-
ucts. In addition, we propose the way to securely store a share in
a tag to avoid a robustness attacker who wants to tamper shares.

In order to solve the second problem, we leverage an FPE
scheme to encrypt EPCs instead of just encrypting EPCs with a
block cipher. FPE enables to encrypt a plaintext in such a way that
the format of the ciphertext is same as that of the plaintext. There-
fore, by introducing the FPE, an encrypted EPC fits into the EPC
memory block. The idea of FPE is “rank-encipher-unrank” con-
struction, that is, if we denote L(F) is the set of strings (language)
that all fit specified format F e.g., SGTIN-96, FPE ranks an input
x ∈ L(F) to an index i ∈ Z|L(F)| = {0, 1, · · · , |L(F)| − 1}, encrypts
i to yield j ∈ Z|L(F)|, and unranks j to map into y ∈ L(F) [7, 17].
This way ensures that the ciphertext is an element of specified
EPC format. Although FPE is originally developed to encrypt
CCNs (Credit Card Numbers) or SSNs (Social Security Num-
bers) [6, 7, 17], we argue that FPE is also applicable to encrypt
EPCs. In addition, we show that we can build a more secure con-
struction so that an attacker cannot distinguish decrypted EPCs
with wrong keys from legitimate EPCs by constructing F that
covers all possible EPCs while does not include any unlikely can-
didates. We pay attention to the TDS (Tag Data Standard) speci-
fied by the GS1 [10] to construct such F .

4.1 Assumptions
By referring the description in [2], we define our secret shar-

ing scheme algorithm Πsss = (Share,Recover,DummyGen) that
operates over a key space K.
• Share is a probabilistic algorithm that takes input κ ∈ K and

outputs n shares S = {S 1, · · · , S n} with a (τ, n)-secret shar-
ing scheme, where S i ∈ S. On invalid input κ̂ ∈ K, Share
outputs n special (“undefined”) symbol ⊥.

• Recover is a deterministic algorithm that takes input S , τ,
and n and outputs κ ← Recover(S , τ ,n) ∈ K ∪ ⊥, where ⊥
is a distinguished value indicating a recovery failure.

• DummyGen is a probabilistic algorithm that takes input
κ ∈ K and outputs nD shares S̃ = {S̃ 1, · · · , S̃ nD }

U←− S, where
S denotes a share space and S̃ i ∈ S ∩ S̃ i " Sκ, where Sκ
denotes the share set that Share(κ) can output. On invalid
input κ ∈ K, DummyGen outputs nD special (“undefined”)
symbol ⊥.

We also define an FPE encryption algorithmΠenc = (Enc,Dec)
as follows.
• Enc is a probabilistic algorithm that takes inputs κ ∈ K,

x ∈ L(F), and a format F . Enc outputs y ∈ L(F). F is
denoted as a regular expression. On invalid input κ̂ ∈ K, F ,
or x, Enc outputs a special (“undefined”) symbol ⊥.

• Dec is a deterministic algorithm that takes inputs κ ∈ K,
y ∈ L(F), and a format F . Dec outputs x ∈ L(F). On
invalid input κ̂ ∈ K, F , or y, Dec outputs a special (“unde-
fined”) symbol ⊥.

We denote EncFκ (·) and DecFκ (·) as the encryption and decryption
functions with a key κ and a format F , respectively. For example,
if one wants to encrypt a 96 bits plaintext whose ciphertext is also
96 bits, one of such F is F = (0|1){96}.

We assume that each party is honest and does not deviate any
protocol.

4.2 Procedures
4.2.1 Operation on Manufacturers

At first, a manufacturer creates nL products and assign a unique
EPC EPCi with an EPC format F and TIDi where i ∈ [1, nL] to
each product i. A manufacturer also generates a key κ. We assume
that κ is an access password which is common for tags or a generic
key. A manufacturer writes = EncFκ (EPCi) and = EncFκ (TIDi)
and sends Lock commands in order not to be tampered by an at-
tacker. To distribute κ to a recipient, a manufacturer splits the key
κ by (τ, nL) a secret sharing scheme Share(κ, τ,nL) and obtains
nL shares S = {S 1, S 2, · · · , S nL }. Any secret sharing scheme is
used, though, we adopt the Shamir’s secret sharing scheme [3].
The reason is that Shamir’s one is order-invariant while the RS
ECC-based one needs an order index of share since the order of
interrogated tags cannot be predicted due to the randomness of
Q algorithm. The size of each share does not matter against the
Shamir’s one since off-the-shelf tags, e.g., [18, 19], may equip
more than 512 bits memory space which can easily accommo-
date a 32 bits access password or a 128 bits share. Finally, A
manufacturer writes them in a USER memory space and sends a
Lock command to avoid an attacker from tampering them. This

c⃝ 2015 Information Processing Society of Japan 4

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

way allows a recipient (and an attacker as well) to read a share
from a tag while does not allow an attacker to tamper a share.

Simultaneously, a manufacturer prepares nD dummy tags.
Dummy tags are also off-the-shelf Gen2 tags. The objective
of introducing dummy tags is to make it infeasible for an at-
tacker to extract the correct key κ even if he/she collects every
share in public area. The manufacturer obtains nD bogus shares
S̃ = {S̃ 1, · · · , S̃ nD } with DummyGen(κ). EPCs for dummy tags
are randomly chosen from the strings that satisfy the format F .
In order to avoid an attacker from distinguishing legitimate tags
and dummy tags, the manufacturer writes S̃ i as a file to the USER
memory space. A Lock command is also sent in order not to be
tampered by an attacker.

A manufacturer composes products into cases or pallets after
it attaches legitimate tags to products. In order for a recipient
to soon distinguish legitimate tags and dummy tags, it separately
compose dummy tags without attaching to any products. Finally
a manufacturer composes them to a vehicle and ships them.

4.3 Operation on Recipients
4.3.1 Key Recovering and Interrogation Tags

When products arrive, a recipient, which includes a distributor
or retailer, first unpacks the products cases or pallets. It will soon
detect naked RFID tags i.e., dummy tags, then puts them aside to
avoid legitimate tags from being mixed with dummy ones, and in-
terrogates only legitimate tags with a reader. After a recipient in-
terrogates legitimate tags and obtains a share set S , it recovers the
key κ with Recover(S , τ ,nL). A computer attached with a reader
decrypts an EPC and/or TID by EPCi = DecFκ (EncFκ (EPCi))
and/or TIDi = DecFκ (EncFκ (TIDi)).

Finally, a recipient updates the contents of dummy tags with
DummyGen(κ). Dummy tags are reusable and thus the recipient
returns them to the source party. Therefore, the process to update
the contents of dummy tags is needed to avoid an attacker from
knowing which interrogated tags are dummy.
4.3.2 Key Updating and Re-encryption toward Next Recipi-

ents
The procedures described above are enough for the end party

of supply chains, i.e., a retailer. On the other hand, if the party
further transfers products toward other distributors or retailers,
it should update the contents of shares in order to avoid prod-
uct tracking by an attacker. As we have seen in Section 3.2,
there exist many secret updating schemes [4, 8, 14]. However
they all require some modification on a tag and are not appli-
cable for a Gen2 tag. Hence we propose a simple yet effec-
tive contents update scheme. The party generates a new key κ′

and updates an access password or a key as κ′ and splits into
shares S ′ with Share(κ′, τ′, nL

′). The party also prepares its own
dummy tags and generates bogus shares with DummyGen(κ′).
The party also re-encrypts EPCs and/or TIDs with a new key as
EPCEnc

i = EncFκ′ (EPCi) and/or TIDEnc
i = Encκ′ (TIDi) and sends

Lock commands to them. Finally, the party transfers products to-
ward next distributors or retailers with its own dummy tags. We
consider that it is not a problem to refresh a key itself because
the objective is to avoid tags’ contents from being exposed in the
public area.

4.4 Discussion
4.4.1 How to Construct Appropriate F

For Gen2v1 tags, our scheme encrypts EPCs with an FPE
scheme. Since FPE needs a regular expression F , we discuss
how to construct an appropriate F . We first explain the EPC
formats whose length is 96 bits. If EPCs are 96 bits, the most
simplest F is F = F96 = (0|1){96}. This construction ensures
that an encrypted EPC fits into the EPC memory bank and the
problem we pointed out in Section 3.3 is solved. However, if
we more tightly construct F , we might be able to make our
scheme more secure against an attacker who wants to reveal cor-
rect EPCs from decrypted ones. Let us consider the following
case: an attacker knows that items in the vehicle are SGTIN-
96 and tries to reveal correct EPCs by trying every key can-
didate. During this attack, an attacker can distinguish correct
EPCs from wrong ones by observing non-compliant SGTIN-96
EPCs, e.g., ‘10110010· · · ’ because the header of SGTIN-96 is
defined as ‘00110000’ by GS1 [10]. Therefore, if we specify
F = FSGTIN−96 = 00110000(0|1){88}, any encrypted EPC is of
the SGTIN-96 compliant format and an attacker might not be
able to distinguish correct EPCs and wrong ones. This notion is
easily extensible for a more complicated case that contains mul-
tiple EPC formats. When we consider tag-attached items are in
containers, there might exist two EPC formats including SGTIN-
96 for items and SSCC-96 for containers. Since the header of
SSCC-96 is ‘00110001’ and the other fields can take any values,
we can fully cover both SGTIN-96 and SSCC-96 EPC spaces
without including any non-compliant EPC candidates by speci-
fying F = 0011000(0|1){89}. Although we can construct flexi-
ble F , it is difficult to know how much information an attacker
possesses in advance. Therefore, we recommend F that covers
all valid 96 bits EPC formats (GDTI-96, GSRN-96, · · · , GID-
96, i.e., F = (00101100|00101101| · · · |00110101)(0|1){88}. If a
manufacturer ships multiple lengths EPCs such as SGTIN-96 and
GRAI-170, it is necessary to prepare F for each length.
4.4.2 Comparison with Overinformed Attacker in [2]

Juels et al. refer to the similar attacker as an overinformed at-
tacker in [2]. Their mention is that if an attacker sees multiple
tags whose shares are generated from different keys are mixed in
the warehouse of a retailer, he/she is hardly to recover each key
because he/she observes too many shares. The effect of multiple
products are mixed in the area is same as that of dummy tags.
However such situation is limited and cannot be always made.
Moreover, the effect depends on the number of other products
sets and thus cannot be controlled. In contrast, our scheme can
always make the situation that an attacker sees too many bogus
shares by introducing dummy tags and also arbitrarily control the
number of dummy tags to achieve desired security.
4.4.3 Pros and Cons

We discuss the pros and cons of our scheme. As we prove later,
our scheme is more secure than the previous schemes in terms of
the privacy and the robustness. For the privacy aspect, even if
an attacker could collect any share from tags while they are in a
public area, it is infeasible to find legitimate shares which recover
the correct key. In addition, the robustness can be preserved by
appropriately using the Lock command in Gen2v1.

c⃝ 2015 Information Processing Society of Japan 5

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

Another advantage is that our scheme is applicable for any
EPC formats specified by GS1 [10]. As we pointed out in Sec-
tion 3.3, the naı̈ve symmetric encryption adopted by the conven-
tional schemes cannot ensure an encrypted EPC or TID fits into
its memory bank. Our scheme solves this problem by leveraging
FPE.

The cost of introducing dummy tags is a downside of our
scheme. As we can purchase a generic RFID tag for 10-50 US
cents, it costs about 100-500 USD to introduce one thousands
dummy tags. Although this figure seems to be expensive, a party
can reuse them again and again once it purchases them. Another
downside that must be discussed is the cost and space to trans-
ferring dummy tags. However this may not be a problem since
tags themselves are very light and thin and are not attached to
any object.

5. Security Analysis
We prove that our scheme improves the security than previous

schemes. We define the privacy adversary and robustness adver-
sary by modeling on the work by Juels et al. [2].
Definition 1. We call that our scheme is (τ, nL, nD, ϵp, ϵr)-secure
against a probabilistic polynomial time adversary who is given
unbound shares.

5.1 Privacy Adversary
A privacy adversary tries to find the key κ given unbound

shares. This is weaker requirement than that of [2] since they
give some limited number of shares to the privacy adversary. A
privacy adversary can use the following oracles:
OCollect(): This oracle returns share sets S mixed from both
legitimate and dummy tags,
ORecover(S): This oracle returns κ̃ by inputting shares S . If
|S | < τ, it outputs ⊥, and
OChoose(S , τ): This oracle returns by randomly choosing
S ′ = {S ′1, · · · , S ′τ} from S . If |S | < τ, it returns ⊥.

By using the above oracles, a privacy adversary tries the pri-
vacy challenge defined as follows:

Challenge Chaprivacy[Πsss,K]:
Input: τ, κ
Procedure:
Ŝ ← OCollect()
Ŝ ′ ← OChoose(Ŝ , τ)
κ̃ ← ORecover(Ŝ ′)

Output: 1 if κ = κ̃ otherwise 0
Claim 1. Given our construction above, an adversary’s advan-
tage is bounded by

Pr[Chaprivacy[Πsss,K]⇒ 1] = ϵp <
(
1 − τ

nL + nD

)nD

.

Proof. An attacker can collect all shares interrogated from both
legitimate and dummy tags. Since no one can distinguish legiti-
mate tags and dummy ones, an attacker must try each combina-
tion of shares. Therefore, the probability that a privacy attacker
finds the desired key κ is equivalent to the probability of choosing
τ legitimate shares out of totally (nL+nD) shares. This probability
is represented as Eq. (4) and can be transformed as Eq. (5).

Table 2: Required nD such that Pr[Chaprivacy[Πsss,K] ⇒ 1] ≤
2−κ.

(a) |κ| = 32 bits

nL
Required nD

rτ = 0.7 rτ = 0.8 rτ = 0.9 rτ = 1.0

10 153 91 58 37
100 23 17 12 7

1,000 19 15 10 4

(b) |κ| = 128 bits

nL
Required nD

rτ = 0.7 rτ = 0.8 rτ = 0.9 rτ = 1.0

10 2,140,384 397,022 102,366 32,292
100 157 110 77 47

1,000 80 60 42 19

Pr[Chaprivacy[Πsss,K]⇒ 1] =

(
nL
τ

)

(
nL+nD
τ

) (4)

=
nL!

(nL − τ)!
· (nL + nD − τ)!

(nL + nD)!

=

nD∏

i=1

nL − τ + i
nL + i

=

nD∏

i=1

(
1 − τ

nL + i

)
<

(
1 − τ

nL + nD

)nD

(5)

In Eq. (5), since 1 − τ
nL+i , where i ∈ [1, nD], is always less than or

equal to 1 − τ
nL+nD

, this derives the Claim 1. !

5.2 Robustness Adversary
A robustness adversary tries to tamper some shares so that a

recipient cannot recover the correct key κ.
Claim 2. Given our construction above, a robustness adversary’s
advantage is bounded by

Pr[Charobustness[Πsss,K]⇒ 1] = ϵr < max

⎛
⎜⎜⎜⎜⎜⎜⎝

(
nL
τ

)

(
nL+nD
τ

) , 2−|κ|
⎞
⎟⎟⎟⎟⎟⎟⎠ ,

where max(a, b) returns the bigger value between a and b.

Proof. In our scheme, the adversary cannot tamper shares unless
he/she knows the key. Therefore, the adversary’s success proba-
bility is bound by the probability of identifying the correct key
κ. There are two strategies for the robustness attacker to obtain κ.
The first one is to recover the κ from given shares and this proba-
bility is represented by Eq. (4). The other one is to find the κ with
random guessing. This probability is 2−|κ|. Therefore, the success
probability of robustness adversary is bound by the bigger one of
them. This derives the Claim 2. !

6. Evaluation
6.1 Parameterization

The question is how small the probability of Eq. (4) is. To
investigate this, we clarify how many dummy tags are required
to achieve lower probability than that of random guessing attack,
i.e.,

Pr[Chaprivacy[Πsss,K]⇒ 1] ≤ 2−|κ|. (6)

c⃝ 2015 Information Processing Society of Japan 6

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

Since the inequality (6) is not explicitly solvable about nD, we
calculate the required (minimum) nD that satisfies Eq. (6) through
the numerical computation. Obviously, the number of required
dummy tags depends on that of legitimate tags. In [2,8], they give
some examples of concrete number of shipped products such as
razor blades, DVDs, and pharmaceuticals. They mentioned that
totally about thousands of products are initially assembled then
shipped toward distributors. Distributors also disperse them to-
ward retailers. Finally, about ten products are on the consumer
side. The number of products that a party receives gradually de-
creases as follows: O(103) → O(102) → O(101). Therefore, we
variate the order of nL from 101 to 103. Table 2 shows the re-
quired nD versus rτ such that Pr[Chaprivacy[Πsss,K] ⇒ 1] ≤ 2−|κ|

when (a) |κ| = 32 bits (the example of an access password) and
(b) |κ| = 128 bits (a generic key), respectively. Here, we denote
rτ as the ratio of τ to nL, i.e., rτ = τ

nL
. From Table 2, we can see

that as the number of legitimate tags increases, the less number
of dummy tags is required. Intuitively, this is because the combi-
nations that an attacker should try get sharply increased when nL

gets large. In addition, when the large |κ| gets large, the required
nD gets sharply increased as well when nL < 100. Especially,
when |κ| = 32 bits, only tens of dummy are required except for
the case rτ = 0.7 and nL = 10 and we can say that this is practical.
On the other hand, when |κ| = 128 and nL < 100, the required nD

is not acceptable for practical use. However, the case that only
tens of products are shipped with a vehicle is less frequent and
we can expect that a bunch of products is on a shipping vehicle.
These products act like extra dummy and make an attacker more
infeasible to recover the key. Finally we can see that the required
nD gets less as rτ gets close to 1. This is because the number
of correct candidates that recover the correct key gets less as rτ
approaches 1. For example, only one combination can recover
the correct key κ when rτ = 1. In general, The determination of
rτ is uncleared and it is determined by the probability of erasure
and/or read error of tags’ contents. We argue that the number of
available dummy tags might be one of the option to decide rτ.

6.2 Process Time
When we consider the real supply chains environment, it is

important to clarify the required time to split a key into shares, to
extract a key by combining shares, and to encrypt/decrypt EPCs.
We evaluate them with a laptop machine (MacBookPro Late 2013
that equips a dual-core Intel Core i7 2.8 GHz and a 16 GB RAM
memory).
6.2.1 Required time to split and extract a key

We first measure the time to split a key with the laptop ma-
chine. We generate a 32 bits and a 128 bits key and split them
into 10, 100, and 1,000 shares by using ssss version 0.5 which is
a C implementation of Shamir’s secret sharing [20], respectively.
Table 4 shows the process time to split a key into shares. From
Table 4, we can see as rτ increases, the process time is linearly
increased except for nL = 10. This is because the number of
variables that must be solved is τ = rτnL. We can consider the
reason why this fact is not true for nL = 10 is that some prepro-
cessing time e.g., reading a key from a file takes much part of the
entire time. The most time consuming setting is |κ| = 128 bits,

Table 3: Process time to extract a key from shares.
(a) |κ| = 32 bits

nL
Process time [ms]

rτ = 0.7 rτ = 0.8 rτ = 0.9 rτ = 1.0

10 4.7 4.9 5.2 5.4
100 4.2×102 6.2×102 8.8×102 1.2×103

1,000 4.4×105 - - -

(b) |κ| = 128 bits

nL
Process time [ms]

rτ = 0.7 rτ = 0.8 rτ = 0.9 rτ = 1.0

10 6.2 6.9 7.6 8.6
100 1.9×103 2.8×103 4.1×103 5.6×103

1,000 2.1×106 - - -

Table 4: Process time to split a key into shares.
(a) |κ| = 32 bits

nL
Process time [ms]

rτ = 0.7 rτ = 0.8 rτ = 0.9 rτ = 1.0

10 4.0 4.0 4.0 4.0
100 14 16 17 18

1,000 1.0×103 1.4×103 1.4×103 1.7×103

(b) |κ| = 128 bits

nL
Process time [ms]

rτ = 0.7 rτ = 0.8 rτ = 0.9 rτ = 1.0

10 4.3 4.5 4.5 4.6
100 50 57 64 74

1,000 4.8×103 5.4×103 6.0×103 6.7×103

nL = 1, 000 and rτ = 1.0 and it takes 4.8 sec. It is acceptable
when we consider real implementation. Note that dummy tags
do not need any process of the Shamir’s secret sharing scheme
because shares to be written into dummy ones are random strings
whose length is |κ|.

We then measure the time to extract a key from shares with
the laptop machine. We extract a 32 bits and a 128 bits key
by combining 10, 100, and 1000 shares, respectively. Table 3
shows the process time to extract a key from shares. In Table 3,
since our machine cannot extract a key due to memory fault when
nL = 1, 000 and rτ ≥ 0.8 we indicate them as ‘-’. From Ta-
ble 3, we can see that the process time is exponentially increased
with nL. The process time to extract a key takes much longer
time than that of splitting a key. Especially, when |κ| = 128 bits,
nL = 1, 000, and rτ = 0.7, it takes more than 30 min to extract
a key. This is not tolerant for real implementation. One of the
solution to this problem is to use an XOR-based light-weight se-
cret sharing scheme instead [5]. Note also that any party does
not process against dummy tags when extracting a key and thus
no additional time is required to extract a key even though the
system introduces dummy tags.
6.2.2 Process time to encrypt/decrypt an EPC

We measure the time to encrypt and decrypt an EPC. We gen-
erate a 128 bits key and encrypt and decrypt an EPC whose
format includes SGTIN-96, GRAI-170, and SGTIN-198. We
use libFTE as a tool to encrypt/decrypt EPCs whose hash

c⃝ 2015 Information Processing Society of Japan 7

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

IPSJ SIG Technical Report

Table 5: Process time to encrypt/decrypt an EPC.

operation Process time [ms]
SGTIN-96 GRAI-170 SGTIN-198

encryption 0.24 0.31 0.49
decryption 0.29 0.38 0.60

●

●

●

●

●

●

●
●

●

●

●

● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

duration [ms]

ra
tio

 o
f u

ni
qu

e
ta

gs

Fig. 3: Ratio of unique EPCs versus duration.

is ‘5c11fb3d89eeaead1c4b46f04021cd4090c61087’ (the latest
commit at the time of evaluation) *1. libFTE is an implementa-
tion of FFX (Format-preserving Feistel-based encryption) [6]. In
the evaluation, we specify the input format as SGTIN-96, GRAI-
170, and SGTIN-198. Table 5 shows the process time to split a
key into shares. As we can see from Table 5, both encryption
and decryption times linearly increase with the length of an input
format. If we have 1,000 SGTIN-96 tags, it may takes a few sec-
onds for each encryption and decryption of EPCs, respectively.
From this result, we can say that the process times to encrypt and
decrypt EPCs are trivial.
6.2.3 Required Time to Read EPCs and Shares

Since a unidirectional key distribution with a secret sharing
scheme requires to read both EPCs and extra shares, we should
show how long it takes to successfully interrogate tags. Hence
we implement our scheme with off-the-shelf RFID reader and
tags and measure the required time to read EPCs and shares.
We use an Impinj Speedway R420 as an RFID reader, Times-7
A7030C circular polarised UHF shelf antenna, and Alien Tech-
nology ALN-9640 as tags. An RFID reader is connected with
the laptop computer via Ethernet. We first generate a 128 bit key
and split into shares with the (15, 20)-Sharmir’s secret sharing
scheme by using ssss on the laptop computer. Then, we write 96
bits EPCs and 128 bits shares into 20 tags by using Impinj Octane
SDK [21]. Since ALN-9640 is a Gen2v1 compliant tag, we write
a 128 bits share from the first bit in the USER memory bank. The
reader antenna is located on 2 meters away from tags. We set the
transmitting power of the antenna to 30 dBm which is the maxi-
mum value that our reader can set. We measure the time required
to read EPCs and shares by repeating the same trials by 10 times.
Fig. 3 shows the ratio of unique tags versus duration. The ratio of
unique tags denotes the ratio of number of unique tags to the total
tags. From Fig. 3, we can see that 30 ms is enough to read most
of all 20 tags even though shares are read as well. If this is true
to 1,000 tags, it will takes 15 sec to read out unique 1,000 tags.
Therefore we can say that the additional reading time of shares

*1 https://github.com/kpdyer/libfte-experimental

a unidirectional key distribution is trivial and does not burden on
the interrogation process.

7. Conclusion
We have proposed a secret sharing-based unidirectional key

distribution scheme by introducing sufficient number of dummy
tags. Since an attacker cannot see the tags inside a vehicle, he/she
cannot distinguish between the legitimate tags and dummy tags
even though he/she can collect all shares. Thus our scheme forces
an attacker to find out the correct key by trying every combination
of secret shares but the polynomial probabilistic attacker cannot
find it due to the overwhelming combination of shares. We have
also proposed to leverage an FPE scheme so that encrypted EPCs
fits into the EPC memory bank. We prove that our scheme is se-
cure in terms of the privacy and robustness by security analysis.
In addition, we clarify that less than a few tens of dummy tags
suffice when a party wants to distribute an access password and
the number of legitimate products is 100-1,000. Our scheme is
easily implemented with off-the-shelf tags and thus is practical
for an RFID-enabled supply chains.

References
[1] Avery, P. et al.: The economic impact of counterfeiting and piracy,

OECD Publishing (2008).
[2] Juels, A., Pappu, R. and Parno, B.: Unidirectional Key Distribution

Across Time and Space with Applications to RFID Security, USENIX
Security Symposium, pp. 75–90 (2008).

[3] Shamir, A.: How to share a secret, Communications of the ACM,
Vol. 22, No. 11, pp. 612–613 (1979).

[4] Cai, S., Li, T., Ma, C., Li, Y. and Deng, R. H.: Enabling secure se-
cret updating for unidirectional key distribution in rfid-enabled supply
chains, Information and Communications Security, Springer, pp. 150–
164 (2009).

[5] Lv, C., Jia, X., Lin, J., Jing, J. and Tian, L.: An efficient group-based
secret sharing scheme, Information Security Practice and Experience,
Springer, pp. 288–301 (2011).

[6] Bellare, M., Rogaway, P. and Spies, T.: The FFX mode of operation
for format-preserving encryption, NIST proposal (2010).

[7] Luchaup, D., Dyer, K. P., Jha, S., Ristenpart, T. and Shrimpton, T.:
LibFTE: a toolkit for constructing practical, format-abiding encryp-
tion schemes, USENIX Security Symposium, p. 115 (2014).

[8] Alfaro, J. G., Barbeau, M., Kranakis, E. and Others: Proactive thresh-
old cryptosystem for EPC tags, Ad hoc & sensor wireless networks,
Vol. 12, No. 3-4, pp. 187–208 (2011).

[9] EPCglobal: UHF Class 1 Gen 2 Standard v. 2.0.0 (2013).
[10] EPCglobal: EPC Tag Data Standard (TDS) (2014).
[11] Langheinrich, M. and Marti, R.: Practical minimalist cryptography

for RFID privacy, Systems Journal, IEEE, Vol. 1, No. 2, pp. 115–128
(2007).

[12] Langheinrich, M. and Marti, R.: RFID privacy using spatially dis-
tributed shared secrets, Ubiquitous Computing Systems, Springer, pp.
1–16 (2007).

[13] Li, T., Li, Y. and Wang, G.: Secure and practical key distribution for
RFID-enabled supply chains, Security and Privacy in Communication
Networks, Springer, pp. 356–372 (2012).

[14] Abughazalah, S., Markantonakis, K. and Mayes, K.: Enhancing the
Key Distribution Model in the RFID-Enabled Supply Chains, Interna-
tional Conference on Advanced Information Networking and Applica-
tions Workshops (WAINA), pp. 871–878 (2014).

[15] McEliece, R. J. and Sarwate, D. V.: On sharing secrets and Reed-
Solomon codes, Communications of the ACM, Vol. 24, No. 9, pp. 583–
584 (1981).

[16] Xerafy: Xerafy (2014).
[17] Bellare, M., Ristenpart, T., Rogaway, P. and Stegers, T.: Format-

preserving encryption, Selected Areas in Cryptography, pp. 295–312
(2009).

[18] Alien Technology: Higgs 3 (2014).
[19] Impinj: Monza 4 Tag Chip Datasheet (2014).
[20] point-at-infinity.org: ssss: Shamir’s Secret Sharing Scheme (2014).
[21] Impinj: Octane SDK Impinj Support Portal (2014).

c⃝ 2015 Information Processing Society of Japan 8

Vol.2015-CSEC-69 No.9
Vol.2015-IOT-29 No.9

2015/5/21

