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Abstract

In this thesis, we propose a method to complete dam-
aged videos using motion inpainting (MI) and color
propagation (CP). We first constraint the interpolated
motion of the regions to be completed, called holes, to
be spatio-temporally smooth. To achieve this, we si-
multaneously solve and interpolate the motion of the
known regions and the hole by minimizing an opti-
cal flow estimation function with the spatio-temporal
smoothness constraints. Then, we use the solved opti-
cal flow to propagate the color of the known pixels to
the hole using bicubic warping. We embed this two-step
(MI+CP) method in an iterative optimization frame-
work where we propose to use the newly inpainted color
to further improve the optical flow estimation. This is
done by introducing a spatially varying mask function
that is dependent on the frame distance of the source of
the inpainted color. We also propose a method to ac-
curately impose the temporal smoothness constraint by
solving a trajectory prior based on the camera’s egomo-
tion. We propose a fast estimation of the translation
parameters through points correspondence among only
three frames. Finally, we test our method in synthetic
and real videos as well as urban street videos taken from
a moving vehicle.

1 Introduction

Recent advances in the field of transportation, nav-
igation, and virtual reality have caused the emergence
of video cameras that are used to capture an urban
environment. These cameras are mounted in differ-
ent places around a vehicle such that they can view
the scene of particular interest. For example, cameras
that are mounted on top of cars are used to document
a cityscape for applications such as virtual tours, 3D
modeling, digital archiving, and driving simulation.

Several issues arise from the use on-vehicle video
cameras that could cause problems in certain appli-
cations. For example, the presence of pedestrians in
videos that are used for virtual tours and digital archiv-
ing pose privacy issues especially when the faces are
clear enough to be recognized. This issue is very com-
mon in crowded places such as tourist spots or streets.
A simple and common solution to address this problem
is to blur or blackout the people’s faces. However, in
some applications, simple blurring is not enough espe-
cially because it removes the visual appeal of the video.
Oftentimes, a complete view of the facade of a building
is also necessary and a complete removal of pedestrians
is needed.

Another issue is the presence of artifacts such as
dead or corrupt pixels that are inherent to the camera.

Some are adherent water or smudges and occluding ob-
jects on the lens of the camera or on the windshield of
a car. All of these artifacts degrade the quality of the
video and are problematic when used in applications
that require a clear view of the surrounding.

We argue that the best solution to these issues is to
completely delete the information (color pixels) con-
taining the unwanted artifacts and redraw or replace
them with the desired pixels. Although this could be
done manually frame-by-frame using any image/video
editing software, the process requires accuracy and
time.

In this thesis, we call this process as video comple-
tion. In the succeeding section, we will define the video
completion problem and its objectives and we will fol-
low with the main contribution of this work in address-
ing this problem.

1.1 Video Completion Problem

Given an image sequence S, we define the deleted
region (removed pedestrians/artifacts) as the hole H.
The completion process fills in H with information
from the known parts Ω = S \ H of the sequence.
The main objective of video completion is to find an
H that makes S visually pleasing.

In our criteria, a visually pleasing video should have
spatial and temporal consistency in both color and mo-
tion domains.

• Spatially Consistent Color. An object that
appears to be geometrically improbable (floating
objects, curved building walls) is undesired. In
video completion, a recognized object must sat-
isfy its geometrical definition (i.e. a building must
have doors, and windows, and its walls must be
smooth.), therefore the completed parts must ad-
here to the original structure. Any divergence
from its preconceived appearance is easily recog-
nized by the viewer as an inconsistency.

• Temporally Consistent Color. If an object
appears in one frame, then it should appear in
all frames unless it is occluded by another object.
Violation of this objective results in flickering of
objects where it appears and disappears abruptly.

• Spatially Consistent Motion. This criterion
constraints the motion of the points belonging to
a same object to be smooth. Ideally, we want
the motion of the hole and the boundary to be
smooth such that the edge of the hole will not be
apparent in the resulting video. It also suggests
that the motion of the points inside the hole must
be smooth.
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• Temporally Consistent Motion. If we track
a point among several frames, the motion of that
point must be smooth. Although this criterion is
violated in shaky videos, it still constraints the
motion of a point to the general motion of the
shaking that comes from the camera motion.

Using these criteria, we review some of the most re-
cent techniques in video completion and propose our
method in the succeeding sections.

1.2 Related Work

Video completion methods can be divided into two
categories: using color or brightness frames and using
optical flow or motion frames. Methods that use color
or brightness frames rely on a similarity measure be-
tween pixels while methods that use optical flow frames
rely on the similarity of motion of neighboring pixels.

1.2.1 Using Color Frames

Numerous methods have been formulated to solve
the video completion problem. Some work directly ex-
tended image inpainting methods [14] to videos. With
the addition of the time dimension, these methods re-
sult in poorly inpainted sequence especially when the
background and holes are both moving.

Non-parametric sampling is the most famous video
inpainting method. A global spatio-temporal opti-
mization is proposed by Wexler et al [13]. They use
3D patches including RGB channel and intensity gra-
dient in the horizontal and vertical directions. With
the use of 3D patches the authors claim a solution in
the temporal discontinuity that result from extended
image inpainting techniques. However, this method
suffers in both accuracy and efficiency when the hole
becomes very big and the inpainted background be-
come large.

Jia et al [15] propose an extension of the previous
method and use large fragments based on color similar-
ity instead of using fixed size patches and use tracking
to complete the video. A large improvement in time
was achieved but the quality of the inpainting is still
the same. Another extension that solve the time com-
plexity of patch matching is [16] which allows a person
to indicate locations in the video that the source of the
hole might come from. In this way, the search space
was dramatically reduced and the completion time was
improved.

Some methods use frame alignment using features
(low-rank [18], SURF [17], etc.) with variants such as
separately inpainting background and foreground using
layers [19]. However, frame alignment only works with
planar scenes and with very few visible planes. These
methods also require that objects have the same size
throughout the video and therefore is not applicable in
most applications. Moreover, detecting planes become
problematic when there are multiple planes that affect
the desired value of the hole.

The most common issue with these methods is the
absence of an explicit motion constraint. The success
of the inpainting results depends solely on the effective
comparison between neighboring pixels and the source
patches. Consistent motion are somehow achieved by
using 3D patches (including neighboring frames), how-
ever this approach relies too much on the presence of a

periodic motion. Another problem with this approach
is that patches tend to diverge from consistency when
the hole is too big. In order to solve this problem,
image pyramids are used which greatly improves the
inpainting results.

1.2.2 Using Optical Flow Frames

Another approach in solving the video completion
problem is the use of optical flow to propagate the pix-
els with known colors toward the hole. The methods
that falls in this category uses two steps in completing
the video. The first step is to estimate the optical flow
(motion inpainting, MI) inside the hole and then prop-
agate the information (color propagtaion, CP) from
known parts of the video into the hole using the op-
tical flow values. In [20], the motion is completed by
using motion patches similar to the approach used in
color frames. Tang et al. [21] also inpaint the motion
but use weighted priority of patches to select the best
matching patch.

Video completion can benefit from frame interpo-
lation methods that use motion inpainting [22]. The
difference between the two problems is the unavailabil-
ity of the spatial information in the latter. Instead of
exclusively interpolating the trajectory, color and mo-
tion consistency assumption at the boundary of the
hole could be used to improve the inpainting results.
Werlberger et al. [23] used optical flow to estimate the
velocity of pixels between two consecutive frames and
applied a TV-L1 denoising algorithm to inpaint holes.
However, in their method, the solution for optical flow
and inpainting are separately done.

After motion inpainting, color propagation is triv-
ial. The success of these methods rely heavily on the
accurate estimation of optical flow at the boundary of
the hole. Moreover, working on the optical flow field
does not ensure consistent motion between the hole
and the boundary. Since most of the motion inpaint-
ing methods use only two frames, the consistency is
also limited within two frames. Aside from that, when
the hole becomes very large, the motion information at
the boundary will have difficulty in reaching the center
of the hole.

Most of the effort in video completion have been fo-
cused on solving the spatial and temporal consistency
in color. However, the motion characteristics of the
completed video have not been sufficiently addressed.
With methods that uses only color frames, the motion
consistency was not addressed because there is no ex-
plicit motion constraints applied during the inpainting
process. Even with the use of 3-dimensional patches for
patch matching, the color channels are still not enough
to sufficiently address the motion inconsistencies.

Although methods that uses motion frames implic-
itly address the motion consistencies, the method still
lacks in several aspects. First, spatial consistency is
hard to achieve if the holes become very big because
the information outside the boundary of the hole could
not reach the center. The convergence of global sim-
ilarity measures takes longer time to a point of non-
convergence. The temporal motion consistency on the
other hand is hard to solve if the size of patches are
small. However, increasing the patch size will result
in including unnecessary information hence, a control
becomes necessary.
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Figure 1: Overview of our proposed method.

1.3 Thesis Contributions

This thesis addresses the problem of video comple-
tion through motion inpainting and color propagation.
We summarize our contributions as follows.

• Our first contribution is the simultaneous optical
flow estimation and inpainting. By incorporating
a spatially varying mask function in the data term
of the optimization function, we were able to esti-
mate the motion inside the hole by basing it to the
motion at its boundary. We use two smoothness
constraints to achieve coherent motion among pix-
els. One is the spatial smoothness constraint that
is enforced among neighboring motions which al-
lows us to keep the motion of the hole and the
boundary close as well as the total motion inside
the hole itself. The second constraint is the tra-
jectory smoothness measure which relates the for-
ward and backward flow computed among three
frames. The trajectory measure or prior is cal-
culated as the ratio of the forward and backward
optical flow which is estimated by averaging many
point values under the assumption that the motion
is purely translational or the rotational motion is
very low.

• Another contribution of this work is the iterative
optimization framework that allows us to continu-
ously compute the optical flow and propagate the
color from known parts of the video into the hole.
In order to do this, we modify the mask function
used in data term of the optical flow estimation
function by inferring the distance of the frames of
the source pixel and the hole. This distance in-
creases as the frame of the source pixel moves far-
ther away from the frame of the current inpainted
hole. In our method, we use a negative exponen-
tial which decreases in value as the distance in-
creases. This means that colors that come from
distant frames will have less effect on the value of
the optical flow.

We show the overview of our contribution in Figure
1.

2 Simultaneous Optical Flow Estimation
and Inpainting

It is necessary to jump into discussing the most crit-
ical part of our work in this section, where most of

the extensions, initializations and preprocessing is de-
rived. We will first introduce our multi-frame optical
flow estimation and inpainting method. For simplic-
ity reasons, we will generalize everything into three
frames.

2.1 Optical Flow Estimation

The general two-frame optical flow estimation func-
tion (Horn-Schunck [1]), consists of a brightness con-
stancy term and a spatial smoothness term. We de-
fine the vector u = (u, v) as the optical flow between
frames, say, I0 and I1, where u and v are in the x and
y direction, respectively. We represent the brightness
constancy term as the data term ED:

ED(u) = λD(x)ψ (I1(x + u)− I0(x)) (1)

where ψ can be any convex penalty function (L1 [4],
Lorentzian [6]). In this work, we use the differentiable
L1-approximation - Charbonnier [7] function. We also
define the spatially varying λD(x) which we call as the
mask function.

We will diverge from [1] and use a non-local
(weighted median filter-based [2]) regularizing term.
We define this as the spatial energy term, ES :

ES(u) =
λS
2
‖u− û‖2 +

N∑
n

wn |ûi − ûn|22 (2)

Using three or more frames, it is possible to com-
pute two optical flows, namely forward and backward
flows, that are both based on a single reference frame.
In prior work [3], these are estimated using only two
frames. This is done by designating the forward flow
as the mapping of pixels from I0 to I1 and the back-
ward from I1 to I0. As a result, the two flows are not
necessarily spatially coherent because they are based
on two different reference frames.

In our work, the forward flow is defined as the
mapping of pixels from frame Ij to Ij+1 and the
backward is from Ij to Ij−1. To simplify the
succeeding definitions, we will use the subscript
{b, 0, f} instead of {j − 1, j, j + 1} to represent
{backward, reference, forward} terms. We then rep-
resent the forward and backward flow as uf and ub,
respectively.

Since both uf and ub are based on a single reference
frame, under certain assumptions, it is possible to de-
rive a relationship between the two. For example, we
can say that they have the same magnitude but op-
posite in direction (constant velocity), uf + ub = 0.
Other relationship can be derived which will be left for
discussion in the succeeding sections.

In the meantime, let us assume that the relationship
is described by a general function φ(uf ,ub).We can
then subject the optical flow function to the following
strict constraint:

φ(uf ,ub) = 0 (3)

We will call Equation (3) as the trajectory constraint
and assume that φ is convex and differentiable. We
then impose this as a soft constraint to our total opti-
mization function by defining a third energy term ET .
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Using augmented Lagrangian method, we will intro-
duce a dual update variable bk = (bku, b

k
v) and define

ET as:

ET (uf ,ub) =
λT
2

∣∣φ(uf ,ub)− bk
∣∣2
2

(4)

For the sake of clarity, we will rewrite ED and ES
as functions of uf and ub:

ED(uf ,ub) = λD(x)[ψ (If (x + uf )− I0(x))

+ψ (Ib(x + ub)− I0(x))] (5)

ES(uf ,ub) =
λs
2

[‖uf − ûf‖2 + ‖ub − ûb‖2]

+
N∑
n

wn |ûfi − ûfn|22 +
N∑
k

wn |ûbi − ˆubn|22 (6)

(7)

Combining all the energy terms, our optical flow es-
timation function becomes:

min
uf ,ub

(ED + ES + ET )(uf ,ub) + const. (8)

2.2 Joint Estimation and Inpainting

The inpainting process is embedded in the minimiza-
tion of the function in (8). By assigning a spatially
varying value for λD, we can control the effect of the
brightness constancy on the total solution. Inside the
hole, we initially remove the effect of the data term by
assigning a binary mask to λD and rely solely on the
spatial and trajectory smoothness terms. This means
that the optical flow inside the hole is dependent only
on the motion values along the boundary. In the suc-
ceeding sections, we will modify λD to allow for inter-
mediately inpainted color to affect our solved optical
flow.

We use variational approach in minimizing the func-
tion in (8). In order to do so, we linearize the data
energy term using the first order Taylor approxima-
tion. This yields:

ED(uf , ub) = λD[ψ
(
ufIfx + vfIfy + Ift

)
ψ
(
ubIbx + vbIby + Ibt

)
] (9)

where the Ifx and Ify terms are the partial derivatives
of If which is approximated by convolving the image
with a kernel filter. On the other hand, Ift = If (x)−
I0(x).

In practice, the linearization will not be satisfied be-
cause the image gradients will have large variations
between the two frames due to large motions. This
problem is addressed using continuous refinement [11].
The goal is to first find an initial guess for the optical
flow, uf0 and then continuously minimize the function
along the differential ∆uf = uf − uf0. Famous meth-
ods to find a good initial guess are image pyramids [8],
patch matching [9], or point correspondences [10].

Assuming that uf0 is already a close approxima-
tion of the desired value, we warp If towards I0 us-
ing bicubic interpolation and then solve the differen-
tial ∆uf = (δuf , δvf ). The new warped image is given
by Īf (∆uf ) = If (x + uf0 + ∆uf ). We then rewrite

the data term again using the warped image for the
forward flow as:

ED(∆uf ) = λd
[
ψ
(
δuf ¯Ifx + δvf ¯Ify + Īft

)]
(10)

We do the same step with Ib and then minimize (8)
in terms of ∆uf and ∆ub.

To minimize (8), we perform the following double
alternating direction method (ADMM). First we hold
ub and bk constant and the resulting function will be
dependent only on uf and ûf .

We perform another ADMM and hold ûf constant
to find uf . The resulting function can be minimized
by solving the Euler-Lagrange equations and perform-
ing a simple point-wise algebraic manipulation. After
finding an initial value for uf , we then solve for ûf as
proposed in [2].

The same step is done for the backward direction
and then bk is updated as bk+1 = φ(uf ,ub)− bk. We
call this step as the inner iteration and summarize it
in Algorithm 1.

Algorithm 1 Inner iteration for simultaneous optical
flow estimation and inpainting.

Require: uf ,ub

initialize uf ,ub,b
0,k← 0

while convergence6=TRUE do
linearize If , Ib
ub, b

k = constant, solve uf , ûf
uf , b

k = constant, solve ub, ûb
update bk+1

k ← k + 1
end while

3 Trajectory Prior Estimation

First, we will justify why a constant velocity assump-
tion in the trajectory constraint of the optical flow
functional could be problematic by giving an example.
The trajectory constraint we use describes the rela-
tionship between the forward and the backward flow.
We could say that by assuming a constant velocity mo-
tion uf + ub = 0 and assigning a small value to λT , we
can accommodate small changes in the camera motion.
However, there are two cases where this assumption
pose a problem.

The general case is when the velocity change
abruptly that the difference between two consecutive
optical flow frames is large. The other case has to do
with changing perspectives due to camera motion. Say
for example we are inpainting a wall. On one side of
the hole, the wall might be seen as planar and runs at a
diagonal with the camera plane. When the wall reap-
pears on the other side of the hole in the sequence, it
might suddenly appear as a straight line. If the camera
velocity is constant, it is possible to trace the motion
of all the points in the wall and they will converge as
a line on the other side. The motion can then be esti-
mated when the wall is still visible and simply follow
that motion to the other side of the hole.

The problem occurs when the camera’s velocity
change abruptly while the wall is still hidden. Take
for example the case in Figure 2. The wall that is be-
ing inpainted was visible on both sides of the hole but
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Figure 2: Changing camera velocity poses difficulties
in video completion especially when the object being
inpainted changes its appearance. Here we show how
a wall maps to an almost straight line when passing
through a hole.

Figure 3: Trajectory prior

with different perspective (one side is more perpendic-
ular to the camera plane). During the time the wall is
still behind the hole, the camera changes speed. If we
follow the same idea as in the first case, we will run
into a problem where tracing the motion of the points
in the wall will result in a different reconstructed per-
spective of the wall.

Another way to view this problem is when we try
to interpolate the motion from both sides of the hole.
Take for example the right-side image in Figure 2. A
constant velocity corresponds to a straight line in the
non-strict epipolar plane. If we trace the movement of
two corresponding points in the wall from both ends of
the hole, we will find that they will not converge at the
center, unless of course we deliberately track them.

To address the discussed problem, we propose to es-
timate the relative motion of all the points in the se-
quence by reasoning on the motion of the known ones.
We designate this relative motion as the trajectory
prior and can be described in the trajectory energy
of the optical flow estimation as:

φ(uf ,ub) = uf + ρub = uf + pf (11)

where the pf term is the trajectory prior. The expres-
sion can be illustrated as in Figure 3.

We allow the forward flow uf to be around the same
value as the trajectory prior by minimizing their dif-
ference. If in case ub is known (such as the case along
the boundary of the hole), it is possible to solve for
the trajectory of uf by using this technique. In most
cases however, the two optical flows are both unknown,
therefore the difference serves as a weak constraint on
their estimated values.

Assuming that the camera motion is dominantly
translational, with the parameters T = (Tx, Ty, Tz),
the trajectory prior can be defined as:

pfx =
−Txf + xTzf
−Txb + xTzb

ub = ρub (12)

We call ρ as the transition ratio which defines the
transition of the trajectory from the backward to the
forward direction.

Now, we need to solve for ρ from the camera motion
parameters. We will show two methods to solve this.
The first is a direct solution through structure-from-
motion technique. Then we will propose a faster and
simpler method through only point correspondences
between three frames.

3.1 Method using Structure from Motion (SFM)

Assuming a predominantly translational egomotion,
the transformation matrix of a projective camera sys-
tem can be simplified as: Xc

Yc
Zc
1

 =

[
0 T
0 1

] X
Y
Z
1

 (13)

We first find the matching points among all the nec-
essary frames using scale invariant feature transform
(SIFT). Then using the matched features, we solve for
the camera translation. A standard process is well-
described in [28]. Using the translation parameters,
we then derive the transition ratio from Equation 12.

3.2 Method using Points Correspondences (PC)

We propose a faster method in solving the trajectory
prior. Instead of directly estimating camera parame-
ters, we make use of the definition of transition ratio.
Assuming that the camera does not change its depth
much compared to its motion along the x or y-axis
(Tz << Tx), we can ignore the Tz parameter in the
equation and redefine the approximate transition ratio
as:

ρ ≈ Txf
Txb

(14)

We can find ρ instead by taking the average ratio of
the known optical flows ufi and ubi of all points i out-
side the hole. To find these optical flows, we solve again
the SIFT features, this time only between three frames.
The flows are defined as ufi = xi − xj , where x is the
position of point i in the reference frame and point j in
the forward frame (same with backward frame). The
transition ratio is then given by:

ρ =
1

N

N∑
i

ufi
ubi

(15)

3.3 Comparison

We compare the two methods on a synthetic video
with sudden change in camera velocity about the 11th
frame. The SFM method achieves a 0.031 RMSE while
the PC method is at 0.064.

Although the error is slightly larger, there are sev-
eral benefits to using the PC method. First, the SFM
requires all the frames to estimate the camera param-
eters while the PC only requires three. Second, even
our naive implementation of the SIFT detector (0.06s)
proves folds faster than the SFM (baseline VisualSFM
[26] at 4.3s). Finally, in cases where it is impossible
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Figure 4: (a,b) Representative frames; (c) Camera po-
sition along the x-axis. Note the change in velocity
about the 11th frame; (d) Comparison on the solved ρ
between the SFM and the proposed method.

to estimate the camera motion due to lack of features
(i.e. planar scenes, insufficient depth variance), the PC
method will still work.

4 Iterative Optimization

Generally speaking, the inpainted motion can be in-
tuitively used to propagate the color from known re-
gions of the video towards the hole. However, we argue
that it is possible to use the newly inpainted color of
the hole to the brightness constraint to further improve
the motion estimation. This time, instead of using a
binary label for the mask, we use a probabilistic func-
tion that is dependent on the distance between the
inpainted frame and the source color frame.

Using this assumption, we combine the motion esti-
mation and inpainting and the color propagation into
an iterative optimization framework.

We first initialize all the optical flows and dual up-
date variable to 0 and then solve for the initial uf and
ub for all the frames. Using these initial values, we
then perform our color propagation method.

4.1 Color Propagation

We first present a simple color propagation technique
based on linear warping. The method starts with an
inpainted motion inside the hole. The values of the
optical flow in each frames forms a graph that maps the
pixels between neighboring frames (see Figure 5). By
following the map, the known color is then propagated
to the hole.

Ideally, we want the optical flow to point to an exact
location in another frame. However, this is seldom
the case. To solve this problem, we warp the known
pixels to the hole via bicubic interpolation (see Figure
6). The four pixels in the vicinity of the hole and
their neighboring pixels are used as initial values of
the interpolation method. The image derivatives are
solved about these four points and the value of (x̄, ȳ)
is determined using the bicubic polynomial [12].

Figure 5: Color propagation as graph. The optical flow
is treated as a graph that maps the correspondence of
pixels among the frames.

Figure 6: Inexaxt optical flow points to a vicinity of
four neighboring pixels.

We perform the propagation for each of the forward
and backward flow directions. As an additional step,
we record the distance between the current frame and
the source frame. Say we are completing the nth frame
In of the image sequence. For each pixel xi, we are
propagating the color x̄i of the known region in (n +
si)

th frame In+si . We define a distance µ(x) as:

µ(x) = (n+ si)− n = si (16)

After color propagation, we will have two differently
inpainted frames IHf and IHb. We combine the two
images by first, in the regions close to the hole bound-
ary, choosing the direction which has the lower µ value.
As we move deeper in the hole, we blend the color from
both direction using:

IH =
µ2
b

µ2
b + µ2

f

IHf
+

µ2
f

µ2
b + µ2

f

IHb
(17)

4.1.1 Effect of Consecutive Warping

Since the color of the pixel in the hole is only an in-
terpolated value of the surrounding pixels, subsequent
interpolation will result in an averaging effect. This
effect is more apparent with large holes which inner
parts can only be inpainted using sources from very
distant frames.

To reduce the blurring effect, we use the following
technique as illustrated in Figure 7. As of now, we are
inpainting by interpolating the values in the source on
a frame-by-frame basis. Say for example, we are com-
pleting the hole in frame 1. We do this by propagating
the color following u(1,2) to frame 2 and if this points to
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the hole, we follow to u(2,3) and so on. Then, we warp
the colors from frame 3 to frame 2 using u(2,3) and then
the colors from frame 2 to frame 1 using u(1,2).

Figure 7: Warping of optical flow.

We propose to directly interpolate the values in
frame 3 to frame 1 by solving for the optical flow u(1,3).
Fortunately, we do not need to solve for this separately.
In our method, we first solve for µ(x) of all the frames
using the method in the previous seciton. The µ(x)
contains the frame location of the source pixels in all
x in the hole. To illustrate, say, we are completing the
nth frame In. For a pixel x in the hole in In, we have
the location of the source frame n + µ(x). We then
linearly warp the optical flow of that frame un+µ(x)
using the flow of the preceding frame un+µ(x)−1. We
iterate this linear warping k times until we get to the
current frame n + µ(x) − k = n. As a result, we will
get the optical flow un+µ(x) of point x that maps it to
frame n + µ(x). We repeat this process for all pixels
in parallel.

With the updated motion, we also update IHb and
IHf and perform the weighted combination to get IH
as in Equation (17).

4.2 Modifying the Mask Function

After one color propagation step, we will get an ini-
tially inpainted image sequence. We now use this ini-
tially completed hole to further improve the result of
the motion inpainting.

To do this, we modify the binary label mask function
to have a spatially varying value based on the reliability
of the inpainted pixel. We define the reliability of the
pixel as:

m(x) = γ−µ(x) (18)

where γ is a positive real number. The value of gamma
controls how much the inpainted pixel affects the over-
all error.

Choosing an arbitrary γ value will result in unstable
global minimization. In theory, we want the total error
inside the hole to be less than that of its boundary [13]
[14]. This will help in the convergence and allows the
information to gradually propagate towards the hole.
Choosing a small value for γ, however will let the newly
inpainted color at the center of the hole more effect on
the minimization rather than the spatial and trajec-
tory smoothness which may prematurely converge to
a wrong local minimum. On the other hand, a very
large value will result in the information not reaching
the center of the hole, especially if it is too big. In
our experiments, we choose γ = 1.3 and find this value
suitable in the videos that we used.

4.3 Note on Convergence

Before performing the iterative motion inpainting
and color propagation, we first solve for the image
pyramids through a coarse-to-fine strategy. We do this
by repeatedly down-sampling the image by a factor α.
The higher level l+1 image (or the coarser scale) given
the current level l image Gl is solved as:

Gl+1(x, y) =
2∑

m=−2

2∑
n=−2

0.25Gl(2x+m, 2y + n) (19)

Using this approach, we compensate for large pixel
motions that is usually present in our videos. We use
α > 0.5 so that each of the succeeding level is a blurred
version of the lower level.

We start the iteration from the coarsest level and use
an initial value of the mask to be zero inside the hole.
We then orderly choose a frame, I0 and its two neigh-
boring frames If and Ib. The unknowns (uf ,ub,b

k)
are initialized to zero. We then iterate the joint motion
estimation and inpainting, color propagation and the
mask update.

In each of the iteration we are presented with an
entirely different optimization function. It is possible
that the final output is not a desirable result, which
means that the hole could contain any value that a
human viewer will see as visually unpleasant. However,
it can be proven that at each of the iteration, since
the mask function is held at a constant value, we are
optimizing a function that is convex and therefore will
converge at a point. The point definitely optimizes
the function, but does not mean that it is an optimum
value.

We summarize the steps of this method in Algorithm
2.

Algorithm 2 Iterative motion inpainting and color
propagation.

Require: color of H
solve trajectoryprior
solve image pyramids
initialize m(x ∈ H) = 0
for level < max level do

while error > thresh do
Inner Iteration
Color Propagation
update m(x)

end while
upsample uf , ub

end for

5 Results and Discussion

Optical Flow Estimation

We test our proposed method on synthetic and real
videos. We first compare our optical flow estimation
method with [24]. We used the database in [25]. To
constraint the comparison on the effectiveness of the
regularizers, we limit the non-local implementation of
[24] to the weghted median filtering similar to our ap-
proach. In this case, the only difference between their
method and ours is the TV smoothness constraint.
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Figure 8: TV+median [24](Sun et.al) vs. median only regularizer (our method).

Sequence End-Point Error Runtime (s)

Sun et al. Our method Sun et al. Our method
rubberwhale 0.180 0.187 135.9 120.1
hydrangea 0.339 0.350 138.4 123.2

grove2 0.175 0.179 186.5 180.5
grove3 0.747 0.744 186.7 126.3
urban2 0.854 0.909 183.3 177.4
urban3 0.874 0.831 209.2 123.6

Table 1: TV+median [24] vs. median only regularizer. The small increase in the end-point error, which is almost
negligible, is a better trade-off for a faster and more efficient solution of the optical flow estimation.

The decrease in runtime is due to the removal of the
TV smoothness constraint in the solution. Without
it, we were able to remove one iteration required to
solve a Gauss-Seidel step and the solution for uf and
ub becomes a point-wise algebraic manipulation. The
improvement in runtime is very important because we
are solving the optical flow of many frames and the
improvement in time accumulates as the number of
frames increases. The representative frames are shown
in Figure 8 and the quantitative comparison is shown
in Table 1.

Trajectory Prior

We test the effectiveness of the trajectory prior esti-
mation method with different videos. We first used a
video where the camera suddenly change its velocity.
We compare the results between the trajectory prior
estimation using SFM and point correspondence. We
also compare them from the result of a constant ve-
locity assumption. We show the representative frames
in Figure 9 and plot the error (difference between the
ground truth video and the inpainted video) in Figure
10.

We also use a shaking video (in x-axis only) to
demonstrate the effectiveness of point correspondence
method in solving the trajectory prior. We show an
improvement in the inpainting result and show them
in Figures 9 and 10.

Figure 10: Plot of the error in completion of video with
(left) changing velocity and (right) shaking. In both
cases, the trajectory prior solution shows a significant
reduction in error.
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Figure 9: Representative frames of the result of the video completion method on a synthetic video with (left
sequence) changing velocity and (right sequence) shaking. We compare the results using a constant velocity
trajectory assumption and with the trajectory prior solutions using SFM and point correspondences.

Blur Reduction Tests

We quantify the improvement in the results by mea-
suring the gradient-based sharpness measure (Tenen-
grad function [27]:

fsharp(I) =
1

N

N∑
i=1

√(
dIi
dx

)2

+

(
dIi
dy

)2

(20)

A higher value in the measure suggests a less blurred
image. We confine the computation inside the hole and
normalize the output. We tested the technique using
a real street video sequence with removed pedestrian
(’human’ sequence) and show the improvement in Fig-
ure 11. The shaprness range from 5.44 to 7.20 without
the deblurring technique. By applying our proposed
optical flow warping method, we were able to improve
the range from 7.34 to 9.14. To further test the ef-
fectiveness, we also show the comparison between the
sharpness measure of the ground truth sequence and
the inpainted ones in Figure 12 using the Middlebury
database. We introduced a hole as shown in the mask
row. We were able to improve the sharpness from 6.62-
7.69 to 7.79-9.26.

Test on Street Videos

We tested the whole video completion process on
real street videos where we remove the walking pedes-
trians. We show the representative frames of two image
sequences ’human’ and ’person’ in Figure 13.

6 Conclusion and Future Work

In this thesis we proposed to solve the video comple-
tion problem by using a spatio-temporally consistent
motion inpainting. First, we proposed a framework in
inpainting motion using multiple frames by imposing a
smooth spatial and trajectory constraint on the motion
among the frames. We did this using a joint motion
estimation and inpainting algorithm that utilizes a bi-
nary label mask to eliminate the effect of the color in-
formation inside the hole. The smoothness constraints

Figure 11: Result of reducing the blurring effect on the
’humanc’ sequence for representative frames 26 and 38.

proved to be effective in propagating the known motion
from the boundaries towards the hole.

Secondly, we proposed a simultaneous motion in-
painting and color propagation method by using an
iterative optimization method. We obtained better re-
sults when we used the newly inpainted pixels inside
the hole to refine the optical flow estimation inside it.
We control the effect of the newly inpainted pixels us-
ing our proposed mask function that relates the frame
distance of the source pixel to the reference pixel in
the hole. We also introduced a trajectory prior es-
timation method to handle the trajectory constraint
during non-smooth motion. Our method comprised of
only three frames and therefore was implemented really
fast. We also improved the standard color propagation
method to include a technique in combining the result
of two directions, namely the forward and the back-
wards. We combined the propagated color from both
directions using our proposed blending technique. We
then showed in our result that this method can accom-
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Figure 12: Result of reducing the blurring effect on the
’army’ and ’schefflera’ sequence.

plish video completion results accurately.
Our optimization framework is designed to be ex-

tended to virtually any optical flow estimation method.
A choice of a good functional will result in faster ap-
proximation of the motion inside the hole and eventu-
ally faster video completion results. A real-time im-
plementation is also desired since a lot of application,
such as mixed reality, require that an object is removed
and inpainted in real-time. Since the motion can be es-
timated by using only three frames, a real-time imple-
mentation is very possible. The only limitation is when
the hole extends several frames that the first available
source pixel is very far from the current frame.

A desired extension is to combine the masking of the
hole and the inpainting method proposed in this thesis
into one automatic framework. The burden is put on
the detection and tracking of the unwanted object on
all the frames in real-time.

Another possible improvement is to modify the con-
straints to handle more dynamic motion such as those
of non-rigid objects and to consider more complex
scenes such as places with clutters.

We conclude this thesis by saying that video com-
pletion is a very hard task and requires a lot of en-
gineering in order to be useful in most applications.
However, with the emergence of fast computers and
algorithms, this problem is not really far from being
perfectly solved.
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