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Abstract: This new toolchain for accelerating application on CPU-FPGA platforms, called Courier-FPGA, extracts
runtime information from a running target binary, and re-constructs the function call graph including input-output data.
Then, it synthesizes hardware modules on the FPGA and makes software functions on CPU by using Pipeline Gen-
erator. The Pipeline Generator also builds a pipeline control program by using Intel Threading Building Block (Intel
TBB) to run both hardware modules and software functions in parallel. Finally, Courier-FPGA’s Function Off-loader
dynamically replaces and off-loads the original functions in the binary by using the built pipeline. Courier-FPGA
performs the off-loading without user intervention, source code tweaks or re-compilations of the binary. In our case
studies, Courier-FPGA was used to accelerate a histogram-of-gradients (HOG) feature detection program on the Zynq
platform. A series of functions were off-loaded, and the program was sped up 3.98 times by using the built pipeline.
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1. Introduction

Mixed CPU-FPGA platforms are often used in embedded pro-
cessing for energy-efficient computing. They work by oft-loading
computationally intensive parts to a hardware module which is
implemented in reconfigurable logic. To meet the performance
requirements of recent advanced applications, legacy code work-
ing in embedded CPUs must be accelerated by reconfigurable
hardwired logic. A large percentage of such legacy code uses
popular function libraries like OpenCV. For such a function, ei-
ther an optimized HDL design exists [1], or it becomes easier to
generate a hardware module corresponding to each function by
using recent high level synthesis tools for FPGA [2], [3]. On the
other hand, the user sometimes cannot access the source code it-
self, or a pipelining method among multiple software hardware
functions is not generalized.

We developed a tool chain, called Courier-FPGA, that an-
alyzes the target binary running on the CPU, extracts infor-
mation of functions and builds a function-level pipeline struc-
ture between the hardware modules on an FPGA and software
functions on a CPU automatically. Unlike other researches on
software-hardware co-synthesis or commercialized HLS tools,
Courier-FPGA treats running binaries and accelerates them by
replacing software functions with the built pipeline including
pre-defined hardware modules. Courier-FPGA is based on our
previous work, Courier [4]: an application accelerator toolchain
for non-expert users. In our previous work, we described how
Courier analyses the processing flow from the running binary and
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how it replaces the analyzed functions running on the CPU with
corresponding non-pipelined functions of a GPU.

The followings are contributions of Courier-FPGA, and the dif-
ferences from an original Courier:

e Original Courier is designed for a system with a host CPU
and a GPU. In contrast, Courier-FPGA treats a CPU and
multiple hardware acceleration modules implemented on an
FPGA.

e By making the best use of the combination of CPU and
multiple hardware acceleration modules, a mixed software
hardware pipeline is introduced on CPU-FPGA platforms.
Pipeline Generator builds the pipeline in which processing
flow is the same as the original one even if the original flow
is not pipelined.

We also conducted three practical case studies in which
Courier-FPGA was used to make a mixed software hardware
pipeline on Xilinx’s Zynq platform. As a result, a binary of his-
togram of gradients (HOG) was sped up 3.98 times on the existing
hardware modules. Two other cases were also sped up 22.1 times
and 1.29 times, respectively.

The rest of this paper is organized as follows. In Section 2,
we overview Courier-FPGA, including its features designed for
making function call graphs including input-output data from the
running binary and off-loading. Section 3 describes the details
of mixed software hardware pipelines on CPU-FPGA platforms.
Section 4 gives case studies showing the capability of Courier-
FPGA. We discuss our proposal and related work in Section 5.
Finally, we conclude the paper.

2. Courier-FPGA

Courier-FPGA is based on Courier, a toolchain for a single ac-
celerator like GPU. In this section, we start by giving an overview
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Fig. 1 Overview and work-flow of Courier-FPGA: the Frontend analyzes the running binary (Stepl, 2
and 3) and then generates a function call graph including input-output data and a Courier Interme-
diate Representation (IR). The user refers to the graph and results, decides which parts to oft-load
and rewrites IR if needed (Steps 4, 5, 6 and 7). After that, the Pipeline Generator builds a mixed
sw/hw pipeline (Step 8). Finally, the Function Off-loader replaces function and off-loads it to the

accelerator (Step 9).

of Courier. Then we describe the detail of Courier-FPGA and its
features to make the best use of CPU-FPGA platforms.

2.1 Overview of Courier

Recent application programs use some open-source libraries
such as OpenCV or BLAS. Users who want to accelerate them
may not know enough about the source code. Sometimes, they
cannot access the source code and only have the executable bi-
nary. However, the conventional work-flow of accelerating ap-
plication programs is designed for expert programmers who have
developed the program on the CPU. As a result, it can not be
utilized by non-experts to accelerate such programs. On the other
hand, enough optimized corresponding functions of such open-
source libraries are available for popular accelerators like GPUs
and FPGAs.

A motivation of Courier is to provide a simplified work-flow
of application acceleration for non-expert users. Courier requires
a target binary and pre-defined corresponding functions of the
accelerator. A user only designates a running target binary to
Courier. Courier starts analysis and then constructs a processing
flow of the binary. The functions in the binary which is running
on the CPU can be dynamically and automatically replaced with
the corresponding functions of the GPU. “Original” Courier is
capable of application analysis, processing flow graph construc-
tion and dynamic function replacement. It cannot build function-
level pipelines nor deal with hardware modules on an FPGA. By
providing Pipeline Generator and Dynamic Off-loader, Courier-
FPGA can build a mixed software hardware (sw/hw) pipeline on
a CPU-FPGA platform.

Figure 1 illustrates an overview of Courier-FPGA and its
work-flow. Frontend and Courier IR of Courier-FPGA are the
same as those of original Courier, but Backend newly supports
FPGA. Courier-FPGA is comprised of three main parts: Fron-
tend, Courier Intermediate Representation (IR), and Backend.

o The Frontend analyzes a running target binary and takes a

heuristic approach to make the function call graph including
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input-output data from gathered information. The Frontend
doesn’t require access to the original source code or any sort
of re-compilation. It can recognize the functions in the graph
to be the targets of acceleration. Moreover, it can refer to the
input/output data and properties of them in the graph during
the acceleration process to decrease the number of commu-
nications between the CPU and accelerator.

o Courier Intermediate Representation (IR) is a simplified lan-
guage that enables users to modify dataflow and designate
functions to off-load to the Backend if needed.

e The Backend automatically off-loads the function, if the cor-
responding function is ready for the accelerator. The Func-
tion Off-loader automatically decreases the number of com-
munications along with off-load, and maintains the original
processing flow before and after off-load. Original Courier
can deal with GPU, while Courier-FPGA can deal with
FPGA.

The situation of the figure is as follows: there are a target bi-
nary which is running on a CPU and “hw_accum” that is a pre-
defined corresponding function for accelerator. “hw_accum” is
required by Courier-FPGA in order to achieve shorter processing
time. If there’s no corresponding module, Courier-FPGA builds
a pipeline which has only software functions. Frontend finds
that the binary executes a processing flow, “sw_accum” func-
tion which obtains two input data (Ox1.. and 0x2..) and pro-
duces one output data (0x3..). Then “sw_accum” is replaced with
the “hw_accum” and off-loaded. The caption of the figure de-
scribes the work-flow of Courier-FPGA. The user can refer to the
function call graph including input-output data and modify it in
Courier IR interactively.

2.2 Frontend

The Frontend is composed of three main steps so as to make
the Function call graph including input-output data. This graph
includes the chronological order of function calls, their in-
put/output, and profile data. We used dynamic program analy-
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sis and a heuristic approach. Users simply start their application
as usual, the Frontend can analyze functions/data whose function
definition/data type information are known in advance, and makes
the graph during execution. Each step works as follows.

Step 1. The Courier traces the running binary by using a tracing
program,

Step 2. gathers runtime information during execution,

Step 3. and looks for the causal function call including input-
output data.

Note that the Frontend of Courier-FPGA is part of the original
Courier, and details are described in our previous paper [4].

2.3 Courier Intermediate Representation (IR)

Courier IR is an intermediate representation that enables users
to modify the processing flow and designate parts to off-load to
the Backend. Thanks to fully automated Frontend and Back-
end, users can refer and choose off-load parts by using this IR
if needed. The two main processes of Courier IR are as follows.
Note that at present, Courier IR is manually translated from the
graph.

Step 4. Courier generates an IR corresponding to the processing
inside binary and

Step 5. generates the function call graph including input-output
data, and

Step 6. the user examines the graph, and then

Step 7. modifies the processing flow or designates off-load parts
if needed.

The Courier IR of Courier-FPGA is part of the original Courier,
and details are described in our previous paper [4].

2.4 Backend
The Backend is designed for automatic off-loading at runtime,
and consists of two steps as follows.

Step 8. The Pipeline Generator builds a mixed sw/hw pipeline.
It first generates the corresponding hardware module on an
FPGA, and then prepares software functions and a pipeline
control program.

Step 9. Finally, the Function Off-loader selects a path and re-
places functions with the generated pipeline.

The main functions of the Backend are the Pipeline Genera-
tor and Function Off-loader, which were originally developed for
Courier-FPGA. Their details are explained in the next section.

3. Dynamic Function Off-load System for
CPU-FPGA Platforms

3.1 Fundamental Concept

After the Frontend analyzes the running binary and makes a
function call graph including input-output data, the Backend au-
tomatically builds a mixed sw/hw pipeline and off-loads the func-
tions to the pipeline. The pipeline includes pre-defined corre-
sponding hardware modules on an FPGA if they exist. If a func-
tion does not have a corresponding hardware module, it is run
only on CPU. Hence, the extracted flow is divided into tasks and
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Fig.2 Instep 8, the Pipeline Generator prepares a mixed software hardware
task pipeline. In step 9, the Function Off-loader uses the pipeline
when “off-load” is selected.

each task is composed of multiple software functions or hard-
ware modules. Here, a “task” is not a “fine grained” calculation
such as a single x86 assembly code or arithmetic operation on an
FPGA, but a process with a certain amount of computation, such
as a group of a few functions [5]. Unlike a single GPU, the off-
loading target of original Courier, the target is multiple tasks than
can work in parallel. Both software and hardware tasks should
run in a pipelined manner so as to make the best use of the paral-
lelism.

Figure 2 shows an example of dynamic off-loading by using
the Pipeline Generator and Function Off-loader. The Structure
of a built pipeline; a mixed sw/hw pipeline on a CPU-FPGA plat-
form, is composed of the following three main parts:

e A task pipeline control program: Program that runs the soft-

ware and hardware tasks in parallel.

o Software task: Software functions run on the CPU.

e Hardware task: Hardware modules run on the FPGA.

The top panel illustrates Step 8, in which the Pipeline Gener-
ator makes a mixed sw/hw pipeline. First, the Pipeline Genera-
tor automatically generates a code of pre-defined corresponding
hardware modules, configures them on the FPGA, and prepares
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Behavior of a typical mixed software hardware pipeline controlled by software program. Shaded

rectangles are generated by Pipeline Generator. Tasks run in a pipelined manner, and each task
can send and receive input and output data which is indicated by bold line. Input and output data
of tasks are stored in the external memory. In this case, Task #1 and #3 run hardware module #h0
and #h1 while Task #0, #2 and #4 run software function.

software functions. Then, it makes a control program that runs
mixed software hardware tasks in parallel. The parallel tasks per-
form processing corresponding to a target binary.

In Step 9 that is illustrated on the bottom of Fig. 2, “cv::Sobel”
in the target binary is replaced with a wrapped function which
is made by the Function Off-loader. The wrapped function in-
cludes a switcher. When “off-load” is selected, the control pro-
gram made by the Pipeline Generator in Step 8 starts the pro-
cess. Even if the functions in the target binary run sequentially,
the Function Off-loader can perform the same processing in a
pipelined manner by using the built pipeline. Figure 3 shows a
typical case of building a mixed sw/hw pipeline.

In this section, we describe how the Pipeline Generator auto-
matically builds an efficient mixed sw/hw task pipeline, and how
the Function Off-loader performs off-loading dynamically.

3.2 Software Controlled Task Pipeline

A task pipeline control program that runs mixed software hard-
ware tasks in a pipelined manner is needed in order to maximize
the processing power of a CPU-FPGA platform. Recently, plat-
forms such as Zynq [6] and Arria V SoC [7] have emerged which
integrate FPGA and ARM CPU. In addition, there are some
open source libraries to enable parallel execution on the ARM
CPU, for example pthreads [8], Boost::thread [9], OpenMP [10],
or Glib::thread [11]. However, they are not intended for pipelined
execution of tasks.

Intel Thread Building Blocks (TBB) is a flexible open source
library that runs multiple functions in a pipelined manner on a
multi-core CPU. The tbb::pipeline class is provided to build a
straight forward pipeline. A user adds an arbitrary task to each
stage of the pipeline skeleton, and also specifies the processing
order and a parallelism of the stages. After that, TBB automat-
ically runs the tasks in a pipelined manner. TBB introduces the
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concepts of a thread pool and token base pipeline. Multiple slave
threads are managed by a master thread. Master thread assigns
a task which is registered by the user to an idle slave thread and
also transfers input data. Then, the slave thread runs the task and
finally sends back output data and a token to the master thread.
TBB is also capable of double buffering when two or more tasks
are registered. This type of pipeline makes it easy to re-order and
insert new tasks.

Figure 3 shows a behavior of a typical mixed sw/hw pipeline
controlled by a task pipeline control program. The Pipeline Gen-
erator first searches for corresponding hardware functions to re-
place the running functions in the target binary, which is illus-
trated on the left of the figure. To find appropriate hardware mod-
ules, we create a table which contains correspondence relation-
ship between software functions and hardware modules. Pipeline
Generator searches corresponding modules from the table and
uses registered modules. In the case of cv::sobel function in
OpenCV library, a corresponding hardware module is hls::Sobel.
A user can add correspondence relationship of user-original mod-
ules to use them. In the case of the figure, Courier finds two
corresponding hardware functions: func B and E. Then, it gener-
ates source code of two hardware modules: the former contains
fpga_funcB, and the latter contains fpga_funcD. In addition, Task
#1 and Task #3 which just send and receive input and output data
are also generated as a software part. On the other hand, there are
no hardware modules for funcA, C and E, so software functions
is made for them. Thus, five tasks, two hardware modules and
three software functions, are generated for the five pipeline stages
shown in the figure. Tasks are individually compiled as a shared
object before a deployed run. The pipeline control program runs
these tasks in parallel.

On a deployed run, tasks work as follows from the viewpoint
of the target binary. The Function Off-loader hooks and replaces
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funcA with Task #0. It also hooks first input data (data #0) from
the running binary. Then, Task #0 first executes dynamically
loaded funcA and stores the result (data #1’) in external memory.
And then, Task #1 invokes “start command” (Xh0_Start()) to send
the data to the hardware module #h0, and receives “done signal”
(Xh0_Done()) when fpga_funcB finishes a process and stores a
result data (data #2°) in the memory. While Task#1 is processing
the first data, the pipeline control program starts Task#0. Con-
sequently, the second input data from the running binary are si-
multaneously processed by Task#0. This is a software controlled
task pipeline. Note that intermediate data such as “data #1°” are
stored in the external memory and data start/done commands are
automatically generated by Xilinx’s high-level synthesis tool.

Unlike a common hardware pipeline in which the previous
stage cannot start until the next stage has finished, a pipeline pro-
vided by TBB can start each stage even if the next stage doesn’t
finish. For example, Task #0 can take the second input while
Task #1 is processing a time consuming task for the first input.
As a result, the pipeline can reduce the probability of stall com-
pared with the hardware pipeline. Additionally, stages which run
in parallel can be dynamically changed since a task is randomly
assigned to an idle thread by the control program.

3.3 Building an Efficient Mixed Software Hardware
Pipeline

When we build a mixed sw/hw pipeline, we have to consider
the following items in order to make it efficient. It is equal to a
decision of which tasks can run in parallel and how to divide the
extracted flow into some stages. We proposed the following so-
lutions and implemented them in the Pipeline Generator so as to
automatically generate an efficient pipeline.
(1) Concurrency: the concurrency of each stage.
(2) # of threads: the number of threads which run in parallel.
3.3.1 Concurrency

A feature of the mixed sw/hw pipeline is that stages which run
in parallel can be dynamically changed. In typical video process-
ing, only the image input/output must run serially, while the rest
of the function can run in parallel. The former is parameterized
as serial_in_order, and the latter is parameterized as parallel in
TBB. The Pipeline Generator defines the volatileInput/Output as
serial_in_order so as to make them run in sequential and the rest
of the functions as parallel so as to make them run in parallel by
default.
3.3.2 Number of Threads

The number of tasks which can run in parallel, depends on the
number of logical threads on the platform. The number must be
defined to make the task pipeline with TBB. The Pipeline Gen-
erator automatically sets the parameter to the maximum number
of threads in order to build an efficient pipeline control program.
In the case of Xilinx’s Zyngq, there are two logical threads. It
means that even if there are many tasks, only two tasks can run
in parallel. This limitation will be relaxed in future embedded
CPU cores which can run more logical threads. For example, the
quad-core ARM Cortex-A7 is already available. When we use
this quad-core CPU, four tasks can run in parallel.

Current Pipeline Generator divides the extracted processing
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flow into some stages by using the simple partitioning policy:
“Pipeline Generator divides total processing time by the number
of threads plus one and searches the closest sub-total of process-
ing time of functions”. It can be formulated as follows.

Tstage = Ttmal - (Nlugical,thread + 1) (1)

Where T, is a target time of each stage, Ty is a total pro-
cessing time, Njogical_hread 15 the number of logical threads and
Niogical_thread + 1 i the number of pipeline stages. The policy is
derived from the following considerations. According to our pre-
liminary evaluation, the number of stages should be close to that
of a logical thread of the Zynq because controlling many tasks
is a heavy job for Zynq’s CPU. Furthermore, to keep the mini-
mal processing time, each pipeline stage should run in nearly the
same time, i.e. a balanced pipeline. Note that, processing time of
software functions can be obtained in the analyzed data from the
Frontend and that of hardware modules can be estimated by the
logic synthesis tool, and thus processing time of all functions are
available at this time.

3.4 Generating a Code of Hardware Module

For each hardware task in Section 4, we used an OpenCV-
compatible high-level synthesis library provided by Xilinx [2].
The Pipeline Generator generates the source code of the hardware
module of corresponding processing, and adds an input/output
port for the module. The AXI4-Streaming protocol [12] and
Video DMA controller are used for the input/output port to com-
municate with the ARM CPU and the hardware module. AX-
Ivideo2Mat and Mat2AXIvideo are added in a source file so as to
synthesize the ports and the DMA module. In the case of a mixed
sw/hw pipeline, intermediate data are stored in external memory.
Thus, input data from the software is first stored in the DDR3
on-board RAM on Zynq before being processed and stored again
in the RAM after processing. This kind of streaming architecture
requires to read and write the data into the DDR3. Hence, the
bus width of the input and output port significantly influences the
performance. To deal with this problem, current Pipeline Gen-
erator automatically calculates and defines the width of the port
by using the extracted bit-depth information from the Frontend.
Furthermore, the Pipeline Generator tries to pipeline a series of
functions if the functions have no branch nor loop. This pipelin-
ing is performed by inserting #pragma HLS STREAM in the head
of the generated functions. Finally, generated codes are synthe-
sized and placed on an FPGA. In addition, Courier-FPGA can
use user-defined hardware modules if they have AXI-Streaming
ports and are integrated into Zynq. But it doesn’t have any kind
of automatic port generation mechanism or automatic integration
mechanism currently. Programmers must manually add the AXI
ports to the user-defined modules and integrate the modules into
the platform when they want to append them for off-loading.

Generated hardware modules are prepared as a block device,
and basic device driver APIs are prepared by Xilinx’s high-level
synthesis tool. In the case study, X7askO_Start() function sends
input data to start the process on the hardware module, and
XTaskO_IsDone() function polls done signal until the hardware
module finishes a process. These API functions are used in a task
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on the CPU side.

3.5 Off-loading Tasks

The Function Off-loader in the Backend automatically makes
a function wrapper to replace the original function designated
by Courier IR. The wrapper contains the equivalent accelerator
function that is built by Pipeline Generator including a pre/post-
processing and data transfer. This mechanism of Step 9 behaves
as follows before the run is being deployed. Courier-FPGA stops
the running binary when Step 8 finishes, and then the Function
Off-loader intercepts (hooks) the designated functions. It then
replaces the original functions with the wrapper that includes
the Off-loader Switcher and a software task. The Function Off-
loader maintains processing flow and optimizes the data transfer
by choosing one of the three paths of the Off-load Switcher. Fi-
nally, Courier-FPGA re-starts the binary. This process does not
require any user intervention.

An example wrapper is shown at the bottom of Fig.2. The
wrapper has an Off-load switcher that provides one of three possi-
ble paths for a function: non-off-load, off-load, and pass through.
Each path selected by the Function Off-loader works as follows.

e Non-off-load keeps the same function as the original, so the
function runs on the CPU.

e Off-load replaces the designated function with the software
program generated by the Pipeline Generator, and the task
pipeline starts the process.

e Pass Through assigns the input data directly to the output
data so as to skip the function in binary.

In order to reduce the number of data transfers and stages in the
pipeline, the Function Off-loader replaces “the head” of a series
of functions. Multiple functions run and are pipelined by using
the built pipeline. In Section 4, functions in the target binary are
divided into four tasks and run in a pipelined manner. The Func-
tion Oft-loader hooks cv::cvtColor, and the series of designated
functions are also executed here. And the rest of the functions are
replaced with Pass Through. By using the Function Off-loader,
the number of data transfers is optimized and an efficient pipeline
can be built. To maintain the original processing flow, successive
functions must be passed in the original binary running on the
CPU. Thus, the Function Off-loader replaces and skips them by
using Pass Through.

4. Case Study

In this section, we illustrate our work-flow by describing three
practical case studies. The experimental conditions were as
follows: the running binary was analyzed on Fedora 20 (Ker-
nel 3.14.3-200.fc20.x86_64), The binary was deployed on Zyng-
7000 AP SoC (XC7Z020-CLG484-1) on Zedboard. Zyng-7000
was composed of a Dual Core ARM Coretex-A9 CPU 667 MHz
with 512 MB memory (called PS: Processing System) and 85,000
Series-7 programmable logic cells (called PL: Programmable
Logic). Linaro 32 bit (Debian 7.0) ran on the PS. We also used
Xilinx Vivado HLS and Vivado 2014.2 as a synthesis tool.

4.1 Histogram of Oriented Gradients (HOG)
HOG is a widely used feature detection algorithm for purposes
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such as face recognition [13], and OpenCV is a widely used open

software library for computer vision [14]. The HOG implementa-

tion in OpenCV includes main features that are commonly seen in

computer vision applications: OpenCV C++ API functions (e.g.,

Sobel operator) and diverging/converging flow.

The processing flow of the HOG algorithm in the running bi-
nary consists of the following four main steps.

[Step #0] Apply the Sobel operator: Each frame of the video
source is converted into gray scale by cv::cvtColor. Then,
x- and y-axis Sobel operators (cv::Sobel x, cv::Sobel_y) are
applied. Both operators obtain the same gray scale image.

[Step #1] Compute the gradient and magnitude: The gradient and
magnitude are calculated from the x/y Sobel images by using
cv::cartToPolar.

[Step #2] Adjust gradient: gradient values are adjusted to within
0 to 180 degrees by cv::threshold and cv::subtract. The two
images generated in Step #2 are combined into one image
(cv::add), and adjusted gradient values are calculated.

[Step #3] Create histogram: Lastly, the image is divided into a
nine-channel histogram by using cv::divide.

4.2 Acceleration Work-flow of Courier-FPGA
1. Analyze running binary

After the user designates the running target binary, the Fron-
tend of Courier-FPGA analyzes the running binary, then it gen-
erates the graph and IR. This process step corresponds to Steps
1~3 in Fig. 1. The Frontend extracts the following runtime infor-
mation during the profile run:

e OpenCV C++ API function name with arguments,

e function start/end absolute time (execution time),

e # of input/output of functions,

e raw value of input/output image data, and

e image properties (size, bit depth, and channels).
I1. Generating the function call graph including input-output
data of the running binary

After the profile run, a function call graph including input-
output data of the running binary is automatically generated (see
the left of Fig.4). The user examines the graph and decides
whether to off-load and non-off-load parts if needed. The graph
is identical to the previously described processing flow. Ellipse
nodes and rectangle nodes represent images and functions, re-
spectively. The size of the node reflects the execution time or the
size of the data (height X width X bit-depth X channels; e.g., the
first node is 1,280 x 720 x 32 bit X 1-channel). The processing
time is shown in the second row of the ellipse node. Nodes are
aligned in chronological order. According to the graph, each in-
put image is 1,280 x 720 and processed in 650,856 [us] in total.
This is less than 1.5 frames per second ([fps]).

The Courier IR description is automatically generated. Users
can modify this to change the actual processing flow if needed.
The details of the IR in the case study have been omitted because
of space limitations.

II1. Acceleration

In this step (Steps 8 and 9 in Fig.1), Courier-FPGA first
searches for “safely off-loadable” parts, where a processing flow
is straight-forward, functions and input/output data are both
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Extracted processing flow from the binary Courier-FPGA  Software controled four stage task pipeline
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Fig. 4 Processing flow extracted from the running binary (left) and off-loaded flow (right). Each pro-
cessing step is assigned to a task. The Function Off-loader generates a four stage mixed software

hardware pipeline.

traced, and a corresponding accelerated hardware module is avail-
able. For such parts, Courier-FPGA automatically builds a mixed
sw/hw pipeline by using the Pipeline Generator and off-loads it
by using the Function Off-loader in default mode.

In this case, the Pipeline Generator generates a four-stage
mixed sw/hw pipeline. Each processing step is assigned to a
task of the pipeline. Tasks #0 and #2 can be off-loaded to the
FPGA since the corresponding hardware modules are available.
But inside functions of both tasks could not be pipelined by using
#pragma HLS PIPELINE because of branching and converging.
Tasks #1 and #3 run on the CPU by using the same function in
the binary. Two of the four tasks run in parallel since the ARM
CPU on Zynq. The Function Off-loader intercepts cv::cvtColor
as “the head” of a series of functions and off-loads it. For the
rest of the functions, Courier-FPGA intercepts and passes them
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on to maintain the original processing flow by selecting ‘“Passes
Through.”

4.3 Results

The right side of Fig.4 illustrates the off-loaded result.
Courier-FPGA replaced functions and maintained the original
flow by selecting “Pass Through.” However the process of the
built pipeline is the same as the original one, predefined acceler-
ated modules are run on a PL of Zynqg.

Table 1 shows the average processing times when we ran 200
video frames. Courier-FPGA shortened the processing time to
163,510 [us] and achieved a 6.1 [fps], or x3.98 speedup compared
with the original binary. In Table 1, “Original CPU” indicates the
target binary running on the CPU, and “Courier-FPGA” is the fi-
nal result. AXIvideo2Mat is input to the hardware module via
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Table 1 Processing time comparison of HOG ([us]).
Original Binary | Courier-FPGA

Processing Task #0
cvtColor 21,408 27,044
Sobel_x 63,214 (x5.05)
Sobel_y 51,936 (on FPGA)
Processing Task #1
cartToPolar | 208,174 | 187.545
Processing Task #2
threshold 23,995
convertScaleAbs 103,947 36,524
subtract 34,192 (x5.80)
threshold 23,856 (on FPGA)
add 25,982
Processing Task #3
divide 46,467 53,771
Total (Average) 650,856 163,510
Speed-up x1.00 x3.98
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Fig. 5 Processing time per frame fluctuates a little since Intel TBB’s
pipeline is based on a thread pool. It works differently from a pure
hardware pipeline.

Table 2 Evaluation of HOG: Frequency, Latency and Exec. time.

Module | Freq. [MHz] Latency [clk] Exec. time [us]
Task #0 172.1 4,654,817 27,044
Task #2 152.4 5,567,778 36,524

AXIT bus and Mat2AXIvideo.

The generated four-stage mixed sw/hw pipeline works well.
“Total (Average)” is smaller than the pipeline’s Task #1 since
TBB searches for and runs an idle task from the thread pool. Ac-
cording to our processing log, Task #0 runs multiple times and
stores multiple results while Task #1 runs. Additionally, Task #0
finished the 50th image while Task #1 was processing the 49th
image. This pipeline mechanism is different from the ordinary
hardware pipeline in which the following stages cannot start until
the previous stage has finished. As a result, the average process-
ing time of a single image becomes shorter than the time taken
by Task #1. Figure 5 is a graph showing the relationship be-
tween processing time per frame and the number of processed
frames. The graph shows 155,000 [us] is the lower limit for this
task pipeline.

Tables 2 and 3 show the evaluation of the modules generated
for Task #0 and Task #2. The hardware sped up Task #0 by 5.05
times and Task #2 by 5.80 times (this time includes data commu-
nications via the AXI Stream bus). In the case of Task #2, there
is no Mat2AXIvideo in Table 3 because the AXI4 Stream can be
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Table 3 Evaluation of HOG: Resource utilization of modules.

Module | BRAM | DSP4SE | FF | LUT
Task #0
Task#0 total 3(1%) 9(4%) | 1080(1%) | 1574(2%)
AXlvideo2Mat 0 0 235 279
hls::cvtColor 0 3 183 154
hls::Sobel 3 6 580 891
Mat2AXIvideo 0 0 44 106
Others 0 0 38 144
Task #2
Task#2 total 0(0%) 14(6%) | 2444(2%) | 4224(8%)
AXIvideo2Mat 0 0 91 126
convert
ScaleAbs 0 14 2194 3733
hls::Threshold 0 0 63 183
hls::AddWeighted 0 0 48 91
hls::SubS 0 0 48 91
Others 0 0 73 209

Table 4 Processing time comparison of cornerHarris ([us]).

Original Binary | Courier-FPGA | Running on

cornerHarris 974.9 14.1 FPGA

normalize 90.0 78.5 CPU
convert

ScaleAbs 221.6 13.7 FPGA

Total (Average) 1286.5 58.3 —

Speed-up x1.00 x22.1 —

Table 5 Processing time comparison of glRotatef ([s]).

Original Binary | Courier-FPGA | Running on

glLoadldentity 18.8 17.8 CPU
gluLookAt 18.1 19.0 CPU
glLightfv 17.8 18.1 CPU
glRotatef 18.4 1.9 FPGA
Total (Average) 73.1 56.8 —
Speed-up x1.00 x1.29 —

used as a bidirectional port when the bus widths of the input and
output are the same. The bus widths of the input/output of Task
#2 are 8 bits. On the other hand, those of Task #0 are 32 bits and
8 bits.

4.4 Other Case Studies

We conducted other case studies to demonstrate feasibility of
Courier-FPGA. Both can be obtained from websites.
4.4.1 cornerHarris

cornerHarris_Demo is a sample program of corner detec-
tion that is contained in OpenCV (opencv-2.x.y/samples/cpp/
tutorial_code/TrackingMotion/cornerHa-rris_Demo.cpp). The bi-
nary was mainly composed of three functions listed in Table 4.
Inputed image size was 1,920 x 1,080. Courier-FPGA built a
three-stage pipeline, and x22.1 speed-up was achieved compared
with the original binary.
4.4.2 glRotatef

hello_world_in_glsl is a simple program of OpenGL and can be
downloaded from the website [15]. Four functions listed in Ta-
ble 5 are targeted. We implemented a correspinding hardware
module of glRotatef that performs some single precision floating
point matrix calculation [16]. Courier-FPGA built a single-stage
pipeline because of the data structure of OpenGL. A 1.29 times
speedup was achieved.
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5. Related Work

There has been an enormous amount of research on hardware-
software co-design for reconfigurable systems. Most of them use
source code and sophisticated compilers or HLS techniques un-
like Courier-FPGA, which only requires binary code running on
the host CPU.

Also, there are a number of researches targeting binary accel-
eration [17], [18], [19], [20], [21]. Most of these researches fo-
cus on analyzing instruction-level behavior and translating fine-
grained dataflows into hardware circuits. Stitt et al. proposed
Warp Processing, which takes advantage of the reconfigurabil-
ity of the FPGA [17], [18]. Their unique points are the original
CAD module, which analyzes the code to detect hot-spots, and
automatic generation of FPGA circuits. Bispo et al. proposed
hardware-based instruction bus profiling to measure the branch
frequency of loops (Megablock)[19]. Although Megablock can
off-load a large block with a number of instructions, it requires
special hardware for profiling and off-loading. Nathan et al. pre-
sented the Configurable Compute Array (CCA) for automatically
designing new instruction sets by using an FPGA as a substitute
for a series of existing operations on the CPU [20]. They also
show how to determine the operations by using both a dynamic
profile and static one. Other researches on automatic transforma-
tion of assembly language to hardware modules have been done.
For example, eMIPS[22], Binary-translation Optimized Archi-
tecture (BOA) [23] and Dynamic Instruction Merging (DIM) [21].
These studies try to convert the basic blocks in a software binary
into a hardware module, and proposed specific means for doing
SO.

Unlike the above studies, the target of Courier-FPGA is a
coarse-grained dataflow. It focuses on generating a task-level
pipeline with the cooperation of the host CPU and FPGA con-
sidering data transfer between modules. Courier-FPGA assumes
that the corresponding HDL description of the target function
exists or is easy to be generated with HLS techniques. Thus,
Courier-FPGA can be combined with traditional HLS techniques
or binary translation techniques which focus on acceleration of
individual functions.

6. Conclusion

This paper presented Courier-FPGA: a new toolchain for ap-
plication acceleration on a CPU-FPGA platform. The Backend
of Courier-FPGA builds and deploys a mixed software hardware
task pipeline by using the Pipeline Generator and Function Off-
loader. The Pipeline Generator generates software functions and
hardware modules. It also makes a pipeline control program by
using an Intel TBB in order to run software and hardware tasks in
parallel. The Function Off-loader replaces the functions in a tar-
get binary with the built pipeline. In the case studies, the running
binary of three algorithms were accelerated on the Zynq platform
by using Courier-FPGA. As a result, a binary of histogram of
gradients (HOG) was sped up 3.98 times. And two other cases
were also sped up 1.29 to 22.1 times without user intervention.

In our future work, we will research how to generate a more
flexible task pipeline to meet user constraints. For example, re-
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source utilization or power consumption.
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