
Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

[DOI: 10.2197/ipsjjip.23.105]

Regular Paper

Designing Overlay Networks for Handling Exhaust Data
in a Distributed Topic-based Pub/Sub Architecture

Ryohei Banno1,a) Susumu Takeuchi1 Michiharu Takemoto1 Tetsuo Kawano1

Takashi Kambayashi2 MasatoMatsuo1

Received: May 12, 2014, Accepted: September 12, 2014

Abstract: To provide event-driven services in IoT, scalable methods of topic-based pub/sub messaging are indis-
pensable. Methods using structured overlay networks are promising candidates. However, existing methods have the
problem of wasting network resources, because they lack adaptivity to “exhaust data,” which have low or no value
most of the time. The problem contains two aspects. One is that each publisher node continues to forward data to a
relay node even if there are no subscribers. The other is that excessively large multicast trees are constructed for low
value data, which will be received by only a small number of subscribers. In this paper, we formulate the desirable
design of overlay networks by defining a property called “strong relay-free” as an expansion of relay-free property.
The property involves publishers and subscribers composing connected subgraphs to enable detecting the absence of
subscribers and autonomously adjusting the tree size. We also propose a practical method satisfying the property by
using Skip Graph, and evaluate it through simulation experiments. We confirmed that the proposed method can sus-
pend publishing adaptively, and shorten the path length on multicast trees by more than 75% under an experimental
condition with 100,000 nodes.

Keywords: distributed pub/sub, overlay networks, Skip Graph, relay-free, exhaust data, IoT

1. Introduction

The number of Internet-connected devices has been increasing
and is estimated to reach 100 billion by 2020 [1]. This indicates
the coming of the Internet of Things (IoT) and will bring about
various smart services that are typically event-driven, i.e., con-
trolling devices in accordance with some kind of event in the real
space observed by sensors.

To deliver sensor data in real-time efficiently, pub/sub mes-
saging [2] is required instead of using traditional request-reply
messaging. In topic-based pub/sub, messages are exchanged
through logical channels called “topics.” Users subscribe to top-
ics of interest and receive messages published on those topics.
This paradigm provides convenient decoupling between publish-
ers and subscribers, e.g., each publisher has no concern with the
location of subscribers that will receive a published message.

Since IoT is considered to consist of a vast number of devices
which generate massive stream data, the architecture and algo-
rithm of pub/sub messaging should have high scalability.

In this paper, we focus on structured overlay networks known
primarily for Distributed Hash Tables (DHTs) [3], [4], [5]. They
have suitable properties such as scalability, robustness, and elim-
ination of a single point of failure. Methods of topic-based
pub/sub using DHTs have been proposed [6], [7], [8].

1 NTT Network Innovation Laboratories, NTT Corporation, Musashino,
Tokyo 180–8585, Japan

2 NTT Science and Core Technology Laboratory Group, NTT Corpora-
tion, Atsugi, Kanagawa 243–0198, Japan

a) banno.ryohei@lab.ntt.co.jp

However, these methods do not work efficiently for a certain
kind of data called “exhaust data,” which is predicted to occupy
most of the IoT data [9]. Exhaust data have low value density,
namely the data have low or no value most of the time. Because
the existing methods are not adaptive to the transition of the value
of data, they waste network resources by gratuitously ventilating
low/no valued data.

For overcoming such inefficiencies, we first clarify the require-
ments of overlay networks for improving the adaptivity and de-
fine a desirable property called “strong relay-free” by expanding
relay-free, which is mainly known in studies based on unstruc-
tured overlay networks [10], [11]. In the strong relay-free prop-
erty, publishers and subscribers compose connected subgraphs re-
spectively, and these subgraphs are also connected to each other.
This allows detecting whether there are subscribers or not, and
autonomously adjusting the forwarding path lengths by the num-
ber of subscribers and publishers.

Subsequently, we propose a method for constructing overlay
networks satisfying the property using Skip Graph [12]. To eval-
uate the proposed method, we implemented simulated programs
for it and one of the DHT-based methods, and conducted some
experiments with up to approximately 100,000 nodes. We con-
firmed that the proposed method can reduce consumption of net-
work resources by suspending publishing adaptively, and can
shorten the path length compared to the existing method. The
experimental results also indicate that our method can predict the
load on each node unlike with the conventional method.

Hence, the contributions of this paper are threefold:
• First, we give an architecture called “edge broker model”

c© 2015 Information Processing Society of Japan 105

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

which is suitable for handling exhaust data.
• Second, we present a novel design of overlay networks by

defining “strong relay-free” property.
• Third, we provide a practical method satisfying the property

by using Skip Graph.
The rest of this paper is organized as follows. Section 2 il-

lustrates an architecture suitable for exhaust data streams and ex-
plains technical problems. Section 3 introduces related studies
on topic-based pub/sub methods based on structured overlay net-
works, with a discussion of their inadequacies. Section 4 clarifies
the requirements for constructing desirable overlay networks and
formulates them as the strong relay-free property, while a practi-
cal method satisfying the property using Skip Graph is described
in Section 5. Section 6 shows the results of simulation experi-
ments to confirm the effectiveness of the proposed method. Fi-
nally, we summarize and conclude this paper in Section 7.

2. Edge Broker-based Architecture

Conventional topic-based pub/sub architectures have a broker
server for managing topics [13], [14]. The broker gathers all pub-
lished messages and processes filtering and forwarding to corre-
sponding subscribers. All published messages are sent to the bro-
ker, then they are filtered and forwarded to corresponding sub-
scribers. In other words, these architectures form a centralized
model, which is easy to implement and commonly used for a
wide variety of applications such as RSS, distribution of disas-
ter prevention information, SNS, video chat, and so on.

However, the above centralized model does not work efficiently
for exhaust data. The characteristics of exhaust data can be de-
scribed as follows:
• Low value density

Data are generated as byproducts and without specific
uses. These data have low or no value most of the time,
but sometimes are highly useful such as drive recorders.

• High frequency
Data are automatically and continuously generated by de-
vices, unlike today’s Internet in which humans generate
most of the content.

• Wide area
Data are generated over a wide area in the physical space.

Namely, a tremendous amount of published data is concen-
trated on the broker with oppressing the network bandwidth. This
is unprofitable because the data arriving at the broker are mostly
discarded due to its low value density (see Fig. 1 (a)).

Accordingly, we suppose a model using edge brokers as shown
in Fig. 1 (b). From the view point of each device, edge brokers are
placed in front of the Internet depicted as a cloud in the figure. It
means the brokers are installed over a wide area. Published data
and subscriptions are collected at the closest one. If the edge
brokers could exchange only essential data, this architecture pre-
vents imprudent forwarding of exhaust data to the Internet. Such
concepts of focusing on the periphery of the outer edge of core
networks has become increasingly important, e.g., the proposal
of “Edge computing” [15].

We now give an example to discuss the requirements of the
edge broker model. A video stream captured with a camera sen-

Fig. 1 Pub/sub architectures for exhaust data streams.

sor in a city is often useless because it captures just ordinary un-
exciting events. However, sometimes it can be used, for example,
monitoring students on their way to school. If there is no sub-
scriber or there are only subscribers joining the same edge bro-
ker, the video stream should not waste the resources of the core
network. On the other hand, when events, e.g., flash mobs, occur,
it may be required to forward the video stream to devices joining
other edge brokers through the Internet. Possibly these events
lead to a flash crowd, which needs scalable multicast mecha-
nisms.

Our aim with this research is to enable pub/sub messaging be-
tween edge brokers considering the above issues. An edge broker
becomes a subscriber/publisher of a topic if one of the joining
devices attempts to subscribe/publish to the topic. Hereafter, a
subscriber or publisher means an edge broker playing the role of
the subscriber or publisher, except when we explicitly mention
the joining device.

3. Related Work

In this section, we provide an explanation of current meth-
ods of topic-based pub/sub messaging using structured overlay
networks. These methods use DHTs in common and have been

c© 2015 Information Processing Society of Japan 106

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Fig. 2 Topic-based pub/sub by Scribe.

proposed as application layer multicast (ALM), where multicast
groups correspond to topics in topic-based pub/sub.

3.1 Topic-based Pub/sub Method Using DHTs
Scribe [6] is an algorithm for achieving topic-based pub/sub

and uses the Pastry network [3]. In Scribe, nodes form a tree for
every topic. Each topic has a unique ID computed from a topic
name by using a hash function, e.g., SHA-256. A node respon-
sible for the ID on the Pastry network becomes the root node
of the tree of that topic. The root node is called the rendezvous
point while the other nodes of the tree are called forwarders. A
node that attempts to subscribe to a topic sends a JOIN message
towards the rendezvous point, according to the Pastry’s routing
protocol. A node that receives the message adds the joining node
to its children table. If it had not been a forwarder of the topic be-
fore receiving the message, it forwards the JOIN message towards
the rendezvous point. Therefore, the multicast path from the ren-
dezvous point to the joining node is constructed in the reverse
order of the Pastry’s routing path as shown in Fig. 2. Publishers
of the topic send messages towards the rendezvous point whose
address can be found by the Pastry’s routing protocol. Publish-
ers can cache the address and send messages to the rendezvous
point directly. Published messages are forwarded along the tree
and delivered to all the corresponding subscribers.

Bayeux [7] is built on top of Tapestry [5] and achieves topic-
based pub/sub in a similar way to Scribe. The primary difference
is that Bayeux uses the forward-path forwarding scheme, while
Scribe uses the reverse-path forwarding scheme [16]. In Bayeux,
a node attempting to subscribe to a topic sends a JOIN message
towards the root node, and each intermediate node in the path
from the joining node to the root node simply forwards the mes-
sage. When the root node receives the message, it sends a TREE

message towards the joining node. Each node in the path from
the root node to the joining node registers the joining node in its
table.

CAN-MC [8], built on top of CAN [4], has presented a some-
what different style compared to the above two methods. CAN-
MC consists of two types of CAN networks: the entire CAN and
the mini CAN. The entire CAN is joined by all of the nodes and
provides the function of looking up an introducer node, which is
specific for each topic. The mini CAN is constructed for each
topic independently and joined by the nodes of the topic. A pub-

lished message is delivered by flooding over the corresponding
mini CAN as follows:
• A publisher sends a message to all its neighbors.
• Each node receiving the message from its neighbor along

dimension i forwards it to nodes as follows: the neighbors
along dimension 1 to (i − 1), and those along dimension i in
the opposite of the receiving direction.

• Each node does not forward the message along a particular
dimension if it has already traversed at least half-way across
the space from the publisher’s coordinates along the dimen-
sion.

• Each node caches the sequence number of messages and
does not process a duplicated message.

DYNATOPS [17] is an approach to extend rendezvous-based
pub/sub methods like Scribe or Bayeux by using following two
dynamic mapping algorithms.
• Similarity-based user placement
• Broker network reconfiguration

The former is an algorithm which aims to map users with simi-
lar subscriptions to nearby brokers. It is useful for reducing the
subscription management overhead at brokers. This algorithm
can also be applied to our approach, but it is out of the scope
of this paper. The latter is an algorithm for dynamic reconfigu-
ration of overlay networks of brokers, which aims to reduce the
unrelated relay brokers on topic routing trees. The goal of this
algorithm is somewhat similar to our research which succeeds in
eliminating unrelated relay brokers. One of the major differences
is that DYNATOPS drives the reconfiguration process with over-
head subsequent to the establishment of topic routing trees.

3.2 Inadequacy for Exhaust Data Streams
In the edge broker model, it is preferable that the pub/sub

messaging works efficiently especially when the number of sub-
scribers is small or zero, because exhaust data have low value
densities as described in Section 2. However, conventional meth-
ods have the following inefficiencies for handling exhaust data
streams on the edge broker model, though they achieve high scal-
ability.
3.2.1 Inability to Suspend Publishing

Conventional methods cannot suspend publishing even if there
are no subscribers. In Scribe and Bayeux, publishers have no way
to detect the absence of subscribers, and have to continue to con-
stantly send messages towards the root node of the corresponding
topic. Even in DYNATOPS, there is the same problem. In CAN-
MC, nodes join the mini CAN of the topic of interest without any
distinctions between subscribers and publishers. As a result, each
publisher is forced to continue to flood messages as long as there
are other publishers.
3.2.2 Gratuitous Forwarding

Scribe and Bayeux construct a multicast tree for each topic.
The path length from the root node to each subscriber is the same
as the lookup path length of Pastry and Tapestry, namelyO(log N)
where N is the number of entire nodes. Because this length does
not depend on the number of nodes that are of the topic, pub-
lished messages are forced to be gratuitously forwarded along
the excessively long path even if there are only few subscribers.

c© 2015 Information Processing Society of Japan 107

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Fig. 3 Difference in forwarding costs and loads by number of subscribers.

This wastes network resources and increases the delay time of
delivery.

Figure 3 illustrates this problem. As a primitive consideration,
a heavy load is applied to the root node if it undertakes forwarding
messages to all corresponding subscribers, as shown in the upper
left of the figure. Scribe and Bayeux construct multicast trees
to avoid this heavy load, as shown in the lower left of the fig-
ure. However, when there are only few subscribers, these meth-
ods force messages to be forwarded along the trees that have the
same depth as the case of numerous subscribers (see the lower
right of the figure). Regarding the case of few subscribers, the
zero-hop delivery described in the upper right of the figure can
forward more economically. It is also thought that most of the
topics usually have few subscribers because of the low value den-
sity of exhaust data.

Thus, an efficient method is preferred, which achieves both
economical forwarding for few subscribers and load distribution
for numerous subscribers.

4. Formulation of Requirements

We first clarify the requirements for overcoming the problems
described in Section 3.2.
• To prevent the inability to suspend publishing, it is required

that all publishers should detect the switching between sub-
scribers’ absence and presence.

• To prevent gratuitous forwarding, it is required to shorten the
path length for a small number of subscribers, while main-
taining efficient load distribution of dissemination for a large
number of subscribers.

Each requirement can be met in simple ways, such as broad-
casting queries to determine the presence of subscribers, switch-
ing delivery mechanisms as shown in Fig. 3 for each topic, and so
on. However these ways lack the global perspective and lead to
other inefficiencies, e.g., negative effect on scalability. It is thus
important for overlay networks to be constructed along a suitable
design, which is a constraint in a sense. In the rest of this section,
we focus on the “relay-free” property as an effective design of
overlay networks.

4.1 Relay-free Property
The property of relay-free [10], also called Topic-connected

Overlay, is primarily discussed in studies based on unstructured
overlay networks [11]. The definition is as follows:

Given a set of nodes V and a set of topics T , we define
a Boolean-valued function Int(v, t) with a node v ∈ V

and topic t ∈ T as input. A node v is interested in a topic
t if Int(v, t) = true, i.e., node v is a publisher or sub-
scriber of topic t. Given an overlay network G = (W, E),
where W = V and E ⊆ V × V , G is relay-free if a sub-
graph of G induced by nodes {v ∈ V |Int(v, t) = true} is
connected for all t ∈ T .

In overlay networks that satisfy the relay-free property, a pub-
lished message is forwarded only between nodes that are inter-
ested in the corresponding topic. It is expected that this property
can contribute to shortening the path length for topics that have
a small number of subscribers, because the diameter of the sub-
graph corresponding to each topic should become shorter in re-
sponse to the decrease in subscribers. In the field of structured
overlay networks, CAN-MC satisfies this property.

Satisfying the relay-free property provides suitability for short-
ening path length, but it is still difficult to suspend publishing
when there are no subscribers. This is due to the fact that each
publisher can obtain information on only its neighbors and there
is no node having all information of the overlay network. Ac-
cordingly, a publisher cannot determine whether there is any sub-
scriber not included in its neighbors.

4.2 Definition of Strong Relay-free Property
We newly define a desirable property called “strong relay-free”

as an expansion of relay-free for suspending publications. In the
strong relay-free property, we introduce the distinction between
subscribers and publishers, unlike that these are treated as equiv-
alent in relay-free. The definition is as follows, where V , T , G

have the same meanings as above.
We define a Boolean-valued function S ub(v, t) and

Pub(v, t) with a node v ∈ V and a topic t ∈ T as input. A
node v is a subscriber of a topic t if S ub(v, t) = true, and
it is a publisher if Pub(v, t) = true. G is strong relay-
free if all the following three conditions are satisfied for
all t ∈ T :
• A subgraph GS induced by nodes {v ∈ V |S ub(v, t) =

true} is connected.
• A subgraph GP induced by nodes {v ∈ V |Pub(v, t) =

true} is connected.
• A subgraph induced by GS and GP is connected.
In overlay networks satisfying the strong relay-free property,

subscribers of each topic compose a connected subgraph. This
means that the presence or absence of subscribers is synonymous
with that of one subgraph. This is suitable for detecting the ab-
sence of subscribers under the constraint that each publisher has
information only on its neighbors. Specifically, a publisher at the
connection boundary between GS and GP seems possible to con-
clude whether subscribers are absent by checking only its neigh-
bors. Furthermore, publishers of each topic also compose a con-
nected subgraph, so one can easily disseminate the information

c© 2015 Information Processing Society of Japan 108

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

about the absence of subscribers to others.

5. Efficient Topic-based Pub/sub Method

As mentioned previously, we have clarified the requirements
and formulated them as a definition of the strong relay-free prop-
erty. In this section, we propose a practical method for construct-
ing overlay networks that satisfy the strong relay-free property
using Skip Graph [12]. Subsequently, we describe the mechanism
of suspending publishing on the constructed overlay networks.

5.1 Skip Graph
Skip Graph is an algorithm of structured overlay networks pro-

viding the function of range search. Each node has a key and can
issue a query by specifying a range or a value in the key space.
Issued queries are delivered to nodes whose keys are included in
the range or exactly matched with the value.

Skip Graph composes a multiplex structure of a skip list [18],
as shown in Fig. 4. Level 0 is a doubly linked list that consists
of all nodes sorted in the order of keys. Each node has a random
sequence in base b*1 called a membership vector, and composes
a doubly linked list with nodes whose membership vectors have
the same first i digits in level i.

When a node issues a query, the search process starts from the
maximum level of the node. The query is forwarded among nodes
in the same manner as the skip list, i.e., skips long distance at the
higher level and gradually moves down to level 0.

The size of the routing table that each node must have is
O(log N) of the N participants, while the path length of forward-
ing queries is also O(log N).

5.2 Multi-key Skip Graph
Multi-key Skip Graph [19] is an expansion of Skip Graph,

which enables participating nodes to possess multiple keys. Each
node (hereafter, called physical node) inserts its keys onto Skip
Graph as virtual nodes. Virtual nodes created from the same phys-
ical node have an equivalent membership vector, namely mem-
bership vectors are unique to physical nodes.

If a search query is forwarded among virtual nodes in the same
way as normal Skip Graph, there is a possibility that the query
passes through one physical node multiple times. To avoid an in-
crease in hops by such possibility, Multi-key Skip Graph includes
an efficient routing mechanism called multi-range forwarding.

In multi-range forwarding, a query with its target range R is

Fig. 4 Example of Skip Graph.

*1 In this paper, we consider the case of binary digits.

forwarded as follows:
When a virtual node whose key is outside R receives

the query, the virtual node selects one from the virtual
nodes of its physical node on the basis of proximity to
R, and hands the query over to it. If the nearest is itself,
it processes forwarding in the same way as Skip Graph.

When a virtual node whose key is within R receives
the query, the virtual node divides R into subranges by
the keys of its physical node. The query is duplicated
and forwarded to other physical nodes with each sub-
range attached instead of R. Figure 5 shows an ex-
ample. There are three physical nodes whose mem-
bership vectors are 00, 01, and 10. When the virtual
node, whose key is 0, receives a query of target range
0 ≤ key ≤ 6, the range is divided into three subranges:
A, B, and C. Subrange B and C are forwarded to physi-
cal node 01 from 00, then are divided into subranges: B
into B1 and B2, C into C1 and C2. Finally, subrange C2
is forwarded to physical node 10 from 01 and devided
into C2α and C2β, but they expire because there are no
more physical nodes to receive the query.

With these rules, each physical node receives the same query
only once, and the path length of forwarding queries is O(log N)
where N is the number of physical nodes but not virtual nodes.

5.3 Proposed Method
5.3.1 Construction Satisfying Strong Relay-free Property

We first assume that each node possesses the names of topics
of interest as a subscriber or a publisher. By using the names as
keys and constructing Multi-key Skip Graph, topic-based pub/sub
is possible. Publishers can deliver messages to subscribers by
range queries of Multi-key Skip Graph. At this point, the overlay
network is relay-free because subscribers and publishers joining
the same topic are contiguous at level 0.

With our method, we give totally ordered relation between sub-
scribers and publishers with lower priority than topic names. For
instance, such a totally ordered relation is possible by adding suf-
fixes that are different among subscribers and publishers to topic
names, e.g., T1 pub is the key of publishers of topic T1 while
T1 sub is the key of subscribers. As shown in Fig. 6, in addition
to the fact that the units of every topic are sorted, units of every
node type (subscriber or publisher) are also sorted inside the topic
units at level 0.

In this overlay network, subscribers and publishers of each

Fig. 5 Query forwarding by multi-range forwarding.

c© 2015 Information Processing Society of Japan 109

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Fig. 6 Ordered relation of nodes in proposed method.

topic are contiguous respectively at level 0, and the subgraph of
subscribers and that of publishers are also contiguous. Thus, the
overlay network satisfies the strong relay-free property.

Hereafter, we express the subgraph of publishers of topic t ∈ T

as S EGpub(t), and the subgraph of subscribers of topic t ∈ T as
S EGsub(t).
5.3.2 Publish, Subscribe, Unsubscribe

When a publisher sends a message to a topic t, the range
search mechanism of Multi-key Skip Graph is used with the target
range of S EGsub(t). The process of subscribing/unsubscribing is
possible by the insertion/deletion mechanisms of virtual nodes
in Multi-key Skip Graph (essentially similar to those of Skip
Graph).
5.3.3 Definition of Rendezvous Point

For ∀t ∈ T , it is ensured that there exists a unique publisher
contiguous to S EGsub(t) at level 0 as long as one or more pub-
lishers exist. We call this publisher a “rendezvous point” with an
expression of rp(t). For example, the position of the rendezvous
point of topic ti is illustrated in Fig. 6. rp(t) can conclude whether
subscribers are absent without any meta information about topic
t. Specifically, if the only neighbor v of rp(t) at level 0 in the
direction of S EGsub(t) leads to S ub(v, t) = true, there are one or
more subscribers. Otherwise, there are no subscribers.

When a new publisher is inserted between rp(t) and S EGsub(t),
the new publisher takes the place of the rendezvous point there-
after. On the other hand, when an existing rp(t) leaves topic t and
there are other publishers, the neighbor of rp(t) at level 0 in the
direction of S EGpub(t) takes over the position of the rendezvous
point.
5.3.4 Suspending and Resuming

Suspending and resuming according to the switching between
subscribers’ absence and presence is possible by the rendezvous
point, which is responsible for detecting the switching and noti-
fying other publishers. Figure 7 shows flow charts regarding the
behavior of rp(t).

When all subscribers of topic t leave, rp(t) can detect it pas-
sively by using a handler which catches the update of routing ta-
bles of Multi-key Skip Graph. When rp(t) detects the absence
of subscribers, it sends a signal dictating suspension to publish-
ers, by using the range search mechanism with the target range of

Fig. 7 Flow chart with respect to switching publishers’ behavior.

S EGpub(t), as described in Fig. 7 (a).
Conversely, when new subscribers appear in topic t, which has

had no subscribers, rp(t) can detect it passively in the same way
and is responsible for sending a signal dictating resuming to pub-
lishers (see Fig. 7 (b)).
5.3.5 Inserting Publishers

Newly joining publishers need to conclude whether they
should start publishing immediately after finishing participa-
tion*2.

In case that there has been any publisher of the corresponding
topic, the joining publisher is certain to exchange messages with
at least one existing publisher in the process of inserting in Multi-
key Skip Graph. In the proposed method, information about the
suspending status is piggy-backed on the messages, and the join-
ing publisher determines the correct status by checking it.

If there were no publishers, the joining publisher will be the
rendezvous point. Hence, it can determine the correct status by
itself after finishing insertion.

Figure 8 is a flow chart regarding node insertions including the
above mechanisms.
5.3.6 Eliminating Inconsistencies

In the proposed method, two types of inconsistencies described
below can occur by the undelivered signals from rendezvous
points caused by the sudden disappearance of nodes on the no-
tifying path.
(i) There exists a publisher continuing to publish even if there

are no subscribers.
(ii) There exists a publisher suspending even if there are sub-

scribers.
These inconsistencies can occur on every publisher, except for

rendezvous points. We describe the solutions for the inconsisten-
cies.

In i, a published message from a publisher of topic t is certain
to pass through rp(t) as long as there are no subscribers. When

*2 Concerning a node which is both a subscriber and publisher of a topic,
such node just needs to insert a virtual node only into S EGsub(t) and con-
tinue publishing towards S EGsub(t). The reason is that there exist both
subscribers and publishers as long as the node itself is alive. Therefore,
such node can be irrelevant to suspending/resuming mechanisms.

c© 2015 Information Processing Society of Japan 110

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Table 1 Qualitative comparison of methods.

Relay-free Strong relay-free Path length Storage cost

Proposed ✓ ✓ O(log(pubt + subt)) O(pubt+subt

N M log N)

Scribe/Bayeux ✗ ✗ O(log N) O(pubt

N M + subt

N M log N)

CAN-MC ✓ ✗ O(d(pubt + subt)1/d) O(pubt+subt

N Md + d)

Fig. 8 Flow chart of node insertion.

rp(t) receives a message from other publishers during suspend,
rp(t) checks the absence of subscribers and sends a signal dictat-
ing suspension to the source publisher.

In ii, on the other hand, each publisher that is suspending ac-
tively confirms the status concerning the suspension of the neigh-
bor at level 0 by periodically sending a dedicated message. As a
result of the confirmation, if there is a conflict between the status
of the neighbor and itself, the publisher sends a reporting mes-
sage towards rp(t). When rp(t) receives the report, it checks the
presence of subscribers and sends a signal dictating resuming to
S EGpub(t).

5.4 Qualitative Assessment
We give a qualitative assessment of the proposed method in

comparison with the methods described in Section 3.1*3. We as-
sume the following notations: M denotes the number of topics,
N denotes the number of nodes, pubt denotes the number of pub-
lishers per topic, subt denotes the number of subscribers per topic,
and d denotes the number of dimensions in CAN. To simplify, we
also assume that each node is not both a subscriber and publisher
of the same topic.

Table 1 shows the comparison of the methods. The proposed
method and CAN-MC both satisfy the relay-free property. This
characteristic brings about good features of path length described
later.

Strong relay-free property is satisfied only by the proposed

*3 In this section, we refer to Scribe, Bayeux, and CAN-MC. As for
DYNATOPS, the fundamental property is considered to be same as
Scribe and Bayeux.

method. It means that the proposed method can suspend pub-
lishing as described above, while the other methods cannot.

“Path length” denotes the maximum length of paths from pub-
lishers to subscribers. The proposed method needs O(log(pubt +

subt)), because a published message of topic t is forwarded
over the subgraph which consists of S EGsub(t) and S EGpub(t).
Scribe/Bayeux uses lookup paths of DHTs, so the path length is
O(log N). CAN-MC requiresO(d(pubt+subt)1/d), due to flooding
over the corresponding mini CAN. Because the path length of the
proposed method does not depend on N unlike Scribe/Bayeux,
it can reduce the consumption of network resources and the de-
lay time of delivery, especially regarding topics having a small
number of participants. CAN-MC also excludes N, and its path
length depends on d which can adjust the tradeoff between the
path length and storage cost.

“Storage cost” denotes the average size of routing tables of
all nodes. This cost affects the consumption of memory and
the maintenance overhead on each node. With the proposed
method, each publisher or subscriber is inserted onto Multi-key
Skip Graph as a virtual node which must haveO(log N) neighbors
in the routing table. Thus, the average size of routing tables is
O(pubt+subt

N M log N). Regarding Scribe/Bayeux, each subscriber
forces intermediate nodes on the forwarding path to possess chil-
dren tables. This storage cost is O(subt

N M log N) on average. Be-
sides this, each publisher caches the root node of the correspond-
ing topic, then the average cost is O(pubt

N M). Accordingly, the to-
tal average cost is O(pubt

N M + subt

N M log N). With CAN-MC, each
publisher or subscriber is inserted onto mini CAN with the cost
of O(d), so the average cost is O(pubt+subt

N Md). Each node also
composes the entire CAN, thus O(pubt+subt

N Md + d) is required as
a whole. The proposed method requires slightly large cost com-
pared to Scribe/Bayeux, but is not extremely inferior. Concerning
CAN-MC, the cost depends on d.

There is another viewpoint that should be discussed. Node(s)
that are responsible for the storage cost are different between the
methods. Regarding the proposed method and CAN-MC, when
a subscriber or publisher is added, the joining subscriber or pub-
lisher itself is responsible for the storage cost. Some other nodes
are forced to update routing tables, but no one is basically forced
to increase the size of its routing table except for the joining
node. On the other hand, with Scribe/Bayeux, the joining of a
subscriber or publisher forces intermediate nodes on the forward-
ing path to take responsibility of the storage cost. This seems to
be preferable from the viewpoint of load distribution, but it also
means that each node cannot predict its forwarding load. In other
words, the fact that multiple nodes are responsible for storage
cost may lead to inconvenience in terms of the load predictabil-
ity. The details will be discussed later with experimental results,
in Section 6.3.

c© 2015 Information Processing Society of Japan 111

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

6. Evaluation

We evaluated our method through experiments with a simula-
tion program implemented in Java. This section gives the details
of each experiment and its results. We chose Scribe as the com-
parison target in these experiments, mainly because it can be built
on top of any DHTs. Skip Graph can be used to construct a DHT
by using a kind of routing which is referred to as “Routing by
Numeric ID” in SkipNet [20]. Indeed, this type of DHT is im-
plemented by PIAX [21]. Using a DHT on top of Skip Graph is
convenient for harmonizing the experimental conditions such as
the size of routing tables with the proposed method*4. Therefore,
we implemented Scribe on top of Skip Graph in the simulation
program.

Note that our experiments were aimed to show essential ten-
dencies because the actual performance is affected by parame-
ters, e.g., the radix of membership vectors can adjust the tradeoff
between the path length and size of routing tables.

6.1 Number of Messages Associated with Publishing
To confirm the ability to suspend publishing, we measured the

number of forwarded messages on the overlay network with sev-
eral numbers of subscribers including zero. The simulator gener-
ated 100,000 nodes and constructed an overlay network regarding
the proposed method and Scribe respectively. We set a topic with
the following two patterns:
• A topic has 100 publishers and 1,000 subscribers.
• A topic has 10 publishers and 1,000 subscribers.
The simulator made subscribers unsubscribe in turns. At the

timing of that the number of subscribers matches 1,000, 100, 10
and 0, the simulator forced publishers of the topic to publish a
message and counted the number of messages forwarded on the
overlay network.

Figure 9 shows the results of the averages of five repeated mea-
surements. The term “p/t” in the figure denotes the number of
publishers per topic. The graph indicates that the number of mes-
sages drops to 0 when the number of subscribers is 0 regarding
both patterns of the proposed method. Regarding Scribe, mes-
sages are forwarded even if the number of subscribers is 0. With
both methods, the number of messages becomes large according
to the number of publishers or subscribers. When the number
of subscribers is 1,000, 100 or 10, the number of messages of
the proposed method is smaller by approximately one digit than
Scribe. This result is due to the difference of the length of for-
warding path. In the proposed method, the length depends on the
number of participants of the corresponding topic. On the other
hand, the length in Scribe depends on the number of whole nodes,
thus longer paths which cause a lot of messages are constructed.
Experiments for confirming the difference of the path length will
be described in Section 6.2.

*4 Bayeux can also be built on top of any DHTs, unlike that CAN-MC is
specialized for using CAN. But Bayeux has almost the same charac-
teristics as Scribe from the viewpoint of the experiments described in
this section, i.e., the number of messages, the length of the forwarding
path and the correlation between the number of sending/receiving and
forwarding messages. Therefore, we have chosen Scribe which was pro-
posed later than Bayeux.

Fig. 9 Number of messages associated with publishing.

Table 2 Patterns of the experiment.

pubt subt Number of total nodes

α 10 990 1,000 or 10,000 or 100,000

β 500 500 1,000 or 10,000 or 100,000

γ 990 10 1,000 or 10,000 or 100,000

δ 1 9 1,000 or 10,000 or 100,000

ε 5 5 1,000 or 10,000 or 100,000

ζ 9 1 1,000 or 10,000 or 100,000

6.2 Length of Forwarding Path of Publishing
We also evaluated the effectiveness against gratuitous forward-

ing mentioned in Section 3.2. In this experiment, we calculated
the average length of paths from each publisher to each sub-
scriber. Here pubt and subt denote the same as described in Sec-
tion 5.4.

In this experiment, every topic was the same size, i.e., the sum
of the number of publishers and subscribers was equivalent. We
assumed two topic-sizes: small and large. We also assumed three
combinations of pubt and subt: pubt < subt, pubt = subt and
pubt > subt. Thus, we set six patterns in total, as listed in Table 2.
Each pattern had three different node amounts, 1,000, 10,000 and
100,000. The number of topics in each pattern was keyed to the
number of nodes, i.e., it can be obtained by dividing “Number of
total nodes” by the sum of pubt and subt. For example, the num-
ber of topics in pattern α was 10 when the number of nodes was
10,000.

The simulator constructed overlay networks for every pattern
and calculated the average length of the forwarding path from a
publisher to every corresponding subscriber for all publishers.

Figure 10 shows the results. Regarding the proposed method,
Fig. 10 (a) illustrates that the path length was not affected by the
total number of nodes and was decreased in response to the reduc-
tion of the size of topics. This means the proposed method has
high scalability for the increase in the total number of nodes and
can prevent gratuitous forwarding. On the other hand, the results
for Scribe shown in Fig. 10 (b) indicate that the path length is not
affected by the size of topics, which causes gratuitous forwarding.

For example, when focusing on patterns of δ, ε and ζ with
100,000 nodes, the path length is less than 4 hops in the proposed
method while Scribe requires more than four times the hops (16
hops). The path length affects the latency between publishers and

c© 2015 Information Processing Society of Japan 112

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Fig. 10 Length of forwarding path of publishing.

Fig. 11 CDF of path length of pattern α.

subscribers, and also the number of messages as shown in Sec-
tion 6.1.

Focusing on the pattern α of which the path lengths are most
similar between the proposed method and Scribe, we also con-
firmed the cumulative distribution function (CDF) of path length
as shown in Fig. 11. It can be seen that there was no significant
difference between the two curves, i.e., the above convenient fea-
tures of the proposed method do not cause a serious undesirable
effect on the distribution of path length.

6.3 Correlation between Number of Sending/receiving and
Forwarding Messages

We focused on the correlation between the number of send-
ing/receiving and forwarding messages. This viewpoint is impor-
tant for predicting the load of each node, namely edge broker.

In distributed pub/sub using structured overlay networks, each
node is responsible for forwarding messages to relevant succeed-
ing destinations. The forwarding load is determined according to
properties of topics which the node is on the paths of. For ex-
ample, the load must be heavy regarding a node responsible for
forwarding messages of a topic whose publishers frequently send
large amounts of data. The forwarding load is closely related to
routing tables, which store the forwarding path information on
each node. The information is registered on nodes in a different
way for every method, as described in Section 5.4.

If the forwarding load correlates with the transmission load as
publishers or receiving load as subscribers, each edge broker can
easily predict the necessary specifications of hardware resources.
For instance, if there is a device attempting to subscribe to a topic
of video streaming, an edge broker which the device joins will be
under a heavy load and should be strengthened.

Conversely, if the forwarding load does not correlate, it is dif-
ficult to predict from local information. Such a case is unsuitable
when it is assumed that edge brokers compose autonomous dis-
tributed networks such as the Internet, namely edge brokers are
not managed by a single enterprise intensively but are arbitrarily
added/removed by various enterprises or individuals.

In this regard, we conducted an experiment in which the sim-
ulator counts the number of forwarding and sending/receiving
messages for every node. Precisely, “number of forwarding” is
the number of times that a physical node forwards a message to
others, including the initial hops from publishers. “number of
sending” is the number of times that a publisher sends a message
created on itself. “number of receiving” is the number of times
that a subscriber receives a message associated with the topic the
subscriber is subscribing to.

The conditions of this experiment are as follows: pubt was 1
and subt was 1,000. The number of topics was 100, thus the total
number of nodes was 100,100. The 100 publishers joining differ-
ent topics were assigned different time intervals of sending. The
intervals were calculated so as to make the number of transmis-
sions during the simulation period become 1, 2, . . . , 100.

The simulator constructed overlay networks with the above
conditions, and forced publishers to publish at respective inter-
vals. After completion of counting the number of forwarding
and sending/receiving, we normalized the data. The normalizing
function for a data x in a data set X is as follows:

Normalize(x) =
x −min(X)

max(X) −min(X)

Figure 12 shows the results obtained by plotting all publish-
ers, and Fig. 13 shows those by plotting 1,000 subscribers which
are randomly selected from all of subscribers. Regarding the pro-
posed method, both the number of sending and receiving mes-
sages are clearly correlated with the number of forwarding mes-
sages. In Fig. 13, nodes of the proposed method are plotted lin-
early on three different angled lines. This is because of the char-

c© 2015 Information Processing Society of Japan 113

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Fig. 12 Correlation between number of sending and forwarding.

Fig. 13 Correlation between number of receiving and forwarding.

Table 3 Correlation coefficients and confidence intervals.

Correlation
coefficients 99% Confidence intervals

Figure 12 - proposed 1.0 N/A

Figure 12 - Scribe 0.1310 −0.1290 ≤ ρ ≤ 0.3742

Figure 13 - proposed 0.5483 0.5426 ≤ ρ ≤ 0.5540

Figure 13 - Scribe −0.0045 −0.0126 ≤ ρ ≤ 0.0037

acteristic of multi-range forwarding in Multi-key Skip Graph,
which forces each node to forward at most twice for each dis-
semination of a published message*5. In contrast, the results of
Scribe indicate that there are no correlations.

The correlation coefficients and their confidence intervals at the
99% level were calculated*6, as shown in Table 3. Note that the
confidence interval of proposed method in Fig. 12 is written as
N/A because the Fisher transformation cannot be applied on the
correlation coefficient value of 1.0.

Considering practical applications, it is natural that the fre-
quency of publishing is unbalanced. For example, Twitter is a

*5 Specifically, the forwarding paths in Multi-key Skip Graph compose in-
complete binary trees. Each root node or intermediate node has one or
two children, and each leaf node has no child. This is why each node
forwards a message at most twice.

*6 We used original data before normalization. Regarding Fig. 13, we used
all of the data, not sampled data.

Fig. 14 Size of routing tables.

famous and large service based on pub/sub messaging. It has
been reported that the number of tweets for every user follows
the power law distribution, and 20% of users account for 84% of
tweets [22]. Scribe or similar methods receive a negative effect
from such an imbalance in terms of load predictability. In fact,
there was a node that was forced to forward more than one thou-
sand times the number of receiving count regarding Scribe in the
experiment. In contrast, nodes in the proposed method forwarded
at most twice the number of receiving count.

6.4 Size of Routing Tables
Furthermore, we conducted experiments for observing the size

of routing tables on each node. Routing table size affects mainte-
nance cost including the consumption of memory space.

At first, we focused on the transition of the average size of
routing tables in response to the number of topics which each
node publishes or subscribes to. The simulator constructed over-
lay networks with 100,000 nodes. Half of them joined as pub-
lishers, and the remaining half joined as subscribers. Each node
published/subscribed to specific number of topics uniformly: 2,
4, 6, 8 and 10. The topics are randomly selected from predefined
1,000 topics. For each number of topics, the simulator calculated
the average number of entries in routing tables of each node.

Figure 14 shows the result. For each method (“Proposed” or
“Scribe”), the simulator counted two kinds of numbers: allow
or disallow redundancy. In the legend of the graph, “w/o redun-
dancy” denotes that the simulator counted the number of unique
physical nodes in routing tables. The other data series which “w/o
redundancy” is not attached to show the results of counting the
number of entries in routing tables by allowing redundancy. The
number of unique physical nodes in routing tables affects a kind
of maintenance cost, when each node actively checks the exis-
tence of neighbors, i.e., periodically sends messages to them for
confirming their activity.

In the Figure, the absolute values of the vertical axis of the
proposed method are larger than Scribe, but the values do not in-
crease intensively because they change linearly with the number
of topics just like Scribe. Note that the proposed method based
on Skip Graph can reduce the size of routing tables with a trade-

c© 2015 Information Processing Society of Japan 114

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

Fig. 15 CDF of size of routing tables.

off of the increase of the path length, by configuration of the base
number of a logarithm.

Subsequently, we focused on the CDF of the size of routing ta-
bles, to confirm the difference of the responsibility for the storage
cost which is described in Sections 5.4 and 6.3. The simulator
constructed overlay networks with 1,000 nodes, which all joined
as subscribers. The number of topics to which each node sub-
scribed was decided by selecting one from 1 to 1,000 without
duplication. The topics on each node were different one by one.
The simulator counted the number of entries in routing tables of
each node by allowing redundancy.

The obtained data were normalized by the function described
in Section 6.3, and plotted as shown in Fig. 15. It can be seen
that the percentage of nodes in the proposed method is linearly
increased compared to Scribe. This is caused by a characteristic
by which the storage cost of a node is sensitive to the number of
topics to which the node subscribes. On the other hand, in Scribe,
the storage cost is shared among nodes. It leads to difficulty re-
garding load predictability as described in Section 5.4.

7. Conclusion

For handling exhaust data in topic-based pub/sub messaging,
we presented a novel design of overlay networks by defining
“strong relay-free” property. It enables to convert the problem
of detecting the presence/absence of subscribers into the problem
of detecting those of one subgraph.

Subsequently, we proposed a method using Skip Graph which
can construct overlay networks that satisfy the above property.
The proposed method is highly scalable and can suspend pub-
lishing by detecting the absence of subscribers and prevent the
gratuitous forwarding of published messages.

From the simulation experimental results, we confirmed that
the above characteristics work effectively with the proposed
method in comparison with Scribe. Regarding the problem of
gratuitous forwarding, the path length of the proposed method
was less than one fourth that of Scribe when the number of nodes
was 100,000. It was also shown that the proposed method could
predict the forwarding load, which Scribe could not.

These results indicate that our method is suitable for the edge
broker model described in Section 2. The growth in IoT ac-

celerates the creation of exhaust data. Therefore, the proposed
method can reduce the wasting of network resources and encour-
age the locally produced data to be consumed locally. The pro-
posed method can be useful for not only the edge broker model
but also various situations with a large amount of nodes, e.g.,
pub/sub messaging in a single data center.

One topic for future work is to reduce the size of routing ta-
bles, which tend to be larger than existing methods as described
in Section 6.4. Furthermore, we intend to do the more practical
evaluation. This time we focused on confirming the character-
istics of the proposed method. We believe it is also important
to evaluate the actual effectiveness of it. For example, the effect
of suspending is considered to depend on the distribution of the
number of subscribers along the time axis direction. Thus, we
plan to use actual data that reflect various biases of distributions
in the real world, e.g., the relation data of SNSs. We also plan to
evaluate the proposed method on actual networks.

References

[1] Hodges, S., Taylor, S., Villar, N. and Scott, J.: Prototyping Connected
Devices for the Internet of Things, IEEE Computer, pp.26–34 (2013).

[2] Eugster, P.T., Felber, P.A., Guerraoui, R. and Kermarrec, A.-M.: The
Many Faces of Publish/Subscribe, ACM Computing Surveys, Vol.35,
No.2, pp.114–131 (2003).

[3] Rowstron, A. and Druschel, P.: Pastry: Scalable, Decentralized Ob-
ject Location, and Routing for Large-Scale Peer-to-Peer Systems,
IFIP/ACM International Conference on Distributed Systems Platforms
and Open Distributed Processing, pp.329–350 (2001).

[4] Ratnasamy, S., Francis, P., Handley, M., Karp, R. and Shenker, S.:
A scalable Content-Addressable Network, ACM SIGCOMM, Vol.31,
No.4, pp.161–172 (2001).

[5] Zhao, B.Y., Huang, L., Stribling, J., Rhea, S.C., Joseph, A.D. and
Kubiatowicz, J.D.: Tapestry: A resilient global-scale overlay for ser-
vice deployment, IEEE Journal on Selected Areas in Communications,
Vol.22, No.1, pp.41–53 (2004).

[6] Castro, M., Druschel, P., Kermarrec, A.-M. and Rowstron, A.:
SCRIBE: A large-scale and decentralized application-level multicast
infrastructure, IEEE Journal on Selected Areas in Communications,
Vol.20, No.8, pp.1489–1499 (2002).

[7] Zhuang, S.Q., Zhao, B.Y., Joseph, A.D., Katz, R.H. and Kubiatowicz,
J.D.: Bayeux: An Architecture for Scalable and Fault-tolerant Wide-
area Data Dissemination, International Workshop on Network and
Operating Systems Support for Digital Audio and Video, pp.11–20
(2001).

[8] Ratnasamy, S., Handley, M., Karp, R. and Shenker, S.: Application-
Level Multicast using Content-Addressable Networks, International
COST264 Workshop on Networked Group Communication, pp.14–29
(2001).

[9] Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh,
C. and Byers, A.H.: Big data: The next frontier for innovation, com-
petition, and productivity, McKinsey Global Institute (2011).

[10] Chockler, G., Melamed, R., Tock, Y. and Vitenberg, R.: Constructing
Scalable Overlays for Pub-Sub with Many Topics, ACM Symposium
on Principles of Distributed Computing, pp.109–118 (2007).

[11] Setty, V., Steen, M.V., Vitenberg, R. and Voulgaris, S.: PolderCast:
Fast, Robust, and Scalable Architecture for P2P Topic-based Pub/Sub,
International Middleware Conference, pp.271–291 (2012).

[12] Aspnes, J. and Shah, G.: Skip Graphs, ACM Trans. Algorithms
(TALG), Vol.3, No.4, pp.37:1–37:25 (2007).

[13] Oracle: Java Message Service (JMS), available from 〈www.oracle.
com/technetwork/java/jms〉 (accessed 2014-01-31).

[14] OASIS: AMQP, available from 〈www.amqp.org〉 (accessed 2014-01-
31).

[15] NTT: Edge computing, available from 〈www.ntt.co.jp/news2014/
1401e/140123a.html〉 (accessed 2014-01-31).

[16] Zhang, R. and Hu, Y.C.: Borg: A Hybrid Protocol for Scalable
Application-level Multicast in Peer-to-Peer Networks, International
Workshop on Network and Operating Systems Support for Digital Au-
dio and Video, pp.172–179 (2003).

[17] Zhao, Y., Kim, K. and Venkatasubramanian, N.: DYNATOPS: A
Dynamic Topic-based Publish/Subscribe Architecture, International
Conference on Distributed Event Based Systems, pp.75–86 (2013).

c© 2015 Information Processing Society of Japan 115

Journal of Information Processing Vol.23 No.2 105–116 (Mar. 2015)

[18] Pugh, W.: Skip Lists: A Probabilistic Alternative to Balanced Trees,
Comm. ACM, Vol.33, No.6, pp.668–676 (1990).

[19] Konishi, Y., Yoshida, M., Takeuchi, S., Teranishi, Y., Harumoto, K.
and Shimojo, S.: An Extension of Skip Graph to Store Multiple Keys
on Single Node, Journal of Information Processing Society of Japan,
Vol.49, No.9, pp.3223–3233 (2008) (in Japanese).

[20] Harvey, N.J.A., Dunagan, J., Jones, M.B., Saroiu, S., Theimer, M.
and Wolman, A.: SkipNet: A Scalable Overlay Network with Practi-
cal Locality Properties, USENIX Symposium on Internet Technologies
and Systems, pp.9–23 (2003).

[21] PIAX: PIAX: P2P Interactive Agent eXtensions, available from
〈www.piax.org/en〉 (accessed 2014-01-31).

[22] Welhuis, A.: Twitter and the pareto principle, available from 〈www.
annouckwelhuis.nl/twitter-and-the-pareto-principle-2〉 (accessed
2014-01-31).

Ryohei Banno received his B.E. in Infor-
mation Engineering in 2010, and his Mas-
ter of Information Science and Technol-
ogy in 2012, all from Hokkaido Univer-
sity, Japan. Since 2012, he has been a re-
searcher in NTT Network Innovation Lab-
oratories. His research interests include
distributed systems, especially structured

overlay networks. He is a member of IPSJ, IEICE, and JSSST.

Susumu Takeuchi received his M.E. and
Ph.D. degrees from Osaka University,
Japan, in 2003 and 2006, respectively.
From 2006 to 2009, he was an assistant
professor of Graduate School of Informa-
tion Science and Technology, Osaka Uni-
versity. In 2009, he joined National Insti-
tute of Information and Communications

Technology (NICT) as an expert researcher. Since 2011, he has
been a senior research engineer in NTT Network Innovation Lab-
oratories. He received the IPSJ Best Paper Award in 2011. His
research interests include technologies for information systems,
especially utilizing social networks and overlay networks. He is
a member of IPSJ and IEEJ.

Michiharu Takemoto received his B.S.
and M.S. degrees from the University of
Tokyo, Tokyo, Japan, in 1992 and 1994,
respectively. He received his Ph.D. in En-
gineering from Waseda University, Tokyo,
Japan in 2009. Since he joined NTT in
1994, his research interests include dis-
tributed computing environment and its

applications. He received a Young Investigators Award from
IEICE in 1998. He was a visiting scientist at Laboratory for
Computer Science, Massachusetts Institute of Technology from
1999 to 2000. He was a guest researcher at National Institute of
Information and Communications Technology (NICT) of Japan
from 2008 to 2011. He is currently a senior research engineer
and supervisor, in NTT Network Innovation Laboratories. He is
a member of IEEE, IPSJ and IEICE.

Tetsuo Kawano received his B.E. degree
from Kumamoto University, Kumamoto,
Japan in 1991. He received his M.E.
degree and Ph.D. in Engineering from
Kyushu University, Fukuoka, Japan in
1993 and 1996, respectively. He joined
NTT Software Laboratories, Tokyo, Japan
in 1996. Currently, he works as senior re-

search engineer in NTT Network Innovation Laboratories, where
he is studying distributed network service platform architectures.
He is a member of IPSJ and IEICE.

Takashi Kambayashi received his B.S.
and M.S degrees from Keio University in
1987 and 1989, respectively. Since he
joined NTT in 1989, his interests include
ubiquitous networking systems. He is a
Manager in NTT Science and Core Tech-
nology Laboratory Group. He is a mem-
ber of IPSJ.

Masato Matsuo received B.E. and M.E.
degrees in Mechanical Engineering from
Kyoto University in 1986 and 1988, re-
spectively. After joining NTT in 1988, he
researched adaptive network service sys-
tems and ubiquitous networking systems.
He is a senior research engineer and su-
pervisor in NTT Network Innovation Lab-

oratories. He is a member of IPSJ and IEICE.

c© 2015 Information Processing Society of Japan 116

