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Parallel Algorithms for a Class of Graph

Theoretic Problems

MA JUN,f TADAO TAKAOKATf and MA SHAOHANT

Different from the known algorithms to compute the all pair shortest paths for a weighted, directed
graph G=(V, E, COST), an O(| V|*/p) parallel algorithm running on the CREW PRAMs with p, 1
£ p<£| V]2 processors is presented, which not only computes the distance from vertex i to vertex j in
G, but also records the forward and backward shortest path trees rooted at i, i& V, of G. For any
pair i jE V, the shortest path P from i to j can be found in O(|P|) time, where |P| is the number
of edges in P. It is pointed out that the parallel algorithm can be updated properly to calculate the
transitive closure of G and some graph algorithms can be derived from above computations. The
ways to parallelize these derived graph algorithms in known parallelizing techniques are also given.

1. Introduction

Parallel algorithms are of two types, that is,
unbounded parallelism and bounded parallel-
ism. In unbounded parallelism, parallel algo-
rithms are developed assuming that arbitrarily
many processors are available in order to yield
insight into the maximum amount of parallelism
inherent in a particular problem. On the more
practical side, in bounded parallelism, the num-
ber of processors used in parallel algorithms is
limited to be independent of the size of the
problem to be solved.

Both unbounded and bounded parallel algo-
rithms for graph problems have received consid-
erable attention in the past.)~®-1219-17  For
the all pair shortest path problem (APSP) in a
weighted directed graph G=(V, E, COST), | V|
=n, Reif and Spirakis'? proposed an O(log n
log log n) time complexity with O(n®) proces-
sors parallel algorithm on CREW PRAMs.
Frieze et al.2 presented an O(log n) with O(n®)
processors algorithm on CREW PRAMs. On
bounded parallelism, Deo et al.” gave an O(n®/
p) with O(p) processors algorithm on CREW
PRAMs.

Until now, algorithms for APSP only means
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to compute the shortest distance matrix D, but
even if D is known, we can not find the shortest
path P from vertex i to j in O(|P|) time, where
|P| is the number of edges in path P.

In this paper, we reconsider the algorithms for
APSP, and propose an O(n®/p) parallel algo-
rithm for APSP running on CREW PRAMs
with p, 1£p<£n? processors, which not only
computes the shortest distance matrix D, but
also records all pair shortest paths in a matrix .S.
For any pair i, j& V, we can find the shortest
path P from i to j in O(|P|) time, where |P]| is
the number of edges in P. Moreover, we prove
that the matrix S also records the forward and
backward shortest path trees rooted at every
vertex of G. We show some graph algorithms
can be derived from D and S and give the ways
to parallelize these derived algorithms on
CREW PRAMs with p processors in known
parallelizing techniques.

2. Preliminaries

A weighted directed graph G=(V, E, COST)
is an ordered triple of the set V' of n vertices
numbered from 0 to »— 1, the set E of edges and
a function COST that maps into real numbers.
The function COST is usually given by a matrix
COST (0--n—1,0--n—1), where COST (i, j) is
the weight of the edge from vertex / to j. Here
let COST (i i)==0 and COST (i, j)=co if there
is no edge from i to j, 0Li j£n—1. A vertex
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J is said to be reachable from / if there is a
directed path from i to j. The distance D(i j)
from vertex / to j in G is the minimum of the
sums of the weights of the edges over the paths
from 7 to j, and the path corresponding to the
minimum sum is called the shortest path from /
to j. For aveV, E(v)=max{D(; v)[icV} is
called the centrifugal rate of v, and the vertex v
with the minimum centrifugal rate is called the
center of G. If G is an undirected graph, the
diameter of G is the maximum distance between
two vertices of G.

The matrix A with the property that A(i j)=
I if pair (i j)& E, 0 otherwise and 4(i, i)=1, 0
£i, j£n—1,is called the adjacency matrix of G.
The matrix 4* with the property that 4%(j, j)=
1 if there is a path of length>0 from 7 to j and
0 otherwise is the transitive closure of G.

A forward shortest path tree rooted at i of G¥
is a subtree T,(i)=(X, S) of G, such that:

(1).xe X iff x is reachable from / in G and

one of the shortest path from i to x in G
is kept in Ti(i).

(2).S is the edge set of Ti(i), S E.

A backward shortest path tree rooted at i of
G* is a subtree T,(i)=(X, S’) of G, such that:

(1).xE X iff i is reachable from x in G and

one of the shortest path from x to i in G
is kept in T,(i) but the directions of
edges are reversed.

(2).8 is the edge set of T,(i), S'C. EF Ef=

{(n Ol(x »EE}.

An example of T3(0) and T,(0) in a weighted
directed graph G is shown in Fig. 1.

The applications of the shortest path trees are
given in Ref. 4)-7).

A PRAM (parallel random access machine)
consists of a finite number p of processors
operating synchronously on common, shared
memory cells. We assume that the processors are
numbered |--p and that each processor is able
to implement some sequential subroutines in-

0 ! 1 1 | !
’ 2 1/ 3
n 2 ' ! 2
\ 3 !
2 1 3
G Te (0) T (0

Fig. 1 An example of Ty(0) and 7.,(0) in a weighted
directed graph G.
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dependently ; One among various types of
PRAMs is an EREW (exclusive read exclusive
write) PRAM that allows no memory cell to be
accessed simultaneously by more than one proc-
essors. In contrast, CRCW (concurrent read
concurrent write) PRAMs allow simultaneous
reading as well as simultaneous writing of each
cell by an arbitrary set of processors. CREW
(concurrent read exclusive write) PRAMs allow
simultaneous reading but not simultaneous writ-
ing.

The speed up of a parallel algorithm over a
sequential one is S,=T,/T;, where Ty, T, are
the running time of the sequential algorithm and
the parallel one with p processors for the same
problem respectively. A parallel algorithm is
said to be efficient when S,/p=0(1). The cost
of a parallel algorithm is the product of the
parallel running time and the number of proces-
sors used.

3. Algorithms for APSP and the Transi-
tive Closure

A well known sequential algorithm for APSP
given by Floyd!® can be described as follows.

Input: D™, the COST of a directed graph G
without negative cycles.

Output : D"', D" !(j j) is the distance from
itoj

Algorithm I (FLOYD)

I FOR K:=0TO n—1 DO

2 FOR I:=0TO n—-1DO

3 FOR J:=0 TO »—1 DO

4 D(i, j):=min{D{i, j), D(i k)
+ D(k, j)}.

The principle of the Floyd algorithm is to
generate D° D',--- D" " successively by the fol-
lowing formulas.

D'(i, j)=COST ; ()
D*(i, ))=min{D"*"'(i ),
D* (i, k)+D* '(k, j)}  (2)
0Lk<n—1.

It is obvious that the time complexity of Floyd
algorithm is O (#®*). Floyd algorithm only com-
putes the all pair shortest distance matrix D",
Now we add a new function to Floyd algorithm,
recording the shortest paths corresponding to
D""'. We use an array S, where S(i j) is the
successor of vertex 7 in the shortest path from i
to j, 0£Li j£n—1. The new sequential algo-
rithm is as follows.
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Algorithm 2.
Step 1.
1.1 D:=COST;
1.2 S3 j)=j;
Step 2.
2.1 FOR k:=0TO n—1 DO
22 FOR i:=0 TO n—1 DO

0Li j<n—1.

2.3 FOR j:=0 TO n—1 DO

2.4 IF D(i, j)>(D(i k)+ D(k, j))
THEN

2.5 D(i, j) :=D(i, k)+ D(k, j) ;

2.6 S(i j):=S(3 k)

2.7 ENDIF

2.8 ENDFOR

2.9 ENDEOR
2.10  ENDFOR

Theorem 1. When algorithm 2 terminates, the
following two propositions are true.

(1) Matrix S records the shortest path
from i to j, 0L j<n—1 correspond-
ing to D"7'(i, j), and the shortest path
from i to j can be found in O(|P|)time.

(2) Matrix S records both the forward
shortest path tree rooted at i and the
backward shortest path tree rooted at /,
0LiLn—1.

Proof. (1)
matrix D in algorithm 2 is the same as that in
algorithm 1, at step 1 of algorithm 2. We let S(i,
J)i=j 0£Li jZn—1, that is, we suppose there is
an edge for pair i, j of G, 0£i j£n—1, because
when pair (i, j) is not in E, we can imagine there
is an edge (i, j) with the weight co from i and j.
In the step 2 when a shorter path from 7 to j via
k is found, we update the shortest path from i to
j by the assignment S(i, j):=S(i k), that is, we
change the successor of i in the path from / to j
by the successor of 7 in the path from i to k. It
is clear that when algorithm 2 terminates, if D(j,
j)=o0, there is no path from i to j: otherwise,
by the definition of S(i, j), the shortest path P
from i to j is the sequence of (i S(i j), S(S(i
) j)eee §). It is easy to output P in O(|P])
time.

(2) Based on(1), for any i j 0<£i j<n
—1, if j is reachable from i one of the shortest
path P from i to j is in S. Suppose for a vertex
w in G, there are two shortest path Py and P,
from i to w recorded in S, as shown in Fig.2.

Pi=iv, vy, o ViVi W,
Po=ivi Vi, o ViV iy o W,

Clearly, the computation of
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Vi Py

Fig.2 The sketch for proving theorem 1.

where v, F V.,

and k>0, that is, v, is the first vertex whose
successor in Py is different from whose successor
in P,. Because we suppose both P, and P, are in
S, if we consider P;, we have S(v;,, w)=v,.,. If
we consider P, we have S(v,, w)=vi..
Because of v,,,, %+ v 5,., we have S(v;,, w)=+S(v,,
w), which is a contradiction. So we prove that
for any i j, 0£i, j<n—1, if j is reachable from
i, one and only one of the shortest path from i to
j in G is recorded in S. We can infer further
that there is no intersect vertex w for any two
paths starting from i in S, which ensures that
there is no loops in the connected subtree T
consisting of the shortest paths from i to j, 0£
j<n—1,in S. By the definition of Ty(/), clearly
T is one of the forward shortest path tree rooted
at i of G.

For the same reason we can prove that the
connected subgraph T’ consisting of the shortest
path from j to ;, 0£Lj<n—1,in § is one of the
backward shortest path tree rooted at i of G.[_]

Now let us consider the parallelization of
algorithm 2 on CREW PRAMs with p proces-
sors. A parallel version of Algorithm 2 is as
follows.

Algorithm 3 (Parallel Version of algorithm 2)

Step 1

1.1 FORi:=1TO p DOINPARALLEL
P, calls procedure Compl (i—1);
Step 2
2.1 FOR k:=0TO n—1 DO
22 FOR i:=1 TO p DO IN PARAL-
LEL
P; calls the procedure Comp2 (i
—1, k).

The declarations of procedure Compl and
Comp?2 are:

Procedure Compl (x);

i j t bound: INTEGER;

BEGIN

1 t:=x; bound:=n % n;
2 WHILE ¢<bound DO
3 ji=tmod n; i:=t/n
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4 D(i j):=COST(i j);

5 S j):=Jj;

6 t:=t+p

7 ENDWHILE;
END Compl ;

Procedure Comp2(x, k) ;
i, j, t, bound : INTEGER ;
BEGIN

I t:=x; bound:=n % n;

2 WHILE ¢<bound DO
3 j:=tmodn;i:=th
4 IF D(i j)>(D(i k)+ D(k, j)) THEN
5 D(i j):=D(i, k)+ D(k, j):
6 S0, j):=S@ k);
7 ENDIF
8 [:=t+p
9 ENDWHILE;
END Comp2;

Theorem 2. Algorithm 3 calculates arrays
D" ' and S correctly on the CREW PRAMs
with p, 1 £p£nr? processors in O(n®/p) time.

Proof. Suppose we have p, 1 £p < n? proces-
sors, the procedure Compl and Comp2 are in
the local memory of every processor and D and
S are in the common, shared memory. We want
to use p processors to update the elements of D
and S concurrently and let every processor
calculate O(n?/p) elements of D and S in one
call to procedures Compl and Comp2. Because
the function F(i j)=in+j is an 1-1 function
from pair (i j) to one dimension array index x,
we can let processor P; call the procedure
Compl (i—1) and Comp2 (i—1, k) to update
the elements of D(m, ) and S(m, /) whose array
indices satisfy (mn+1) mod p=(i—1) mod p, 0
£i<Lp—1. Because it is clear that every element
of D can be calculated once and only once in
one call to Comp!l and Comp2, the correctness
of step 1 is obvious.

In step 2 although on a CREW PRAM model,
D(i, j) is updated based on one of the following
four randomly chosen formulas.

D*(i, j)=min{D*"'(i j), D*7'(i, k) (3)
+ D"k, j)}

D j)=min{D*'(i, j), D*7'(i k) (4)
+D*(k, j)}

D*(i, j)=min{D*"'(i j), D*(i k) (5)
+D* !k, j)}

D*(i, j)=min{D* (i j), D*(i, k) (6)
+D*(k, j))

0Lk<Ln—1.
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if we note that D*(k, k)=0,0<k<n—1, it is
easy to see
D*(i, k)=min{D*7(i, k), D*'(i k)
+D*"\(k, k))}
=min{D*'(i k), D*7'(i k)+0)}
*Dkil(l., k),
and D*(k, j)=D*"'(k, j) for the same reason.
So in the procedure of Comp2, whichever opera-
tion of the above four is used, the result is the
same. It also ensures the correctness of the com-
putation to array S, so algorithm 3 is a correct
parallel version of algorithm 2. Because the time
complexity of two procedures is O(n%/p), on
CREW PRAMs simultaneous reading by more
than one processors is allowed and there is no
writing conflict in algorithm 3, the time complex-
ity of algorithm 3 is O(n®/p). []

Corollary . Algorithm 3 is of the linear
speedup to Floyd sequential algorithm for
APSP.

If we change the line 4 of algorithm I as:

D(i, j) :=max{D(i, j), D(i, k)* D(k, j)}:
(7)
and D' is the adjacent array 4 of a graph G, the
changed algorithm | becomes the Warshall’s'®
algorithm to compute the transitive closure A*.
Clearly, if we replace the lines 4-5 of Compl(x)
with D(j j):=A(i j) and the lines 4-7 of
Comp2 (x, k) with formula 3.7, the changed
algorithm 3 become a parallel version of War-
shall algorithm, so we have theorem 3.

Theorem 3. On the CREW PRAMs with p, |
£ p<n®, processors, the transitive closure 4* of
a graph can be calculated in O(n%/p) time.

4. Graph Algorithms Derived from D and
S and Their Parallelization

Because we record the all pair shortest paths
in a matrix § when we compute the all pair
shortest distance matrix D, some graph algo-
rithms can be derived from D and S. Since an
undirected graph can be considered as a special
case of a directed graph, so algorithm 3 is valid
for an undirected graph. Let us use D and S to
represent the distance array and the successor
array for both directed graphs and undirected
graphs, the following give the graph algorithms
derived from D and S.

(a). to determine the center of a directed

graph G.
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Step 1. E(j)= max o<, <, {D(i j)};
0Lj<Ln—1.
Step 2. E(k)=min o<, <, {E(j))}.
The vertex k is the center of G.

(b). to calculate the diameter d of an undi-
rected graph G and the corresponding
path.

Step 1. Let D(7', j)=maxo<L ;< , (D
)

Step 2. P =(i, S(i/, j), S(S(@i", ),
J),--+, J°) is the diameter of G
and D(/’, j') is the length.

(c¢). to search for a directed cycle with the
minimum (maximum) length in a di-
rected graph.

Step 1. D(i, i) :=oco(—o0);
—1.

Step 2. D(i’, j)= min(max) {D(i j)
+D(j, i)|D(i j)*co and D(j
i)#+oo0, 0Li j£<n—1}.

Step 3. (7, S(i", j), S(S(", j), ),
7 SGL ), S(SGL i), 1)
i’) is the minimum (maximum)
length directed cycle in C.

The problems in (a) and ( b ) are easy, while
the problem in (c¢) is a little difficult, our
algorithm is of the most concise form and easy to
be implemented.

More algorithms for graph problems can be
developed by D, S and A4* in the same way.
Clearly, the key to parallelize derived algorithms
is to compute the minimum (maximum) value of
a set of n elements in parallel. Supposing »
elements are stored in an array A(l--n), one
such method is to use min (max) for the as-
sociative operator ® in the following parallel
algorithm.

Algorithm 4

1 Fork:=0to]lgn] —1DO

2 For/:=2*+1TO n DO IN PARAL-
LEL

3 A(D) :=A(N® A(i—2%);

4 END FOR;

5 END FOR;

The minimum (maximum) value is available
as A(n) when the algorithm 4 terminates. The
time complexity of algorithm 4 is O(logn) if n
processors are available. [If only p processors
can be used, | £p<£Ln, each processor can find
the minimum of n/p elements in linear time and
then a minimum can be found among the p

0£LiZn
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candidates in O(log p) additional time using the
above algorithm. These results can be summar-
ized in the following theorem.

Theorem 4. Given an associative, binary oper-
ator ® computable in constant time and a
expressions A(1)® AQ)®:--@® A(n) can be
computed in O(n/p+logp) steps on a p
processor EREW machine, 1 £p < n.

It is obvious that parallel algorithms running
on EREW PRAMs are the parallel algorithms
running on CREW PRAMs, for the case of two
dimension array. We can map two dimension
array indices to one dimension array indices as
we have done in designing algorithm 3, so if we
suppose matrices D and S have been calculated,
based on theorem 4, the algorithms given in (a),
(b), (c) can be implemented parallelly on
CREW PRAMs with p, 1 £p < nr? processors in
O(n*/p+log p) time.

5. Conclusion

All parallel algorithms presented in this paper
are the best for the time being with the respect to
the time-processor product. As shown in § 4, the
matrix S makes APSP have more applications.
The two dimension array data structure to store
the forward and backward shortest path tree
rooted at every vertex i of G can simplify some
graph algorithms. One example is the on-line
APSP problem, for the incremental algorithm?”
to update D and the shortest paths during edge
insertions and edge cost decreases. In addition,
it is clear that we can get unbounded and bound-
ed parallel algorithms to compute both D and S
by replacing the statement of D(i j):=min{D(;,
J). D(i k)+D(k j)} in known parallel algo-
rithms for APSP with the IF statement in the
lines 2.4-2.7 of algorithm 2.
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