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On the Convergence Speed for a Class of Iterative

Methods

TAKAHIKO MURAKAMI' and Koji OHTANIT

We derived two types of iterative methods, each containing two parameters and having cubic

convergence for the zeros of all sufficiently regular functions.

Our methods include Laguerre’s,

Ostrowski’s, Halley’s and Hansen and Patrick’s methods. We established that our methods converge

globally and monotonically to the real zeros of polynomials or certain entire functions.

Further,

when we find numerical solutions of the real zeros of the said functions by using the said methods,
we established that as to the convergence speed, Ostrowski’s method is the fastest, Halley’s method
is the slowest and our methods excepting the said two methods are intermediate. In this paper, we
discuss the convergence speed in one of the said two types of our methods. Here, in the case where
one of the two parameters contained in the said type of methods is given, we show how to derive the
fastest method by the suitable choice of the other parameter.

1. Introduction

In order to find the numerical solutions of
nonlinear scalar equations, many types of iter-
ative methods have been derived. These
methods have been treated in many books?™%
and papers.®~1® We will consider the computa-
tion of the numerical solutions of two types of
nonlinear scalar equations.

The one type of the said equations is given by

the following form:

f(x)EkI:Il(x—Q):O (.1

where r>1 and 128 (k=1, -, r—1).
The other is given by the following form:
f(x)=x?exp(a+bx—cx?) ﬁ(l ww&)

k=i ar

X e*lx=() (1.2)
where p is a non-negative integer; a, b, and ¢
are real with ¢=0; and all @, are real with

Slarf< co.
Then it has been shown that Ostrowskt’s
method (Ref.2), pp.110-115), Laguerre’s

method (Ref. 2), pp.353-362), Hansen and
Patrick’s methods,® and two types of our
methods®1%!D  converge globally and
monotonically to the zeros of f (x). Recently, a
new theorem of global convergence for Halley’s

1 Department of Mathematics, Kobe University of
Mercantile Marine

fT Information Processing Center, Kobe University of
Mercantile Marine

1511

method was obtained by using the concept of the
degree of logarithmic convexity.!? In the previ-
ous paper,'® we showed that as to the conver-
gence speed, Ostrowski’s method is the fastest,
Halley’s method is the slowest, and two types of
our methods excepting the said two methods are
intermediate under some assumptions.

Here, we will consider the iteration functions
for R(X) of Ex. 1 in (Ref. 10), p. 188).

By putting 0+%: 7, the said iteration func-

tions can be expressed in the form:

0 (x) = x— R,y (X) (1.3)
where  h=h(x) :f,((%)), X=X (x)=h
7 (x) _ yX 41
e RO

BX2+<7—%>X-H
and both S8 and y are parameters.

In addition, B and y satisfy the following
inequality:

Bzyr (02yz-1) (1.9)

In section 2, we will discuss the convergence
speed in a class of iterative methods for @4(x) in
Eq. (1.3).

In section 3, we will derive some sufficient
conditions for @,(x) in Eq. (1. 3) to be strictly
increasing on a certin set.

In section 4, we will show some examples.
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2. Convergence Speed

We consider the iterative methods for Egq.
(1.3).

Then, the said methods can be represented in
the following form:

xn+1:@ﬁ(xn) (}1:0, l? ) (2 1)
where @s(x) =x—hR;(X), and Rz(X)
— yX +1
pxe( —%)Xﬂ

Let f (x) be given by the form in Eq. (1. 1).
Then, for Yx& E, we can define the associated
zero of f(x), ¢(x) (See Ref.10)). On the
monotonic convergence, we have:
® Theorem 1. Let f(x) be given by the
form in Eq. (1. 1).

Then, if A2y (02y=—1) and if we

choose the real starting value in (2. 1) x, such
that f (xo) f’ (xo) #0, then we have
Xn L £ (x0) (h(X) >0) and X, T {(x0)
(h(x) <0) (n=0,1,2, ).
® Proof. In Ref. 10), it was shown that this

theorem is valid for —%yzﬁg%y?

Let y be fixed for 0Zy=—1, and let X be
fixed for X <1.
Then, R,(X) is a strictly decreasing function

of 8. Also, since R_1,(X)=——— the fol-

| _TX

lowing inequality is valid for 8> -—; y (0272

—1):
I yX +1 >0
Ly aye _i> ’
1 2X BX +(y 5 X +1

(X <.

Therefore, this theorem also is valid for 3> —%
y (0zy=-—1).
Consequently, this theorem is valid for 62%72

0zyz=—-1).

Next, on the convergence speed of the methods
(2. 1), we have:
® Theorem 2. Let f(x) be given by the
form in Eq. (1. 1), let B, and f; be given by the

inequality ,80>Blz%72 (0=y=—1) and let

the iterative methods with g, and /3, be given by
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the following forms respectively:
Vni1= g, (,Vn) s Zner=0p,(2,)
(n=0, 1, ---).

Next, if the iteration function @g,(x) or
@5, (x) is strictly increasing on E, and if we
choose the real starting values y, and z respec-
tively such that yo=2 and f (yo) /" (3) f” () +
0, then we have

&) <zp<yn (h(yo) >0) and & (yo) >zn
>ya (h() <0)  (n=1,2, ).

® Proof. Since B0>B,§%y2 0z=zyz-—1),

we have
Ra(X)ZRpp(X)>0 (X<I1). (2.2)
By applying (2. 2) and Theorem 1, we can prove
this theorem in a way similar to that of Theorem
7 in Ref. 13).
® Corollary 1.

equality o> —%y 0=zyz=—1).

Let B, be given by the in-

Then, Halley’s method is faster than the iter-
ative methods with 3, under the same assump-
tions of Theorem 2 on the real starting values of
these methods.

@ Proof. By replacing £ in Theorem 2 by

—%7 and applying the fact that Halley’s itera-
tion function (D_%,(x) is strictly increasing on

E,'® it can be shown that this corollary is valid.
Next, let f(x) be given by the form in Eq.

(1.2). Further, for ¥ x& E, we can define the

associated zero of f(x), a(x) (See Ref. 11)).

Then, on the monotonic convergence and the

convergence speed, we have:

® Theorem 3. Let f(x) be given by the

form in Eq. (1.2). Then, if B;—;—yz 0zy=

—1) and if we choose the real starting values in
(2. 1) xo such that f (xo)f (x)#0, and x is
neither less nor greater than all @, we have
xn L a(x0) (A(x0) >0) and x, 1 a(xo)
(h(xp) <0) (n=0,1,2, ).
® Theorem 4. Let f(x) be given by the
form in Eq. (1. 2), let 8, and G, be given by the
inequality Bo>,81§~;~y2 (0=y=—1) and let
the iterative methods with 3, and 3, be given by
the following forms respectively:
Yny1— @ﬁo (yn) s Znyl— wﬂ; (zn)
(n=0,1, --).
Next, if the iteration function @4 (x) or
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s, (x) is strictly increasing on E, and if we
choose the real starting values y, and z respec-
tively such that yo=2z, f (3o)f () f” () +0
and y, is neither less nor greater than all g, we
have

a(y) <z <yn (h(3) >0) and a(yo) >z, >

Yn (B(p) >0)  (n=0, 1,2, ---).

® Corollary 2. Let 5, be given by the in-

equality B,> ——y 0z2y=—1).

Then, Halley’s method is faster than the iter-
ative methods with Sy under the same assump-
tions of Theorem 4 on the real starting values of
these methods.

These theorems and Corollary 2 can be shown
in the way similar to the proof of Theorem 1,
Theorem 2 and Corollary 1.

3. Saufficient Conditions for Monotonicity

Let f(x) be given by the form in Eq. (1. 1)
and let the set {x; f (x)f’(x) =0 and x is real}
be denoted by E. Then, in section 2 of Ref. 13),
for Vx& FE, we derived the following relations:
1

1-X= /zzkzl(x—w>0 3.1
dh _ d [ f(x) )
dx  dx\ f7(x)
P
(¥
(3.2)
dx . 3 1
(3.3)
n T
(1—X)3/22 = §)3<l. (3.4)
Next, putting Q(X)=yX +1, and P(X)=

BX2+<)/—%)X+ 1, we can represent the itera-

tion functions in Eq. (1. 3) @s(x) by the follow-
ing form:

— Q)
Dp(x) =x POX) h.
Here, £ and y satisfy the following inequality:
*%}’2,@%—%72. (3.5)

Defferentiating @, (x) with respect to x, we have
) =1 QP dax _ Q dh
03 (x) =1 PTQ—hdx P dx
(3 6)

where P=P(X), 0=0Q(X), /_dX’ Q=
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a9
dx-

Further, putting F=Q’P— QP’ and applying
(3.2) and (3.3) to the right side in (3.6), we
have

(Dé(x):l—%{—?_(l—)()z
+2H S )
~La-x)
:Tg;{P2+2F(I—X)2—PQ(I——X)
—-2Fhaz1 = g) } 3.7)

Since F=—ypX2—-28X +7, it follows from

(3.5) that F'=—2yBX —28< —2y8—28=—2

B{y+1)=0 (X < 1). Further, since F(1)=
1 1 1

TR IBt =Bt t5 25 (r+ D3

we have F(X) >0 (X <1).

Consequently, it follows from (3.4) and
(3.7) that if the following inequality is valid:
P2+2F(1-X)*—PQ(1—X)

—2F(1-X)¥20 (Yx&E)
then @,(x) is strictly increasing on E.
In the following, we derive some sufficient
conditions for the inequality (3.8) to be valid.
First of all, the left side in (3. 8)
=P{P~Q(1 - X)}+2F(1—X)%2
X (/T—=X—=1)
=B+ x to(B+r—T)x 843
—%}XI%%XJF (—298% 7~
X{(I=X)¥(J/T=X —1).
Next, putting 1 —X =1 and denoting the left
side in (3.8) G (¢), we have

G ={8@B+n X7+ A(B+r—F)x +8

(3.8)

48X +1)

+*:2;—7—%}(I~t2)2
+3- (1= %) + (= 278X —48)
X(1=2)B—1)+3(t—1)

=(-07{s@B+nx?

1 3
+ 7/(,6’-0- 7~7)X + ,8+77

—4ja+n?
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+ Q2yBX +4B) (1+ 1)+ 12+t
r)=a-0k@ (>0
(3.9)
where K (t) represents the expression in the
bracket of G (1).
Since X2(141)2=1542¢5—t*—413—
+1L,X(+)2=—1"—

12421
203 4+2¢t+1,and X (1+1¢)

X B=—15— "4 1*4 13, we have
6
K(1)= 3 Knt" (1>0) (3.10)
where
2
Ko=(B+7+5) =0,
2
K,=2<ﬂ+ 7+%) =0,
3 1
K2~< 5—8 <B+ 7+7>20
( : %;Bgo and
1o !
3+y+7§772+7+3’:7(7+]>2>’

Ky=—4§"=4py +48 =274 7,
Ki=— B+ 43—y +5 7. Ks=24°20, and

KSZB(B_ 7) =0.
Differentiating K (¢) in Eq. (3. 10) again and
again, we have
K’ (1) =6Kst®+ S Kst* + 4K, *+ 3 K;t?
+2Kt+ Ky,
K”(t) =30Kst* +20K51% 4 12K, 17
+6Ks3t+2K>,
K® (1) =120Kst*+ 60 Kst*+ 24 K4t +6 K3,

y=K @

2 S
GK: o

x>0 : K (a)=0

K(z) (‘x) <0
Sy >a: KPP (a)=0
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K@ () =360Kst?+ 120K5t +24K,, and
K® (1) =720Kst + 120K.
d)v%,(x) coincides with Halley’s iteration func-

tion which is strictly increasing on E.'® Here-
after, from (3.5) we concentrate on the case of
—%7>Bi§i

Since Ko~ Ky= B (B+27+2) >0, it follows
that if K3=0, then we have K,>0. On the other
hand, since K,=0 (m=0, 1, 2, 5, 6), we have
K (1) >0 (£>0). Hence, if K320, then @z(x) is
strictly increasing on E.

Next, let us consider the case of K3<0. Since
K® (1) >0, K®(t) is convex for t>0.

Then the graphs of the functions y= K (¢)
(>0, i=1, 2, 3) and the signs of K (z) (t>0)
are illustrated in Fig. 1.

In section 2 of Ref. 13), when f (x) is given
by the form in Eq. (1.2), for ¥ x& E, we der-
ived the following relations:

oy = pl B S }
|- X h{x2+2c+k§(x7ak)z >0

RSy

dx
B+ Ear)
h3

oot B ey <
Therefore, also in the case where f (x) is given
by the form in Eq. (1. 2), it can be shown that

the said results are valid.
Finally, on the monotonicity of @4(x), from

—X)2—|—2h3

K'()>0 ey K(t) >0

y=K®(t)

wem—p K (1) >0

K(t) =0
or
K(D.’z) <0

K/ (o)) <0

Sia: >o : Kla)=0

Fig.1 The graphs of the functions y-= K (#) (1>0, i
=1, 2, 3) and the signs of K ().
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the said results we have:

® Theorem 5. Let f(x) be given by the

form in Eq. (1.1) or Eq. (1.2), let y and 8 be

given by the inequality (3.5) and let K (¢) be

given by Eq. (3. 10). Then

(1) I K3=0, then @g(x) is strictly increasing
on E.

[II] If K5<O0, then K® (1) =0 (t>0) has the
only one solution a.

(1) If K®(@) =0, then @y(x) is strictly
increasing on E.

(2) If KP(@)<0, then K® (1) =0 (£>0) has
the only one solution @ such that & > a.

3) If K'(am)=0, then @y(x) is strictly
increasing on E.

(4) If K'(m) <0, then K'(¢)=0 (£>0) has
the only one solution @ such that &> a.

(5) If K (@) =0, then @g(x) is strictly increas-

ing on E.

(6) If K (@) <0, then @y(x) is not increasing
on E.

Remark 1. Let y be fixed for 0= y= —1, let

t be fixed for +>0, and let B be given by the
inequality (3.5). Then, since

o e s
%’Zzz—z/;—yﬂgl,
%’;3:—85—4y+4g4,
%’;“:4%4;3,

%’25:43, and %’Z,‘i:zﬁ—@o,

K (1) (t>0) is a strictly increasing function of
B.
Therefore, in the case of Theorem 5(11] (6),
by increasing the values of 8 gradually, it can
also be seen that at last @;(x) turns into a
strictly increasing function on E.

4. Examples
1. Let y be fixed for —1=y=0, and let 8 be
given by the inequality Bg%yz 0zy=—1).

Then, in accordance with Theorem 5 and
Remark 1, let us find the value of 5 as small as
possible under the condition that K () (¢t>0) is
nonnegative. Next, let us give an example.

Let the closed interval {y:0=y=—1} be
divided into 28 equal segments by the points of
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division
8
yk:~<*;’> k (k=0,1, -, 29

and let 3, which corresponds to 7, be given by

1, 1\#
Bra=y it (5) 1 =01, ).

At first, finding 7, and ,6’;2_0:%72 for given k,

we investigate the sign of K (¢) in accordance
with Theorem 5. Then if K (t) 20, then S, is
the desired 8. If K (t) <O, replacing B, by Br.1,
we investigate the sign of K (z) in accordance
with Theorem 5. By repetition of the same
process, it follows from Remark | that finally the
sign of K (t) becomes nonnegative. If K (¢) first
becomes nonnegative for some Sy, then this £,
is the desired /3. Thus we can find the desired 3
for each & (I<k<2®—1) one after another.
The suffixes & and / of the desired B, are
tabulated in Table 1.

As to the convergence speed, if y, is given, then
it follows from Table 1, Theorem 2, and Theo-
rem 4 that the iterative methods with the desired
Bx,: are faster than those with § such that 8>

Bk, and slower than that with [)’M:%yi (k=
1 (1) 2"—1,2741 (1) 2°—1). We computed the

numerical solutions of @, @ and @ in Theorem

Table 1 The suffixes & and / of the desired Si..

k / k ! k /
1 2 49-52 20 129-144 1
2 3 53-55 19 145-151 2
3 4 56-58 18 152-157 3
4 5 59-61 17 158-162 4
5 7 62-64 16 163-167 5
6 8 65-67 15 168-172 6
7 9 68-70 14 173-176 7
8 10 71-73 13 177-182 8
9 11 74,75 12 183-187 9
10,11 12 76-78 11 188-194 10
12 13 79-81 10 195-220 11
13 14 82-84 9 221-225 10
14,15 15 85-87 8 226-229 9
16 16 88-90 7 230-233 8
17,18 17 91-93 6 234-236 7
19,20 18 94-97 5 237-239 6
21,22 19 98-101 4 240,241 5
23-25 20 102-106 3 242-244 4
26-30 21 107-112 2 245-247 3
31-42 22 113-127 1 248-250 2
43-48 21 128 0 251-255 |
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5 by using the bisection method. All calcula-
tions are made with quadruple precision.
2. If |X|<1, then we have

1

Jimx R0
=4 Qr DX Qr D)

X (—4y* 2y +3) X°
35 (L. 3 1V,
+[128 {47 2( 2)7
14
)
ol 32
r==)-r—=5) 7|

+0(X%).
Hence
R
JI—X 27
1
oy (1)
:{IZSX FOXD ¢
09 (r+—7)
On the other hand, if y= —% and B:%, then
we have
K(t)zé(sﬁuﬁ—z‘—zozu]112
+2t+1)
:é(t—l)z(St“+12t3+l8t2
+414+1)=0 (£>0).

Consequently, as to the convergence speed, if
| X|< 1, then it follows from Theorem 2 and

Transactions of Information Processing Society of Japan

Table 2 The values of d, (x,=32.0, {=10.0)
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Theorem 4 that for the methods in (2. 1), the
method with y= —% and B:—é is the fastest.

3. We give the numerical examples of the con-
vergence speed below. Let us call the methods in
(2. 1) the methods of the type (y, 8). Then,

Halley’s method is of the type (y, f%—7>. Put

B:Bz:%yz, B=p1= the desired 4 in Table I,

and f=5o> f%y.
Here, we treat the following types as the type (7,

B):
(~a 8)~(5 )
SR
T b))\ T )
(-5 2)-(-44)
(383 2)
(33 B (3))
(543 2o (1)

We consider the following equation:
fx)= x4+ 16x8—93x"— 1586x5—789.x°
+8244x*— 78247 x%— 139594 x*
4494928 x —282880=0
All the roots of this equation are
E=—16, —8, 1, 1,10, —4%i, 2+3].

Methods of

1 { 1 [ 3 3 3 | Ostrowski’s
the type (7%) (*W") (7’*) (‘7@ (*’4-@) (7431) (‘M) (“77) method
(y.8)

T4 a0 14x100 LIXI0 L3I0 LIxI0 L1x100 L8x10  L6XI00  11xI0
d, 85%100  8.5x100  1.2xI0'  6.2%10°  4.7x10°  4.8X10° 1.4x10°  1.0X10'  4.7x10°
4, £2%100  4.3%10°  8.7xI0°  2.0x10° [ 1x10°  [IXI0°  1.IXI0  6.5X10°  1.1x10°
d, LSx100 1.6x100 58100 2.2X107 4.0x10F 4.8x107 8.2x10° 3.5X10°  2.9x10°?
d, L8100 2.0X107 34100  3.4x10¢ 5.2x10° 9.2x10° S5.8x10° 1.4x10° 7.0x107
4, S 710 73x10- 17x100  1Ix107 1.3x10°7 6.9%1077 4.0x10°  2.4x10°0 1.0x10°
d 6% 10 3.5x10-0 S.IxID 0.0x10° 0.0x10 0.0X10 % 2.3x10°  3.0x10° 0.0x10°®
d, 0.0X10-" 0.0X10 3 3.8XI107 e e e 1OXI00  7.2X10°0 oo
d9 ............ 2‘7><][:)5 .................. 2A2X10’1 9'9><IO’26 ......
le ............ 9'3><]O’15 .................. 45)(]0'1 O'OX‘O’:“ ......
dy e e 0.0X 10731 wveene e e 43X10 % e e
dip e e e e 4.0X10°2 e e
dy e e e e 0.0X 10731 woeeee e
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Next put
dy=x,—¢ (n=1,2, ).

The numerical examples of the convergence
speed in nine methods are tabulated in Table 2.

The computational results in Table 2 substan-
tiate the discussion presented above. Several
other algebraic equations were tested and the
results were consistent with those obtained
above. All calculations are made with quadru-
ple precision.

5. Concluding Remarks

Let f (x) be given by the form in Eq. (1. 1) or
Eq. (1.2). Then it was shown that as to the
convergence speed, for the methods in (2. 1)

with 82—+ (—157=0), Halley's method is
the fastest and the slowest for the methods in (2.
1) with —%y%,@é%y? Further, from the
discussion in section 4, for the methods in (2. 1),

the method with some 3 such that %y§§b’<the

desired Bk,l(n# 7%) is the fastest.

Hence it follows from Table | that when y, is
given, as to the convergence speed, for the

methods in (2. 1), the method with ﬁz—éyi is

nearly the fastest.

Roughly speaking, it can be concluded that
when y is given by —1 =y <0, as to the conver-
gence speed, for the methods in (2. 1) with 8=
%yz (~ 1<y=0), the method with 3:%72 is
nearly the fastest.

Let us define the function A,(X) as follows:

A (X) = | yX+]I
7y2X2+<7—7>X+]

(—1Zy20, X <1).
Then we have

A (X) = A (X) =i2;_(7z(%%

where A(X)=ynX +7y+y+1 and
B,(X):%yZX“r( ——;')X+1A

Put y as follows:

On the Convergence Speed for a Class of Iterative Methods 1517

1 1
—5 (rt1) for Vy(,E(—l, _T)

(40
1

__ 1
-5 for y= 3

Since A(X)=0 for X:—Jiy'/;’ix()) and
0

B, (X) By, (X) >0, A,(X) —A,,(X) changes sign

+ 70+ 1

in a neighborhood of the point X = —%:
0

Hence, there is not any constant y, such that
the following inequality holds for Vye (—1, y,)
U (7, 0) and VX <1:

A (X) = A5 (X).
Finally, we see that there is not any constant y,

such that in the methods in (2. 1) with B:%yz

(—1<y<0), the method for y=1y, is nearly the
fastest.

Next, let us consider the case where Eq. (1. 1)
and Eq. (1. 2) have complex zeros. Let ¢ be any
real zero of Eq. (1. 1), and & also be a zero of
Eq. (1. 1) if & is any complex zero of Eq. (1. 1).
Then, if

2 & 1 h?
G AL e

T l T 1 3/2
Ever/ 1B et <
(VxEE),
we can draw the same conclusion as above.
Further, let @ be any real zero of Eq. (1. 2), and
@, also be a zero of Eq. (1.2) if @; is any
complex zero of Eq. (1.2). Then, if

>0 (VYx€EE)

and

P N2 1 }_ h?
”{xﬁz"*k:,(x—aw x—a)°
>0 (Yx€E)
and
s }
{p+X1§1 (X‘a’k)s
) 2 © ,,,7,7! A7}3/2
/{p+2cx +x kZ:}l (x—a)? <1
(VXEE)

we can draw the same conclusion as above.

Acknowledgements The authors would like
to thank the referees for their valuable sugges-
tions.



1518 Transactions of Information Processing Society of Japan

References

1) Traub, J. F.: Iterative Methods for the Solu-
tion of Equations, Prentice-Hall, Englewood
Cliffs, New Jersey (1964).

2) Ostrowski, A. M.: Solution of Equations in
Euclidean and Banach Spaces, Academic Press,
New York and London (1973).

-3) Henrici, P.: Essentials of Numerical Analy-
sis, Wiley, New York (1982).

4) Ortega, J. M. and Rheinboldt, W. C. : Iterative
Solution of - Nonlinear Equations in Several
Variables, Academic Press, New York (1970).

5) Davis, M. and Dawson, B.: On the Global
Convergence of Halley’s Iterative Formula,

" Numer. Math., Vol.24, No.2, pp.133-135
(1975).

6) Hansen, E. and Patrick, M.: A Family of
Root Finding Methods, Numer. Math., Vol. 27,
No. 3, pp. 257-269 (1977).

7) Petkovic, M. S.: On the Halley-like Algo-
rithms for the Simultaneous Approximation of
Polynomial Complex Zeros, SIAM J. Numer.
Anal., Vol. 26, No. 3, pp. 740-763 (1989).

8) Sakurai, T., Torii, T. and Sugiura, H.: An
Iterative Methods for Solving Algebraic Equa-
tions by use of the Pade Approximant, Trans.
IPS Japan, Vol. 31, No. 4, pp. 517-522 (1990).

9) Murakami, T.: On the Attainable Order of
Convergence for Some Multipoint Iterative Func-
tions, J. Inf. Process., Vol. 12, No. 4, pp. 514-521
(1990).

10) Murakami, T.: On Some Iterative Formulas
for Solving Nonlinear Scalar Equations, J. Inf
Process., Vol. 15, No. 2, pp. 187-194 (1992).

11) Murakami, T.: On the Global Convergence of
Some Iterative Formulas, Trans. IPS Japan,
Vol. 34, No. 2, pp. 187-190 (1993).

12) Hernandes Veron, M. A.: A Note on Halley’s
Method, Numer. Math., Vol. 59, No. 3 pp. 273~

Aug. 1994

276 (1991).

13) Murakami, T.: On the Convergence Speed for
Some Iterative Methods, Trans. IPS Japan, Vol.
34, No. 11, pp. 2443-2448 (1993).

(Received April 16, 1993)
(Accepted March 17, 1994)

Takahike Murakami was
born on July 4, 1934. He
received the B.S. and M.S.
degrees in Mathematics from
‘Hiroshima University, 1959 and
1961 respectively. He lectured in
mathematics at Hiroshima Insti-
tute of Technology (1962-68). Since 1968, he
has been lecturing in mathematics at Kobe
University of Mercantile Marine. Since 1979, he
has been a Professor of the Faculty of Mercan-
tile Marine. His research interests include infor-
mation- theory and numerical analysis. He is a
member of IPSJ, the JSIAM and the Mathemati-
cal Society of Japan.

Koji Ohtani was born in
Kobe, Japan on December 6,
1935. He graduated from Hyogo
Prefectural Kobe Technical
High School in 1953. Since
1969, he has been joining the

- Information Processing Center
of Kobe University of Mercantile Marine as an
operator and a technical advisor. His current
research interests include numerical analys1s and
computer network systems.




