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Four-dimensional City Modeling using Vehicular Imagery

Ken Sakurada1,a) Takayuki Okatani1,b)

Abstract: We propose a novel method for four-dimensional city modeling using vehicular imagery. Motivation be-
hind this study is to estimate and visualize damage and recovery process of tsunami-damaged area. To conduct the
research, we have been recording the images in tsunami-damaged area periodically driving a car on which omnidi-
rectional camera is mounted. To estimate temporal changes of a wide area using vehicular imagery, there are many
challenges to overcome, for example, limitation of camera viewpoint, coverage of vehicular imagery and illumination
condition. Furthermore, a 3D model is not always available for every city, and the scene images do often not have
sufficient visual features to perform precise registration. In the case of a wide-area disaster, it is computationally pro-
hibitive to reconstruct the three-dimensional structure of entire areas. To overcome these difficulties, we propose 2D,
3D and object-based change detection methods. The 2D method detects scene change from an image pair using visual
features of convolutional neural network. The 3D method estimates structural changes of scene from images taken
at multiple viewpoints even if there is depth ambiguity of a scene. The object-based method estimates land surface
condition of an entire city integrating aerial and street-view imagery, which are taken at vastly different viewpoints.
The experimental results show that our methods can accurately and effectively estimate temporal changes of a city.

1. Introduction
On March 11th, 2011, Great East Japan Earthquake brought

catastrophic damage to the north east of Japan. The earthquake
centered at 70 km offshore of Miyagi prefecture and recorded
the magnitude of 9.0. The Tsunami caused by the earthquake
reached 40.1 meters height at maximum. The earthquake caused
giant Tsunami whose maximum height was 40.1 meter and the
Tsunami gave serious damages to the Pacific coast area of the
Tohoku. The great earthquake, the giant Tsunami and the after-
shocks caused landslide disaster, fire, land subsidence and ground
liquefaction. The secondary disasters spread to a very wide area
including Fukushima prefecture where first nuclear power plant
resulted in the release of radioactive substances after the power
loss caused by the Tsunami. The earthquake triggered an all-time
wide-area complex disaster.

Accurate understanding of damage and temporal scene change
is important to reduce secondary damage and quick recovery and
restoration. Aerial image is one of the most frequently used sen-
sory information to investigate a wide area damaged by a disaster.
For example, it is possible to observe the land-surface condition
using a satellite image of visible light, and estimate an area con-
dition such as inundation using aerial image of infrared light and
microwave both during day and night. However, aerial image has
some drawbacks, such as low resolution and large variation of il-
lumination condition due to weather change, since aerial image
observes the ground from high-altitude in the sky. Furthermore,
there are many areas invisible from the sky due to coverage by
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Fig. 1 Areas unseen from a satellite

  

Fig. 2 Overview of 4-dimensional city modeling using vehicular imagery

a roof, an elevated road and a pedestrian bridge (Fig.1). Street-
view image is essential to supplement such missing observation
from aerial image and understand the detail of city condition.

The objective of this study is to visualize the damage and re-
covery/restoration process of tsunami-damaged area. About one
month after the earthquake, we started recording the damages and
recoveries of tsunami-damaged areas driving a car on which an
omni-directional camera and a GPS receiver are mounted. The
time interval of the recording is from 2 to 6 months depending on
the recovery progress of the areas. The target area is the costal
area of almost 500 kilometer which observed serious Tsunami-
damages caused by Great East Japan Earthquake in 2011 (from
Aomori to Fukushima prefecture). We have recorded about 40
terabytes of image data so far.
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Figure 2 describes the overview of 4-dimensional city mod-
eling using vehicular imagery. The image archival activity has
been periodically recording the scenes of the cities in the tsunami-
damaged areas. From the periodical observation, the 4D model-
ing method detects scene change, and estimates city-scale and
regional-scale temporal changes. The simplest method for es-
timating temporal change is to directly differentiate results of
three dimensional reconstruction. However, to estimate temporal
changes of regional-scale area using vehicular imagery, there are
challenges to overcome. First, vehicle-mounted camera only cap-
tures the scene alongside street. The limited view points causes
the depth ambiguity and makes it difficult to densely reconstruct
the 3D structure of the scene. Second, vehicle image cannot cover
occluded areas and unreachable areas. A single vehicle image
has limited physical range. Third, regional-scale change detec-
tion requires too much computational resources since one city
has several thousands to several tens of thousands of image pairs,
especially for 3D reconstruction and pixel-level registration.

The strategy for this paper to overcome these challenges is as
follows. First, the proposed method roughly but quickly detects
2D scene change of entire areas from an image pair. Next, the
method detects accurate structural change where detailed analy-
sis is necessary. Finally, the method estimate city-scale tempo-
ral change. This paper proposes a novel method for 2D change
detection, structural change detection and city-scale land surface
condition analysis.

Section 2 Digital Image Archive of Tsunami-damaged Area
This section describes the image dataset built for studying 4D city
modeling. The archival process started since about one month
after the Japan earthquake of March 11, 2011, and accumulated
about 40 TB of data. The proposed methods estimate the recovery
process of the tsunami-damaged area using this image dataset.

Section 3 Three-dimensional Reconstruction As preliminary
study, this section shows the results of sparse and dense 3D recon-
structions. For sparse reconstruction, a standard Structure from
Motion (SfM) is performed which is extended to omnidirectional
image. Using the camera poses of the SfM, Patch-based Multi-
view Stereo (PMVS2) [15] generates dense city-models. Further-
more, this section shows the result of temporal change detection
that naively compares the reconstructed structure over time. The
results show that the naive method is not enough to understand
the detail of city condition. To overcome this challenge, this pa-
per proposes the following three methods for 4D city modeling.

Section 4 2D Change Detection This section describes the
method to detect 2D scene changes from an image pair using
grid feature. Several previous approaches of change detection
require 3D model of a scene and pixel-level registration between
different time images. In the case that 3D model is not avail-
able, it is difficult to directly apply the previous methods to the
change detection problem. Furthermore, it is computationally
prohibitive to estimate scene change of wide area using 3D model
and pixel-level registration. The proposed method can detect
scene change without pixel-level registration integrating convo-
lutional neural network (CNN) feature with superpixel segmen-
tation. The method can reduce the computational time and detect
change of entire tsunami-damaged areas. The experimental re-

sults show that the proposed method effectively integrates high
discrimination of CNN feature and accurate segmentation of su-
perpixel.

Section 5 3D Change Detection This section describes a
method for detecting temporal changes of the three-dimensional
structure of an outdoor scene from its multi-view images captured
at two separate times. The method estimates scene structures
probabilistically, not deterministically, and based on their esti-
mates, the method evaluates the probability of structural changes
in the scene, where the inputs are the similarity of the local image
patches among the multi-view images. The proposed method is
compared to the approach that use multi-view stereo (MVS) to re-
construct the scene structures of the two time points and then dif-
ferentiate them to detect changes. The experimental results show
that the proposed method outperforms MVS-based methods.

Section 6 Land Surface Condition Analysis This section
presents a unified framework for robustly integrating image data
taken at vastly different viewpoints to generate large-scale es-
timates of land surface conditions. To validate the proposed
approach, this study attempts to estimate the amount of post-
tsunami damage over the entire city of Kamaishi, Iwate Prefec-
ture (over 4 million square-meters). The results show that the pro-
posed approach can effectively integrate both micro and macro-
level images, along with other forms of meta-data, to effectively
estimate city-scale phenomena. Experiments evaluate the pro-
posed approach on two modes of land condition analysis, namely,
city-scale debris and greenery estimation, to show the ability of
the proposed method to generalize to a diverse set of estimation
tasks.

Section 7 Conclusion The paper concludes with a summary,
and discusses a consideration of future extensions of this work,
including open and remaining questions.

1.1 Related Work
This section will review the previous work relevant to un-

derstanding 4-dimensional city modeling in terms of temporal
change detection and city-scale analysis.
1.1.1 City Modeling

The problem of measuring and documenting a city is the ob-
jective of photogrammetry, remote sensing and computer vision
community [6], [17], [23], [47], [48]. City modeling is, for ex-
ample, 3D reconstruction, land-use mapping and scene change
estimation. There are many input data types to reconstruct a city
other than image, for example, light detection and ranging (Li-
DAR), digital elevation map (DEM), digital terrain model (DTM)
and digital surface model (DSM). The followings focus on auto-
matic methods using image and LiDAR. For the method using
other data sources and interactive methods, please refer to the pa-
per [37].

There are multiple types of devices to measure a city, for ex-
ample, digital camera and LiDAR mounted on mobile devices or
systems such as smartphone, vehicle, UAV, airplane and satellite.
Snavely et al. propose a method to reconstruct an entire city us-
ing unstructured images which were captured from a variety of
view points using mobile devices and uploaded on the Internet
[1]. Pollefeys et al. proposed an approach for dense 3D recon-

2ⓒ 2015 Information Processing Society of Japan

Vol.2015-CVIM-197 No.35
2015/5/19



IPSJ SIG Technical Report

struction from unregistered Internet-scale photo collections with
about 3 million of images within the span of a day on a single PC
[14]. Furthermore, Pollefeys developed a system for automatic,
georegistered, real-time 3D reconstruction from video of urban
scenes [40].

Poullis and You proposed a method for massive city-scale re-
construction using imagery and LiDAR [44]. This system au-
tomatically creates lightweight, watertight polygonal 3D models
from LiDAR data captured by an airborne scanner[41], [42], [43],
[44]. The technique is based on the statistical analysis of the geo-
metric properties of the data, which makes no particular assump-
tions about the input data. Zhou and Neumann proposed a simi-
lar approach [69], [70]. Lafarge and Mallet developed a method
for modeling cities from 3D-point data providing a more com-
plete description than existing approaches by reconstructing si-
multaneously buildings, trees and topologically complex grounds
[28], [29]. Cabezas et al. proposed an integrated probabilistic
model for multimodal fusion of aerial imagery [4], LiDAR data
and GPS measurements. The model of their method allows for
analysis and dense reconstruction (in terms of both geometry and
appearance) of large 3D scenes. One of its advantages is that it
explicitly models uncertainty and allows for missing data. This
work takes the advantages of the city modeling methods.
1.1.2 Temporal Change Detection

Many researchers have worked on temporal change detection
of a scene. However, most of them consider the detection of 2D
changes (i.e., those only in image appearance), whereas the ob-
jective of this study is to detect changes in 3D structure of scenes.

The standard problem formulation of 2D change detection
[39], [45] is an appearance model of a scene is learned using
its n images and then based on n + 1st image, it is determined
whether a significant change has occurred. Most of the studies
of 3D change detection [8], [24], [25], [39], [58] follow a simi-
lar formulation; namely, a model of the scene in a “steady state”
is built and a newly-captured image(s) is compared against it to
detect changes.

In [39], targeting at aerial images capturing a ground scene,
Pollard and Mundy proposed a method that learns a voxel-based
appearance model of a 3D scene from its 20–40 images. Crispell
et al. later improved method to minimize storage space is pre-
sented in [8]. In [25], Ibrahim and David proposed a method
that detects scene changes by estimating the appearance or dis-
appearance of line segments in space. All of these studies create
an appearance model of the target scene from a sufficiently large
number of images, unfortunately, this approach does not work
due to lack of images. Such an approach is appropriate for aerial
or satellite imagery or the case of stationary cameras, but is not
appropriate for the images taken in our setting.

The alternative approach is to obtain a 3D model of the scene
from other sensors or methods than the images used for the
change detection. In [24], assuming that the 3D model of a build-
ing is given, the edges extracted in its aerial images are matched
with the projection of the 3D model to detect changes. The recent
study of Taneja et al. [58] is of the same type. Their method de-
tects temporal changes of a scene from its multi-view images, and
thus it is close to ours from an application point of view. How-

ever, their motivation is to minimize the cost needed for updating
the 3D model of a large urban area, and thus, they assume that a
dense 3D model of the target scene is given.

The proposed method in this paper differs from all of the above
in the formulation of the problem. In the proposed formulation,
the changes of a scene are detected from two sets of images taken
at two different time points. The two image sets are “symmetric”
in a sense that they have similar sizes and are of the same nature.
The proposed method does not assume that a dense 3D model of
the scene is given, or created from the input images themselves,
as it is difficult for the images captured from a ground vehicle-
mounted camera. If the dense model is required, it is necessary to
have a large number of multi-view images captured from a vari-
ety of viewpoints [1], [7], [40], [54], [67], [68], or to use a range
sensor.

In the sense that the input data are symmetric, the proposed
method might be close to the study of Schindler and Dellaert [52].
They propose a method that uses a large number of images of a
city that are taken over several decades to perform several types
of temporal inferences, such as estimating when each building in
the city was constructed. However, besides the necessity for a
large number of images, their method represents scene changes
only in the form of point clouds associated with image features.
1.1.3 City-scale Surface Condition Analysis

There has been significant advances in the state-of-the-art tech-
niques for quantitative geometric interpretations of large-scale
city scenes. Methods for city-scale 3D reconstruction have been
proposed using thousands of images gathered from Internet im-
ages [1], [54]. Similar techniques have been proposed for images
captured by a vehicle-mounted camera [40], [61] or aerial im-
ages [33], [57], [66]. Street-view images have also been com-
bined with aerial images for the purpose of improving 3D re-
construction, where 3D point clouds have been projected to the
ground plane and aligned with edges of buildings detected from
aerial images [26] or building maps [56]. There has also been
work using aerial and street view images taken several months or
decades apart [24], [39], [45], [52], [59] to understand temporal
changes of a scene. The focus of these previous approaches are
on a quantitative geometric interpretation of the scene where lo-
cal visual features are matched directly to estimate camera pose
using epipolar geometry [20]. This work aims to push beyond a
purely geometric understanding of the scene towards a more qual-
itative understanding of city conditions. For instance, the aim is
not only to estimate the 3D geometry of a building but also the
condition of the building or the condition of the ground surround-
ing a building.

There also has been work focused on the qualitative estima-
tion of land condition over large-scale environments. In the field
of remote sensing, coarse land surface conditions have been es-
timated using aerial color images, aerial infrared light and aerial
microwave sensing [31], [35], [36], [53], [64], [65]. Color aerial
images have been applied to land condition estimation for vege-
tation monitoring [3], [10], [18], land cover mapping, and flood
risk and damage assessment [22], [63]. For example, forest maps
[16], [19], [55] are an important source of information for moni-
toring and reducing deforestation, allowing environmental scien-
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tists to know how forested areas increase or decrease in over the
entire earth.

Apart from aerial imaging using color cameras, many other
modes of sensing have been proposed for estimating coarse large-
scale land surface conditions. Digital elevation map (DEM)
[16], Spectroradiometer (MODIS), high resolution radiometer
(AVHRR) and Synthetic Aperture Radar (SAR) have been pro-
posed to improve accuracy of estimating large-scale land surface
condition. However the resolution of satellite-mounted MODIS
and AVHRR only measure surface conditions over a very rough
resolution – typically over a cell size of a several hundred meters.
As such, these works do not utilize street-level sensing which are
too detailed for their estimation task. However, this work aims at
estimating land conditions on a cell size closer to 20 meters wide.

The proposed work fills a void between detailed geometric re-
constructions of city-scale structures and coarse qualitative es-
timation of land conditions. The proposed method uses known
techniques to provide an accurate geometric model of the city and
use state-of-the-art object recognition results carefully registered
to the scene geometry to understand the qualitative conditions of
the entire city.

2. Tsunami Damage Archive
This chapter discusses about the detail of the image dataset

used in this research. We have been recording images in tsunami-
devastated areas using a vehicle mounted camera since about
one month after the earthquake. This image dataset consists of
city-scale street-view images of different times. This research
proposed some methods estimating city-condition and temporal
change from the dataset.

2.1 Image Acquisition
Since about one month after the earthquake, we started record-

ing the damages and recoveries of these areas mainly using a
vehicle-mounted omni-directional camera (Fig. 3).

The image archive activity is periodically acquiring the im-
ages of the tsunami-devastated areas in the northern-east coast
of Japan. The images are captured by a vehicle having an omni-
directional camera (Ladybug3 of Point Grey Research Inc.) on its
roof. An image is captured at about every 2m on each city street
to maintain the running speed of the vehicle under the constraint
of the frame rate of the camera.
2.1.1 Measurement Vehicle

Figure 3 shows our measurement vehicle which mounts an
omni-directional camera (Ladybug3 or Ladybug5 of Point Grey
Research Inc.) and a receiver of Differential Global Positioning
System (DGPS) (R100 of Hemisphere Inc.). A Ladybug cam-
era has six CCD image sensors. Figure 4 shows image of each
camera of Ladybug. Using these raw images, computational pho-
tography method can generate omnidirectional panoramic image,
perspective image of arbitrary view-direction and image of dome
projection. In this research, Structure from Motion (SfM) uses the
panoramic image and recognition methods use perspective image.
Our approach uses perspective image cropped in the left or right
direction since images in the left and right direction have rich in-
formation of city scene.

GPS	


Ladybug3	


Fig. 3 Measurement vehicle equipping an omnidirectional camera (Lady-
bug 3) and GPS.

Fig. 4 Images of each camera of a Ladybug camera.

2.1.2 Measured area
Figure 5 shows the measured area period of this image archive

activity. In the first one month, this activity mostly covered the
entire devastated areas across the three prefectures whose total
length is almost 400 kilometers. Figure 6 shows periodically
measured area in Kamaishi. The color line shows a trajectory
of our measurement vehicle. Different color shows different time
data. The blue circles show the area where ordinary people could
enter because of recovery operations one year after the tsunami.
It takes about two weeks to measure the entire devastated areas
across the three prefectures. We have gotten about 40 terabytes
of image data until December, 2014.

This image archive activity is different from similar activities
conducted by other parties such as Google Inc. in that the goal of
this activity is to record the temporal changes of these areas and
thus we have been periodically recorded these areas.

2.2 Temporal changes
Figure 7 shows the examples of panoramic images which we

periodically captured in the tsunami-devastated areas. It is pos-
sible to understand from these images that there are temporal
changes. For example, big damages due to tsunami and recov-
ery operations. However, it is not easy to understand damage and
recovery process of an entire city only by looking at these im-
ages. Furthermore, these images have differences of viewpoint
and illumination condition between different time data. The pro-
posed method of this paper enables it to automatically estimate
and visualize temporal change of an entire city using street-view
images and other metadata.

3. 3D Reconstruction
This section explains methods to reconstruct three-dimensional

structure of a scene using a sequence of omnidirectional
panoramic images and to estimate temporal changes using the
reconstruction results.

The simplest baseline for estimating temporal change is to di-
rectly differentiate results of three dimensional reconstruction. To
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April – May, 2011
July – September, 2011

September – December, 2011 January - , 2012

500km

Fig. 5 Area and period of our image archive activity.

Fig. 6 Measured area in Kamaishi. The lines show the trajectories of the
measurement vehicle. Different color shows different time data.

Otsuchi, Iwate Rikuzentakata, Iwate

April April

July July

November January

Otsuchi, Iwate Rikuzentakata, Iwate

April April

July July

January September

Fig. 7 Example of temporal changes in tsunami-devastated areas.

differentiate different time data, it is necessary to align the data in
a common coordinate. Later, section 5 compares this baseline
against the proposed approach.

3.1 Structure from Motion
Structure from Motion (SfM) is a general method to estimate

Fig. 8 Example of city-scale 3D reconstruction (April, 2011, Kamaishi,
Iwate). This result consists of one thousand omnidirectional images.

camera pose using images [1], [40]. As mentioned in section 2,
the image archive activity is capturing sequential omnidirectional
images in tsunami-devastated areas. Hence, in this paper, SfM
estimates camera pose using 360 degrees field of view panoramic
images [61].

The method is summarized as follows:
(1) Feature points are extracted with the Speed Up Robust Fea-

ture (SURF) [2] and tentative matching is obtained for two
consecutive images using the descriptors of these feature
points.

(2) Essential matrices are calculated with the five point algo-
rithm [38]. At that time, mismatches of feature points are
rejected using Random Sample Consensus (RANSAC) [12].

(3) Camera poses and positions of feature points are calculated
using those essential matrices.

(4) Camera poses and position of 3D points are optimized to
minimize reprojection errors of feature points.

3D point clouds of which each point has an image descriptors is
generated through (1)-(4) processes.

Figure 8 shows a result of city-scale three-dimensional re-
construction using one thousand omnidirectional images (April,
2011, Kamaishi, Iwate). Red line shows trajectories of a camera
(i.e. our measurement vehicle). The point clouds show structural
objects, such as building, telegraph pole, and tree. This recon-
struction result shows the structure of the entire city. However,
it is not easy to understand the detail of the structure due to the
sparseness of feature points.

The left of figure 9 shows reconstruction results consisting of
sparse feature points using images captured at a same location
in July, 2011. The right of figure 9 show dense reconstruction
results using Patch-based Multi-view Stereo (PMVS2) [15] cor-
responding to the left of Fig. 9. The sparse reconstruction results
represent the entire shape of the street well. And the dense recon-
struction results using PMVS2 represents the detail of the scenes
well although they have some lacks of the structures, especially
for texture-less area. However, it is difficult to understand the de-
tails of the scenes using the sparse results, and, regional-scale 3D
reconstruction requires too much computational resources since
one city has several thousands to several tens of thousands of
image. basically, dense reconstruction methods consume much
computational resources.

3.2 Baseline Method for Temporal Change Detection
Baseline method for temporal change detection is to directly

compare three dimensional structures of different times. In this
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Fig. 9 Example of dense 3D reconstruction scene using sparse feature points (left) and PMVS2 (right)
(July, 2011, Rikuzentakata, Iwate).

Fig. 10 A scene of change detection using sparse feature points (left) and dense 3D points of PMVS2
(right) comparing April, 2011 and July, 2011, Rikuzentakata, Iwate. Red, blue and yellow show
disappearance, appearance and no-change, respectively.

section, as a baseline of temporal change detection, results of
temporal change detection based on point clouds are shown.

To differentiate different time structure, it is necessary to reg-
ister different time data in the common coordinate. The detail
of our registration method is described in sec. 5.1. The sum-
mary of the method is as follows. First, SfM is performed in-
dependently for each sequence. Next, the two reconstructions
are roughly aligned with a similarity transform using RANSAC
[13]. Finally, bundle adjustment is performed for the extended
SfM problem, in which the sum of the reprojection errors for all
the correspondences is minimized.

After the alignment, temporal changes is detected by differen-
tiating the two reconstruction. For the change detection based on
point clouds, it is necessary to consider difference of point den-
sities because point density reconstructed using SfM is basically
in inverse proportional to distances from cameras. Hence, first,
the method of this paper calculates the average distance dsame be-
tween the point and the nearest N points of the same time data,
and the average distance ddiff between the point and the nearest N
points of the other time data. The point is labeled as ”Change” if
ddiff > 2dsame , ”Not Change” otherwise. If the point is observed
in only old or new data, the point is labeled as ”Dissapeared” and
”Appeared”, respectively.

The left of figure 10 shows the results of change detection com-
paring sparse reconstruction results of April, 2011 and July, 2011,
Rikuzentakata, Iwate. Red, blue and yellow show disappearance,
appearance and no-change, respectively. These figures show im-
portant changes of the scene, for example, debris along the street

were removed (red), and telegraph poles were built (blue) in an
early stage of the recovery operation. Some ground areas are la-
beled as ”Appeared” because those areas are occluded by debris
in the images of April.

The right of figure 10 show the results of change detection
comparing dense reconstruction results using PMVS2. The re-
sults of change detection using dense reconstructions show the
detail of the changes well, especially for texture-less areas (e.g.
building wall, the ground).

However, even dense change detection results have some miss-
ing parts due to the ambiguity of the estimated scene depth. For
getting accurate shape of a scene change, it is necessary to max-
imize the usage of image information. Our probabilistic method
of change detection is explained in Sec. 5.

4. 2D Change Detection
This section considers a problem of detecting scene change

from a pair of images taken at different time. The goal behind
this study is to estimate city-scale scene change of relatively short
term due to disaster, for example, earthquake and tsunami. Un-
derstanding of scene change only by driving a vehicle is effective
for disaster reduction, quick recovery and restoration.

However, there are some challenges for estimating scene
change using vehicular imagery due to the differences of cam-
era view points, illumination condition, photographing condition,
sky (e.g. cloud) and ground (e.g. dust on the road) between dif-
ferent time images. It is necessary to develop a change detection
method robust for these difficulties.
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Input image (database)

Ground-truth superimposed on input image (query)

Change estimation (binarized)

Fig. 11 Results of change detection using pool-5 feature of CNN (Frame
No. 0 of 20).

Some previous approaches of change detection assume either
or both a 3D model of a scene and pixel-level registration. In
the case of wide-area disaster, it is computationally prohibitive
to reconstruct three dimensional structure of entire areas and to
estimate accurate camera pose.

We developed a novel method to detect scene change with-
out 3D model and pixel-level registration integrating convolu-
tional neural network (CNN) feature with superpixel segmenta-
tion. First, the proposed method roughly but quickly estimates
scene change of entire areas from image pairs which are aligned
using Global Positioning System (GPS) data. Next, the method
described in section 5 estimates structural scene change of the ar-
eas where detailed analysis is necessary. These two steps enable
us to quickly and accurately estimate scene change of wide-area.

Figures 11 and 12 show examples of the results of the 2D
change detection. It is observed from them that the proposed
method was able to correctly detect the scene changes, for ex-
ample, demolished and new buildings, cars and debris.

5. 3D Change Detection
This section describes a method for detecting temporal changes

of the three-dimensional structure of an outdoor scene from its
multi-view images captured at two separate times [50]. The
proposed method detects accurate structural change of the areas
where the result of 2D change detection requests detailed analy-
sis. The method estimates scene structures probabilistically, not
deterministically, and based on their estimates, it evaluates the
probability of structural changes in the scene, where the inputs
are the similarity of the local image patches among the multi-view
images. The aim of the probabilistic treatment is to maximize the
accuracy of change detection, behind which there is our conjec-
ture that although it is difficult to estimate the scene structures
deterministically, it should be easier to detect their changes. The
proposed method is compared with the methods that use multi-

Input image (database)

Ground-truth superimposed on input image (query)

Change estimation (binarized)

Fig. 12 Results of change detection using pool-5 feature of CNN (Frame
No. 1 of 20).

view stereo (MVS) to reconstruct the scene structures of the two
time points and then differentiate them to detect changes. The
experimental results show that the proposed method outperforms
such MVS-based methods.

5.1 From image acquisition to change detection
As mentioned earlier, we have been periodically acquiring the

images of the tsunami-devastated areas in the northern-east coast
of Japan. The images are captured by a vehicle having an omni-
directional camera (Ladybug3 or Ladybug5 of Point Grey Re-
search Inc.) on its roof. An image is captured at about every 2m
on each city street to minimize the total size of the data as well as
to maintain the running speed of the vehicle under the constraint
of the frame rate of the camera.

The goal of the present study is to detect the temporal changes
of a scene from its images thus obtained at two separate times.
Figure 13 shows how the input images are processed. For com-
putational simplicity, our algorithm for change detection takes as
inputs not the omni-directional images but the perspective im-
ages cropped from them. The algorithm also needs the relative
camera poses of these images. To obtain them, we perform SfM
for each sequence followed by registration of the two reconstruc-
tions, which are summarized below.

The algorithm shown in the next section uses only several per-
spective images to detect changes of a scene. For the reason of
accuracy, however, to obtain their camera poses, we perform SfM
and registration not with these perspective images alone but with
a more number (e.g., 100 viewpoints) of omni-directional images
that contain these viewpoints. To be specific, we do this in the fol-
lowing two steps. First, we perform SfM independently for each
sequence. We employ a standard SfM method [20], [34], [62]
with extensions to deal with omni-directional images [61]. Next,
we register the two 3D reconstructions thus obtained as follows.
We first roughly align the two reconstructions with a similar-
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Fig. 13 Data flow diagram.

(a) (b)

Fig. 14 Registration of 3D reconstructions from two image sequences taken
at different times. (a) Initial estimate. (b) Final result.

ity transform; putative matches of the feature points are estab-
lished between the two sequences based on their descriptor sim-
ilarity, for which RANSAC is performed [13]. For the aligned
reconstructions, we reestablish the correspondences of feature
points by incorporating a distance constraint. Using the newly
established correspondences along with original correspondences
within each sequence, we perform bundle adjustment for the ex-
tended SfM problem, in which the sum of the reprojection errors
for all the correspondences is minimized. Figure 14(a) shows the
initial rough alignment of the two reconstructions and (b) shows
the final result.

5.2 Detection of temporal changes of a scene
5.2.1 Problem

Applying the above methods to two sequences of omni-
directional images, we have the camera pose of each image repre-
sented in the same 3D space. Choosing a portion of the scene for
which we want to detect changes, we crop and warp the original
images to have two sets of perspective images covering the scene
portion just enough, as shown in Fig. 15. In this section, we con-
sider the problem of detecting scene changes from these two sets
of multi-view perspective images. For simplicity of explanation,
we mainly consider the minimal case where there are two images
in each set.
5.2.2 Outline of the proposed method

We denote the first set of images of time t by I = {I1, I2} and
the second set of time t′ by I′ = {I′1, I′2}. As shown in Fig. 16, one
of the two image sets, I, is used for estimating the depths of the
scene, and the other image set I′ is used for estimating changes
of the scene depths. (These may be swapped.) Choosing one im-
age from I, say I1, which we call a key frame here, the proposed
method considers the scene depth at each pixel of I1 and estimates
whether or not it changes from t to t′. The output of the method
is the probability of a depth change at each pixel of I1.

For the first image set I1, its images are used to estimate the
depth map of the scene at t. To be specific, not the value of the
depth d but its probabilistic density p(d) is estimated. For the

Fig. 15 Geometry of two sets of multi-view perspective images taken at dif-
ferent times. For each pixel x1 of I1, the probability that the scene
depth has changed is estimated.

Depth density

t

t’

Probability of depth change at x1

x1

I1 I2

I1’ I2’

Fig. 16 Outline of the proposed method. The probability density of the
scene depth at a point x1 of I1 is estimated from I1 and I2. This is
combined with the comparison of the local patches of I′1 and I′2 to
estimate the probability that the scene depth changes at x1 between
t and t′. Note that the patches are compared only among the images
taken at the same time. The broken lines in the images indicate
epipolar lines associated with x1.

other set I′, a spatial point having depth d at a certain pixel of the
key frame I1 is projected onto I′1 and I′2, respectively, as shown
in Fig. 15, and then the similarity s′d of the local patches around
these two points is computed. The higher the similarity is, the
more the spatial point is likely to belong to the surface of some
object in the scene at t′, and the inverse is true as well. The sim-
ilarity s′d is computed for each depth d, which gives a density
function of d that is similar to p(d).

By combining these two estimates, p(d), and s′d, the proposed
method calculates the probability of a depth change. In this pro-
cess, the change probability evaluated for each depth d is inte-
grated over d to yield the overall probability of a depth change.
This makes it unnecessary to explicitly determine the scene depth
neither at t nor t′. This is a central idea of the proposed method.

It should also be noted that our method evaluate the patch sim-
ilarity only within each image set of I1 and I2. This makes it
free from the illumination changes between the time points of the
image capture.

5.3 Experimental results
We conducted several experiments to examine the performance

of the proposed method. For the experiments, we chose a few
scenes and their images from our archives mentioned in Sec.2.
The chosen images are taken at one and four months after the
tsunami*1. Typically, a lot of tsunami debris appear in the ear-

*1 The data used in this study (the omni-directional image sequences of the
chosen streets and our estimates of their camera poses) are available from
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lier images, whereas they disappear in the later ones because of
recovery operations. We wish to correctly identify their disap-
pearance in the later images.

The proposed method uses two or more images for each time.
In the experiment, we use four images of consecutive viewpoints
for each time, i.e., three pairs of images. These are perspective
images (cropped from omni-directional images) of 640 × 480
pixel size. The disparity space is discretized into 128 blocks
(n = 128). Assuming that there is no prior on the probability
of scene changes, we set p(c = 1) = 0.5. It is noted, though, that
in the experiments, the results are very robust to the choice of this
value. These are fixed for all the experiments.
5.3.1 Compared methods

We compared our method with MVS-based ones, which first
reconstruct the structures of a scene based on MVS and differen-
tiate them to obtain scene changes. We consider two MVS algo-
rithms for 3D reconstruction, PMVS2 [15] and a standard stereo
matching algorithm for it.

In the former case, PMVS2 is applied to a sufficiently long se-
quence of images (e.g., 100 viewpoints) covering the target scene.
Our omni-directional camera consists of six cameras and records
six perspective images at each viewpoint. All these six images
per viewpoint are inputted to PMVS2 after distortion correction.
PMVS2 outputs point clouds, from which we create a depth map
viewed from the key frame. This is done by projecting the points
onto the image plane in such a way that each point occupies an
image area of 7 × 7 pixels. Two depth maps are created for the
two time points and are differentiated to obtain scene changes.
We call the overall procedure PMVS2.

In the latter case, a standard stereo matching algorithm is used,
in which a MRF model is assumed that is defined on the four-
connected grid graph; the local image similarity is used for the
data term and a truncated l1 norm fi j = max(|di − d j|, dmax/10) is
used for the smoothness term. We use two types of similarity; one
is the SAD-based one that is used in our method, and the other is
the distance between SIFT descriptors at the corresponding points
[60]. Then, the optimization of the resulting MRF models is per-
formed using graph cuts [27]. Similarly to the above, two depth
maps are computed and are differentiated to obtain scene changes.
We call these procedures patch-MVS and SIFT-MVS.
5.3.2 Comparison of the results

Figure 17 shows the results for a scene. From left to right
columns, the input images with a hand-marked ground truth, the
results of the proposed method, PMVS2, Patch-MVS, and SIFT-
MVS, respectively. For the proposed method, besides the de-
tected changes, the change probability p(c = 1| · · · ) is shown as
a grey-scale image; its binarized version by a threshold p > 0.5
gives the result of change detection. For each of the MVS-based
methods, besides the result, two estimated depths maps for the
different times are shown. The detection result is their differ-
ences. Whether the scene changes or not is judged by whether
the difference in its disparity is greater than a threshold. We chose
6 (disparity ranges in [0 : 127]) for the threshold, as it achieves
the best results in the experiments. The red patches in the depth

our web site: http://www.vision.is.tohoku.ac.jp/us/download/.

maps of PMVS2 indicate that there is no reconstructed point in
the space.

Comparing the result of the proposed method with the ground
truth, it is seen that the proposed method can correctly detect
the scene changes, i.e., the disappearance of the debris and the
digger; the shape of the digger arm is extracted very accurately.
There are also some differences. The proposed method cannot de-
tect the disappearance of the building behind the digger and of the
thin layer of sands on the ground surface. The former is consid-
ered to be because the building is occluded by the digger in other
viewpoints. The proposed method does not have a mechanism
of explicitly dealing with occlusions but using multiple pairs of
images, which will inevitably yield some errors. For the layer of
sands, its structural difference might be too small for the proposed
method to detect it.

The results of the MVS-based methods are all less accurate
than the proposed method. As these methods differentiate the two
depth maps, a slight reconstruction error in each will results in a
false positive. Thus, even though their estimated depths appear
to capture the scene structure mostly well, the estimated scene
changes tends to be worse than the impression we have for each
depth map alone.

There are in general several causes of errors in MVS-based
depth estimation. For example, MVS is vulnerable to objects
without textures (e.g., the ground surface in this scene). PMVS2
does not reconstruct objects that do not have reliable observa-
tions, e.g., textureless objects. As the proposed method similarly
obtains depth information from image similarity, the same diffi-
culties will have bad influence on the proposed method. However,
it will be minimized by the probabilistic treatment of the depth
map; taking all probabilities into account, the proposed method
makes a binary decision as to whether a scene point changes or
not.

We obtain precision and recall for each result using the ground
truth and then calculate its F1 score; it is 0.76, 0.59, 0.53, 0.71,
in the order of Fig. 17, respectively.

Figure 18 shows results for other images. From top to bottom
rows, I′, the ground truths, the results of the proposed method,
and those of SIFT-MVS are shown, respectively. It is seen that the
proposed method produces better results for all the images. This
is quantitatively confirmed by their F1 scores which are shown in
Table 1.

6. Land Surface Condition Analysis
This section presents a unified framework for robustly integrat-

ing image data taken at vastly different viewpoints to generate
large-scale estimates of land surface conditions [51]. The previ-
ous sections proposed the 2D and 3D change detection methods.
The method proposed in this section estimates change of debris
distribution in a city based on object recognition. For recovery
operation in tsunami-damaged area, it is essential to make it pos-
sible to understand debris distribution in a city.

Automated visual analysis is an effective method for under-
standing changes in natural phenomena over massive city-scale
landscapes. However, the view-point spectrum across which im-
age data can be acquired is extremely wide, ranging from macro-
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Fig. 17 Results of the proposed method and the three MVS-based ones for a scene. From left to right
columns, the input images and the ground truth, the results of the proposed methods, and those of
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Fig. 18 Results for other images. From top to bottom rows, I′, hand-marked ground truths, results of the
proposed method, and those of SIFT-MVS.

Table 1 F1 scores of the detected changes shown in Fig. 18.

(a) (b) (c) (d) (e) (f) (g) Average
Proposed 0.88 0.67 0.77 0.85 0.82 0.91 0.92 0.83
PMVS2 0.49 0.30 0.65 0.66 0.56 0.58 0.66 0.56
Patch-MVS 0.66 0.28 0.69 0.60 0.70 0.65 0.77 0.62
SIFT-MVS 0.68 0.41 0.73 0.71 0.60 0.67 0.73 0.65

level overhead (aerial) images spanning several kilometers to
micro-level front-parallel (street-view) images that might only
span a few meters. To validate the proposed approach this study
attempt to estimate the amount of post-tsunami damage over the
entire city of Kamaishi, Japan (over 4 million square-meters).
The results show that the proposed approach can efficiently inte-
grate both micro and macro-level images, along with other forms
of meta-data, to efficiently estimate city-scale phenomena. Ex-

periments evaluate the proposed approach on two modes of land
condition analysis, namely, city-scale debris and greenery esti-
mation, to show the ability of the proposed method to generalize
to a diverse set of estimation tasks.

6.1 Motivation
We address the task of estimating large-scale land surface con-

ditions using overhead aerial (macro-level) images and street
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Fig. 19 Aerial images affected by weather condition (Left: March 11, 2011,
Right: March 31, 2011). The land surface might be covered by
clouds and illumination conditions change drastically in aerial im-
age.

view (micro-level) images. These two types of images are cap-
tured from orthogonal viewpoints and have different resolutions,
thus conveying very different types of information that can be
used in a complementary way. Moreover, their integration is nec-
essary to make it possible to accurately understand changes in
natural phenomena over massive city-scale landscapes.

Aerial images are an excellent source for collecting wide-area
information of land surface conditions. However, it may come at
the cost of a lower resolution (i.e., number of pixels per meter)
and visiiblity may drastically change depending on the weather.
For example, clouds may obscure the visibility of the land sur-
face (Fig. 19). A more important limitation of aerial images is
that they are limited to a vertical (top-down) perspective of the
ground surface, such that areas occluded by a roof or highway
overpass are not visible to the camera (first and second row of
Fig. 20) making it difficult to estimate land conditions in covered
areas.

Street-view images, on the other hand, captured from the
ground-level can obtain higher resolution images of vertical
structures and have better access to information about covered
areas. They are also less affected by weather conditions. In the
same token however, street view images are constrained to the
ground plane and a single image has limited physical range. It
is also labor intensive to acquire street-level images of large land
surface areas (i.e., millions of square meters).

The key technical challenge is devising a method to integrate
these two disparate types of image data in an effective man-
ner, while leveraging the wide coverage capabilities of macro-
level images and detailed resolution of micro-level images. The
strategy proposed in the work uses macro-level imaging to learn
land condition correspondences between land regions that share
similar visual characteristics (e.g, mountains, streets, buildings,
rivers), while micro-level images are used to acquire high resolu-
tion statistics of land conditions (e.g., the amount of debris on the
ground). By combining the macro and micro level information
about region correspondences and surface conditions, our pro-
posed method generates detailed estimates of land surface condi-
tions over the entire city.

6.2 Large-scale estimation of land surface condition
Our framework integrates aerial and street-view images to es-

timate land surface conditions. In this section, we explain the
details of the proposed method contextualized for post-Tsunami
debris detection. Although the following explanation takes debris
as an example, the method is generally applicable to other types
of land surface conditions. The proposed method consists of the

Fig. 20 Example aerial and street-view images. There are many cases in
which aerial images and street-view images give complementary
information about the land surface condition. For example, the ar-
eas covered by the building roof (the top and second row), stacked
objects (the bottom row) are best viewed from the street.

StreetStreetStreetStreet----view imageview imageview imageview image

Estimation of land surface condition

Debris probability Registration & Projection

AAAAerial imageerial imageerial imageerial image DEM
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Fig. 21 Data flow diagram of city-scale estimation of land surface condi-
tion. Our approach efficiently integrates both micro (street-view)
and macro-level (aerial) images along with other forms of meta-
data to estimate city-scale land surface condition.

following three steps;
(i) Debris detection on perspective street-view image.

(sec.6.2.1)
(ii) Projection of debris probabilities on street-view images to

the ground using building contours. (sec.6.2.2)
(iii) Estimation of debris over an entire city by integrating the

projection result with all other data (e.g. aerial image, DEM)
using a Gaussian process.(sec.6.2.3)

In the first step, the probability map of debris is calculated for
each street-view image. Then, using the camera parameters for
the street-view image, the probability map is projected onto the
ground plane registered to a corresponding part of the aerial im-
age. This projection method takes the existence of building walls
into consideration. Finally in order to complement the estimation
results obtained from street-view images, the projected probabil-
ity map is integrated with the information obtained from aerial
images and DEM using Gaussian process regression model.
6.2.1 Debris detection

We developed a method to calculate the probability map of de-
bris (Fig. 22). The debris model is learned from a hand-labeled
training image.The debris in the images are irregular, compli-
cated in shape and appearance. Therefore, we exploit Geometric
Context [11] as geometric feature and pixel-wise object probabil-
ity [32] as an appearance feature. Geometric Context estimates
the probabilities that a super-pixel belongs to seven classes. We
chose four of the seven classes, ”ground plane”, ”sky”, ”porous
non-planar” and ”solid non-planar”, and used the probabilities of
them as debris features. The pixel-wise object probability pobject
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Fig. 22 Data flow diagram of debris detection. As features of debris, the
probabilities of geometric context, specific object recognition and
patch features are employed.

(a) Input image (b) Ground truth (c) Apperance-based (d) Detected debris

(e) Ground (f) Sky (g) Solid (h) Porous

Fig. 23 Inputs and outputs of debris detection. First rows: (a) input image.
(b) hand-labeled ground truth of debris. (c) result of specific object
recognition. (d) final result of debris detection. Second rows: prob-
ability of geometric context (e) ground plane, (f) sky, (g) solid non-
planar, (h) porous non-planar. Color denotes probability of each
class, with blue corresponding to 0 and red to 1.

is calculated using [32], Lab, HOG[9], BRIEF[5] and ORB[49].
The feature vector of debris is as follows.

x =
(
pground, psky, pporous, psolid, pobject,mpatch, vpatch

)T
, (1)

where pground, psky, pporous and psolid are the probabilities of
”ground plane”, ”sky”, ”porous non-planar” and ”solid non-
planar”, respectively. In addition to these probabilities, mean
mpatch and variance vpatch of grayscale patch (5 × 5) are added
to the features. Figure 23 shows an example of the datasets and
detection results.
6.2.2 Projection of debris probabilities onto the ground

The debris probability explained in the previous section is the
probability map on the street-view image. In order to integrate
this probability map with the aerial image, the debris probabil-
ity is projected onto the ground plane. Figure 24 shows the data
flow diagram of projection of street-view image to the coordinate
of the aerial image. The projection requires camera parameters
of each street-view image. First, we performed Structure from
Motion (SfM) to acquire the camera trajectories. We employ a
standard SfM method [20], [34], [62] with extensions to deal with
omni-directional images [61]. The estimated camera trajectories
are fitted to the GPS trajectory by similarity transformations in a
least squares sense.

Dividing the ground plane into a grid, we project the debris
probability to the grid using projection matrix of each image. In
this projection, we use the 3D models of the buildings that are
generated from a 2D map of the city (Sec. 6.3.1). To be specific,
the debris probability is projected to a building wall if the wall is
on the projection path, and otherwise it is directly projected to the
ground.
6.2.3 Integration using Gaussian Process regression

The projected debris probability map obtained up to now has
no information for some areas because of occlusions or the lack of

SfMSfMSfMSfM

Perspective ImagePerspective ImagePerspective ImagePerspective Image

Omnidirectional ImageOmnidirectional ImageOmnidirectional ImageOmnidirectional Image

Debris DetectionDebris DetectionDebris DetectionDebris Detection

ProjectionProjectionProjectionProjection

High probability 
of debris

Low probability 
of debris

Grids of the ground

GPS dataGPS dataGPS dataGPS data

Fig. 24 Data flow diagram of the projection onto the ground plane. SfM is
performed using omnidirectional street-view images. The street-
view camera poses are registered to a common coordinate with
aerial images and other forms of meta-data using the GPS data.
After debris detection, the debris probabilities are projected to the
ground plane.

street-level images. Estimating debris probability map from only
an aerial image is difficult due to its low-resolution, occlusion
or weather conditions. To mutually complement the street-view
images and the aerial image, we used a Gaussian process regres-
sion model[46]. The main idea here is that similar geographical
location tend to have similar debris probability. In the case of
Tsunami-disaster, Tsunami continuously spreads from seashore
to hill side, which means the damage caused by Tsunami has
strong correlation with the location, especially with the elevation.

6.3 Experimental results
In order to evaluate the effectiveness of our proposed approach

for estimating large-scale land conditions, we perform two exper-
iments. Our first experiment is a comprehensive ablative analysis
to examine the benefit of integrating micro and macro-level im-
agery for city-scale land condition estimation. In addition to color
imaging, we also evaluate the contributions of two other modes
of data, namely, a digital elevation map (DEM) and building oc-
cupancy maps (BOM). In our second experiment, we focus on
estimating the amount of greenery and vegetation across the en-
tire city of Kamaishi. We use the exact same approach as the
debris estimation described in this paper and apply it to greenery
estimation. Our results show that our approach is not limited to
post-disaster analysis but can easily be applied to other modes of
land condition analysis.

We created the ground truth labels used for the following eval-
uation by many hours of manual labeling of regions on the aerial
images. Ground truth data of debris and greenery were gener-
ated by visual inspection by comparing the aerial image against
the street-view images available on Google Earth. Many hours
of ground truth labeling confirms that the manual inspection of
large-scale land conditions is not a practical solution for real-
world applications.
6.3.1 Our data

Our experiment includes two image-based input modalities and
two sources of city-scale meta-data, which are described below.
Street images. We have been creating image archives of urban
and residential areas damaged by Great East Japan Earthquake in
2011. The target area is 500 kilometers long along the northern-
east coastal line in Japan. The images were captured every three
to four months by a vehicle having an omni-directional camera
(Ladybug 3 and 5 of Point Grey Research Inc.) on its roof. The
image data accumulated so far amount to about 40 terabytes. The
target of this experiment is the entire city of Kamaishi, Japan
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Fig. 25 Estimation target area in Kamaishi on March 31st, 2011 (left) and
its hand-labeled ground truth of debris area (right). White area
shows debris area.

(over 4 million square-meters). For the experiments, we chose the
two image sequences captured on April 26th, 2011 (one month
after the Tsunami) and August 17th, 2013 (two years and five
months after the Tsunami). The debris can often be seen in the
earlier images, while they tend to disappear in the later images as
the recovery operation proceeds.

The street images are used for appearance-based recognition of
‘stuff’ [21] described in Section 6.2.1. The results of pixel-wise
regression are then projected onto the ground plane as an input
feature for our city-scale GP regressor.
Aerial images We downloaded aerial images from Google Earth
for March 31st, 2011 and May 13th, 2012. We chose these dates
to match up the timestamp of the street images.

We used the aerial images for appearance-based recognition of
‘stuff’ categories using the same method describe in Section 6.2.1
but applied to the entire aerial image as a comparative baseline.
We used the aerial images of May 13th, 2012 as the labeled train-
ing data and test on the March 31st, 2011 aerial image. Figure 25
shows an example of the hand-labeled ground truth of the debris
area on the aerial images.
Digital Elevation Map (DEM). We obtained the DEM informa-
tion freely available from the Geospatial Information Authority,
under the Ministry of Land, Infrastructure, Transportation and
Tourism in Japan. The mesh resolution of the DEM is 5 × 5
square-meters and contains the elevation level for each grid loca-
tion. The elevation is used directly as a feature for the city-scale
GP regression.
Building Occupancy Map (BOM) The BOM provides building
contours. We obtained the data from Zenrin Company. The build-
ing contour data used for this experiment was made before the
earthquake. We used the BOM to prevent ’stuff’ from being pro-
jected onto the ground over building location.
6.3.2 Ablative Analysis

We examine the effects of each input data type on the overall
performance of our proposed approach. Figure 26 shows the es-
timation results of the debris amounts in the entire city on April
26th, 2011 and August 17th, 2013. The lines on the aerial images
are the camera trajectories. Figure 27 shows the performance
of our debris detection by PR-plot and F1-score using different
combination of input data. The results indicate that using aerial
images alone yields low performance because the appearance of
land conditions can change significantly over time due to changes
in imaging conditions. When compared to the independent use of
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Fig. 27 Precision-recall curve of the debris area detection whose ground
truth is Fig. 25. These figures show that the integration of street-
view image with aerial image is efficient to estimate city-scale land
surface condition.

aerial images, our results indicate that street images are more ac-
curate for estimating city-scale debris. Furthermore, when both
aerial and street images are combined we obtain better perfor-
mance as the aerial information helps the city-scale GP regression
to generalize to across similar looking city regions.
6.3.3 Extensions to City-Scale Vegetation Estimation

We applied our method to vegetation detection, to show how
our approach can generalize to other modes of land condition
estimation. Figure 28 shows an example of vegetation estima-
tion in street-level images. The green vegetation detected in the
street-view images is estimated using the same pixel-wise object
recognition method [32].

Figure 29 shows the results of vegetation estimation for the
entire city similar to Fig.26. By observing the vegetation heat
map for the entire city, it is clear that most of the vegetation has
been washed away by the Tsunami. There is also a sharp contrast
between the wide spread distribution of debris and the lack of
vegetation in the time period directly after the Tsunami. By 2013
however, we can see a large increase in the number of regions
covered by vegetation. Our successful vegetation detection indi-
cates that our proposed method can indeed generalize to different
types of targeted estimation of city-scale land conditions.

7. Conclusion
This paper proposed the novel and practical methods for four-

dimensional city modeling using vehicular imagery. The estima-
tion target is the tsunami-damaged areas across the three prefec-
tures whose total length is almost 400 kilometers. To estimate and
visualize temporal change of the the areas, the image archive ac-
tivity started one month after Great East Japan Earthquake which
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Fig. 26 City-scale Debris Probability in Kamaishi before the recovery operation (Left: April 26th, 2011,
Right: August 17th, 2013). Color denotes probability of debris, with blue corresponding to 0 and
red to 1.

Fig. 29 City-scale Vegetation Probability in Kamaishi before the recovery operation (Left: April 26th,
2011, Right: August 17th, 2013). Color denotes probability of debris, with blue corresponding
to 0 and red to 1.

(a) Input image (b) Ground truth (c) Detected Vegetation

Fig. 28 Green vegetation detection. (a) input image. (b) hand-labeled
ground truth of green vegetation. (c) probability of green vegeta-
tion. Color denotes probability of green vegetation, with blue cor-
responding to 0 and red to 1.

caused the giant Tsunami. The Tsunami gave serious damages
to the Pacific coast area of the Tohoku. The images periodically
recorded the the scenes of the tsunami-damaged areas.

From the periodic images, this paper visualized the tsunami-
damage and recovery of the tsunami-damaged area. First, the 2D
change detection method using grid feature roughly but quickly
estimates scene change of entire areas. Next, the structural
change detection method estimates more accurate scene change
even if there is ambiguity in estimated scene depth. Finally, the
method of land surface condition analysis estimates city-scale
temporal change integrating aerial and vehicular imagery.
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The 2D method detects scene change using grid feature from an
image pair without 3D model and pixel-level registration. The ex-
perimental results show the effectiveness of the proposed method
integrating high discrimination of convolutional neural network
(CNN) feature with accurate segmentation of superpixel in 2D
change detection. As a by-product, the method can reduce the
computational time.

The structural change detection method detects temporal
changes of the three dimensional structure of an outdoor scene
from its multi-view images captured at two separate times. The
method estimates scene structures probabilistically, not determin-
istically to maximize the accuracy of change detection. The pro-
posed method is compared with the methods that use multi-view
stereo (MVS) to reconstruct the scene structures of the two time
points and then differentiate them to detect changes. The ex-
perimental results show that the proposed method outperforms
such MVS-based methods. Unlike MVS-based methods, the pro-
posed method can estimate accurate shape of the scene change
(e.g. debris) because the proposed method utilizes no prior on the
smoothness of scene structure.

The method of land surface condition analysis is a unified
framework for robustly integrating image data taken at vastly dif-
ferent viewpoints to generate large-scale estimates of land surface
conditions. The method uses macro-level imaging to learn land
condition correspondences between land regions that share sim-
ilar visual characteristics, while micro-level images are used to
acquire high resolution statistics of land conditions. The exper-
imental results show that the proposed approach can effectively
integrate both macro (aerial) and micro-level (vehicular) images,
along with other forms of meta-data, to estimate city-scale phe-
nomena. Furthermore, the proposed method can be successfully
applied to vegetation estimation. The results indicate the method
can generalize well to many kinds of applications to estimate city-
scale phenomena by replacing the detector target (e.g. human
flow, real-estate and dirt quality).

This paper achieved the objective of developing the methods
for 4D city modeling in tsunami-damaged area using vehicu-
lar imagery. As mentioned in section 1, to estimate temporal
change of regional-scale area using vehicular imagery, there are
three challenges to overcome as follows, (i) limited camera view-
point, (ii) limited physical range, (iii) large computation. The
3D change detection method makes it possible to detect struc-
tural change even if there is depth ambiguity due to the limited
camera viewpoint. The method of land surface condition analy-
sis integrates aerial and vehicular imagery and estimates change
of debris distribution for entire city. Furthermore, the 2D change
detection method can reduce the computational time and makes
it possible to process the entire tsunami-damaged areas with a
single workstation.

For future work, the three methods mentioned above can be in-
tegrated into a system which estimates temporal changes of vastly
wide area, for example, the entire tsunami-damaged areas of the
Tohoku. It is possible for all the methods to process multiple ar-
eas in parallel. If multiple computers are available, the temporal
change of the entire tsunami-damaged areas can be estimated in
a day or a few days.

If the number of sensors increases in the future (e.g. came
mounted on self-driving car), scene images of cities will be avail-
able in real-time. The real-time sensor networks can generate
real-time 3D map [30] and apply statistical analysis. The pro-
posed 4D modeling approach is fast enough to be applied to such
on-line sensory information. Combined with the real-time big
data, the proposed method can extend to real-time monitoring of
the city.
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