
データ更新が頻繁な環境におけるスカイラインデータ計算
アルゴリズムの提案

Kamalas Udomlamlert1,a) Takahiro Hara1,b) Shojiro Nishio1,c)

Abstract: 2 つのデータが与えられたとき，すべての属性値が劣っておらず，かつ少なくとも一つの属性値が
優っている場合，一方のデータはもう一方のデータを支配しているという．スカイラインクエリは，どのデー
タにも支配されていないデータのみを検索する．ここで，データ更新が頻繁に起こる環境について考える．こ
の時、長期間スカイラインであるデータは多くのアプリケーションで用いられる場合が多い．このようなデー
タを検索するために，更新が発生するごとにすべてのデータを候補として再計算する単純なアプローチが考え
られるが，計算量が非常に大きいという問題がある．そこで，本稿ではこの問題を解決する効率的なアルゴリ
ズムを提案する．提案アルゴリズムでは，Minimum bounding rectangles (MBRs) を用いて，スカイラインとな
らないデータを候補から除外し，計算時間を短縮する．シミュレーション実験の結果より，提案アルゴリズム
は単純なアプローチよりも高速にスカイラインデータを検索できることを確認した．

1. Introduction
Recently, many query methods have been developed and

gained a lot of attentions in database researches in order to deliver

most satisfactory results to various classes of end-users. Consid-

ering the dominance relations among objects (the competitiveness

of each object), skyline computation [1], which represents a re-

sult set which each result item is not worse than others, is also

one of popular query methods so far. For a common example,

given that a hotel is represented by 2 attributes including price

per night and rating, the system has to give a set of preferable

hotels to end-users. However, each user may have different cri-

teria to evaluate the same set of these hotels, for example, the

first user may want a hotel which is high-rated regardless of price

while the second user may prefer to standard rating hotels with

reasonable price. Obviously, hotels which have higher price per

night and lower rating than others cannot attract any users, and

they should be removed from the final result set. A skyline set

is useful here because it returns hotel candidates that each result

will not contain such non-preferable choices.

In some applications, multiple data objects may change their

data values according to the time, e.g., financial data where stock

prices and fundamental criteria of many stocks can be dynam-

ically changed every time-tick. Another example application

is to analyzing historical data archives, for example sport data

where player statistics are changed partially in each match. Even

though, there are many continuous skyline processing methods

previously proposed in the research community, there are still a

1 Graduate School of Information Science and Technology, Osaka Univer-

sity, Japan
a) kamalas.u@ist.osaka-u.ac.jp
b) hara@ist.osaka-u.ac.jp
c) nishio@ist.osaka-u.ac.jp

couple of differences as follows:

(1) Continuous skyline processing, e.g., [5], [11], [17], mainly

aims to deal with a single data update at each time while in

our assumption, a bulk of data updates is raised at a time.

(2) Continuous skyline processing tries to find how to fast an-

swer a new skyline set upon a single update regardless of

maintenance time (only query response time) [5] while in

our assumption, we also analyze the historical archive of

data, so overall processing time including skyline compu-

tation time as well as maintenance time are both also taken

into accounts.

In skyline monitoring, a single data update can totally change

a final skyline set, so handling multiple data updates at a time is

challenging. Without any technique, to guarantee the correctness,

the new skyline set must be computed from the entire set of data

objects in each time snapshot.

In this paper, we propose an efficient method based on the

properties of a bounding box (a minimum bounding rectangle in

the case of 2 dimensions). We use bounding boxes to capture and

prune unnecessary data candidates as well as neglect no-effect

data updates. Therefore, we can identify a smaller candidate set

in skyline computation in consecutive data snapshots resulting in

saving overall execution time.

In summary, the contributions of this paper are as follow:

• We formulate the problem definition of skyline computation

on a bulk of data updates as well as illustrate example appli-

cations of this problem.

• We propose an efficient algorithm and index structures to

identify a smaller set of data candidates before skyline cal-

culation, and the cost of maintenance is in according with

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 252

degree of data changes (pay as you go).

• We conduct some experiments in various settings by using

both synthetic and real datasets to show that our proposed

method can run faster than the baseline.

2. Related work
Skyline computation in database research was firstly intro-

duced in [1]. The authors proposed two skyline algorithms

including Block-Nested-Loop skyline and Divide-and-Conquer

skyline algorithms. After that, numerous research papers tried to

enhance the performance by using more complicated index struc-

tures such as Branch-and-Bound skyline algorithm [12].

Apart from the traditional skyline processing in databases, sky-

line processing for distributed systems has been studied. Many

techniques were proposed as described in the survey [4]. More-

over, many interesting variants of skyline processing methods

have also been studied for example, reverse skyline query [3],

fragmented skyline [13], subspace skyline [16] and interval sky-

line [7].

On the other hand, finding skyline sets on time series is closely

related to continuous skyline query processing which aims to

monitor the latest skyline in response to new data updates over

the course of time. There are many variants of continuous sky-

line processing methods. The papers in [2], [6], [8] assume a ki-

netic model of moving data objects aiming to find the skyline ob-

jects (static attributes) when some dynamic attributes (locations

or query points) are movable. These are quite different from ours,

and their techniques are not suitable to solve our context’s prob-

lems because a kinetic model is not assumed.

Another group of related work is continuous skyline on data

streams [9], [11], [15], [19]. These aim to efficiently monitor

the latest skyline set in the sliding window where window-range,

data arrival time and data expiration time are given. Nevertheless,

a single data modification (data update) can be taken as two op-

erations - insertion and deletion, but it does not work well in our

assumed problem because of high maintenance cost.

Apart from skyline computation for data streams, [5] used the

pre-computed second skyline to improve the query response time

to answer the final skyline (the first skyline) on new data updates.

However, the procedure to update focuses only one single update

at a time, so the performance degrades in our assumption where

the update ratio is high. [17] assumed a very close problem to

ours according to its data model. This work tries to monitor the

latest modification of the skyline set when each data object is up-

dated by the information from update streams. Its main contribu-

tion relies on allocating data into grid cells and consider the dom-

inance relations between those grids to prune unnecessary candi-

dates from skyline calculation. Using grid indexes is very com-

mon for pruning unnecessary candidates as found in [15], [19].

3. Preliminaries
3.1 Data model

We assume that the system analyzes a skyline set over a fixed

number of data objects. Each data object is comprised of m-

numerical values as attributes and data id id as an object’s iden-

tifier. Data attributes of data object i at the initialization (the first

snapshot in the historical archive, snapshot 0) are represented as

a tuple p0
i = (p0

i [1], p0
i [2], . . . , p0

i [m]). Let N be the number of all

data objects in the system, a set of all data objects at snapshot t is

denoted by Pt = {pt
1
, pt

2
, . . . , pt

N}, where t = {0, 1, . . . , T } and T is

the total number of snapshots in the archive.

Definition 1. (Point dominance) A data point pt
i dominates pt

j

(pt
i ≺ pt

j) if and only if ∀k ∈ {1, 2, . . . ,m} : pt
i[k] ≤ pt

j[k], and
∃l ∈ {1, 2, . . . ,m} : pt

i[l] < pt
j[l].

Definition 2. (Weakly point dominance) A data point pt
i weakly

dominates pt
j (pt

i � pt
j) if and only if ∀k ∈ {1, 2, . . . ,m} : pt

i[k] ≤
pt

j[k].

3.2 Data update model
In this research, we assume that at each timestamp (snapshot)

t, only a partial set of data objects changes their attributes’ values

from the previous timestamp t − 1. An update model like this can

be often found in pull-based data delivery model that the server

pulls new updates from data sources periodically.

How data change is described by an update tuple

which can be defined in many ways based on the ap-

plications, for example, a new value update defined by

a 3-tuple u = (id, t, (p[1], p[2], . . . , p[m])) that means

pt
id = (p[1], p[2], . . . , p[m]) and a modification update defined

by a 3-tuple u = (id, t, (Δp[1],Δp[2], . . . ,Δp[m])) that means

pt
id = (pt−1

id [1] ⊗ Δp[1], pt−1
id [2] ⊗ Δp[2], . . . , pt−1

id [m] ⊗ Δp[m])

where ⊗ is an operator, for example, addition, multiplication and

average. This changes the corresponding data object pt−1
id to pt

id.

A list of updates of snapshot t (update streams) is a list of up-

date tuples Ut = {ut
1
, ut

2
, . . .} where |U | ≤ N. Therefore, the data

objects which are not modified by any update tuples remain the

same values that is pt
id = pt−1

id . Since our model embodies both

multidimensional attributes (space) and time-series data (tempo-

ral data), it also works with spatio-temporal applications (e.g.,

location-aware services).

3.3 Skyline calculation
In this research, we aim to continuously calculate a set of sky-

line (S Kt) efficiently from Pt at each consecutive snapshot t, i.e.,

the next snapshot from t − 1 (∀t ∈ {0, 1, . . . , T }).
Definition 3. (Skyline set) Given a set of data points at snapshot
t (Pt), pt

i ∈ Pt is included in the skyline set S Kt if and only if
∀pt

j ∈ (Pt\{pt
i}), pt

j does not dominate pt
i (pt

j ⊀ pt
i).

3.4 Summarizing consecutive data snapshots with mini-
mum bounding rectangles (MBRs)

A minimum bounding rectangle (MBR) is the smallest oriented

rectangle enclosing a set of points which is a 2 dimensional case

of a minimum bounding box in a coordinate system. Our pro-

posed solution can deal with any number of dimensions by using

the same idea. According to all examples in this paper illustrated

in a 2-dimensional space, for simplicity, we use the term MBRs
to refer to this expression in general.

While each data object possibly changes its attributes’ values

at every timestamp t, those tracing data points can be seen as a

set of points which can be summarized (represented) as a MBR.

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 253

x1

x2

(a) A example MBR M1(0, 6)

x1

x2

(b) An example of 2 skylines in differ-

ent snapshots

Fig. 1: An example of MBRs and the space

Therefore, we use a MBR to summarize the space that a data ob-

ject changes its values between consecutive snapshot a to b, i.e.,

{pa
i , p

a+1
i , . . . , p

b
i } where a ≤ b.

A MBR of data object id from consecutive snapshot a to b is

represented by a 3-tuple Mid(a, b) = (id, ub, lb) where ub[l] =
max j∈[a,b] p j

id[l] and lb[l] = min j∈[a,b] p j
id[l] when l ∈ {1, 2, . . . ,m}.

We represent a list of MBRs which ends at snapshot t as Mt =

{M1(a1, t),M2(a2, t), . . . ,MN(aN , t)} where aid is a number of the

start snapshot of MBR id. Fig.1a exemplifies 7 consecutive data

snapshots of a data object (id = 1) denoted by {p0
1
, p1

2
, . . . , p6

1
}

while the arrows express their trajectories between two consecu-

tive data snapshots. Their MBR is a box M1(0, 6) shown in the

figure. In this paper, for short, Mt
id refers to the latest MBR of

object id at timestamp t regardless of the beginning timestamp

(Mid(∗, t)).

3.5 Dominance region and Anti-dominance region
A dominance region of a MBR (Mt

i .DR) is a subspace where

x[l] ≥ Mt
i .ub[l] for all l ∈ {1, 2, . . . ,m}. Any data points or MBRs

that fully fall within this region will be weakly dominated by Mt
i .

In the contrary, an anti-dominance region of MBR (Mt
i .ADR) is a

subspace where x[l] ≤ Mt
i .lb[l] for all l ∈ {1, 2, . . . ,m}. Any data

points or MBRs that fully fall within this region weakly domi-

nate Mt
i . To illustrate, in Fig.1a, the dominance region and anti-

dominance region of M1(0, 6) are the gray area in M1(0, 6).DR
and M1(0, 6).ADR respectively.

Definition 4. (MBR Dominance) A MBR Mt
i dominates Mt

j (Mt
i ≺

Mt
j) if and only if ∀l ∈ {1, 2, . . . ,m} : Mt

i .ub[l] ≤ Mt
j.lb[l], i.e.,

Mt
i .ub � Mt

j.lb (Mt
j fully falls in Mt

i .DR)

Due to Mt
id.lb[l] = min j∈[a,b] p j

id[l] when l ∈ {1, 2, . . . ,m}, we

conclude that a point Mt
id.lb weakly dominates every point pk

id

where k = {a, a + 1, . . . , b}. We further define a definition of a set

of skyline MBRs at snapshot t (S KMt).

Definition 5. (Skyline MBR) Given a set of MBRs at snapshot t
(Mt), Mt

i ∈ Mt is included in the set of skyline MBRs S KMt if
and only if ∀Mt

j ∈ (Mt\{Mt
i }),Mt

j does not dominate Mt
i .

In addition, we denote a set of MBRs that do not belong to

S KMt as a set of non-skyline MBRs (NS KMt = Mt\S KMt).

Lemma 1. ∀Mt
i ∈ NS KMt: there must be at least one MBR

which is inside Mt
i .ADR.

Proof. (Proof by contradiction) Assume that Mt
i ∈ NS KMt, but

there is no MBR inside Mt
i .ADR. Due to Mt

i ∈ NS KMt and Def-

inition 5, there exists at least one MBR Mt
j dominating Mt

i . As a

result, Mt
j.ub[l] ≤ Mt

i .lb[l] for ∀l ∈ {1, 2, . . . ,m}. From the expla-

nation in Section 3.5, this leads to the contradiction because Mt
j

must be contained in Mt
i .ADR. �

3.6 Pruning candidates for skyline calculation using MBRs
At each snapshot, instead of finding a skyline set from all data

points Pt, we find the skyline by using only candidates in the sky-

line MBRs ({pt
i/M

t
i ∈ S KMt}). The cardinality of S KMt is likely

to be much smaller than that of Pt, so skyline calculation can be

computed faster.

Lemma 2. Skyline calculation from {pt
i/M

t
i ∈ S KMt} produces

the correct skyline set (S Kt) as same as using all data points Pt.

Proof. (Proof by contradiction) In order to produce incorrect

S Kt, there must be at least a point pt
i where Mt

i ∈ NS KMt ∧ pt
i ∈

S Kt. By Lemma 1, there exists Mt
j : Mt

j ≺ Mt
i . This leads to

contradiction that pk
i � S Kt because ∀k : Mt

j.ub � pk
i . �

Running Example in Fig.1b
Fig.1b illustrates series of 7 data snapshots (data points) of 5

data objects (id = {1, 2, 3, 4, 5}) with their MBRs (Mid(0, 6)). By

Definition 5, M1(0, 6) and M2(0, 6) are not skyline MBRs because

they are dominated by {M3(0, 6),M4(0, 6)} and {M4(0, 6)} respec-

tively. Therefore, dt
1

and dt
2

are guaranteed not to include the final

skyline at t ∈ {0, 1, . . . , 6} that we can safely remove them from

skyline calculation. As in the example, consider only t = {5, 6},
while the final skyline at t = 5 (S K5) includes only {p5

4
}, S K6

includes {p6
3
, p6

4
, p6

5
}.

3.7 Changes of an MBR due to new updates
We start considering how a bulk of new data updates at the next

snapshot (Ut+1) affects the current MBRs Mt
i . Certainly, includ-

ing a new snapshot of data can make Mt
i changed in size as well

as their properties, i.e., lb, ub, DR and ADR. Consider a MBR

of data object id at snapshot t and its update tuple ut+1
j where

ut+1
j .id = id, where l ∈ {1, 2, . . . ,m}

Mt+1
i .ub[l] = max(Mt

i .ub[l], pt+1
i [l]) (1a)

Mt+1
i .lb[l] = min(Mt

i .lb[l], pt+1
i [l]) (1b)

The effects of the data updates to Mt+1
id can be classified into 4

cases as follows:

(Case I) Mt+1
id .lb = Mt

id.lb and Mt+1
id .ub � Mt

id.ub
This case happens when pt+1

id falls in gray-shaded area at the

right-top corner illustrated in Fig.2a. Mt+1
id .ADR remains the

same as Mt
id, but Mt+1

id .DR becomes smaller.

(Case II) Mt+1
id .lb ≺ Mt

id.lb and Mt+1
id .ub = Mt

id.ub
This case happens when pt+1

id falls in the gray-shaded area

at the left-bottom corner illustrated in Fig.2b. In addition,

Mt+1
id .ADR becomes smaller than that of Mt

id while Mt+1
id .DR

remains the same as Mt
id.

(Case III) Mt+1
id .lb ≺ Mt

id.lb and Mt+1
id .ub � Mt

id.ub
If pt+1

id falls in the gray-shaded areas at the right-top and left-

bottom corners illustrated in Fig.2c., this changes both lb

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 254

xx[1]

x[2]

(a) Case I

x[1]

x[2]

(b) Case II

x[1]

x[2]

(c) Case III

x[1]

x[2]

(d) Case IV

Fig. 2: MBR updates before including p7
1

and after including p7
1

Table 1: Notation Summary

Notation Description
pt

i a data tuple of data object i at snapshot t
Pt a set of data tuples at snapshot t
ut

i an i-th new update tuple at snapshot t
Ut a set of new update tuples at snapshot t
Mi(a, b) a MBR summarizing consecutive data snap-

shots between a and b of data object i
Mt

i ,

Mi(∗, t)
refer to a current Mi(a, b) where b = t and a is

neglected

S Kt a set of skyline points at snapshot t
S KMt a list of skyline MBRs at snapshot t
NS KMt a list of non skyline MBRs at snapshot t

and ub. In the same way, both Mt+1
id .DR and Mt+1

id .ADR are

degraded compared to that of Mt
id.

(Case IV) Mt+1
id .lb = Mt

id.lb and Mt+1
id .ub = Mt

id.ub
Mt+1

id and Mt
id are identical if pt+1

id falls inside Mt
id (gray-

shaded area) illustrated in Fig.2d.

According to Definition 5, the membership of MBRs in S KMt

and NS KMt possibly no longer holds for snapshot t+1 due to the

changes of its DR and ADR. Therefore, our proposed method in-

troduces an efficient method to maintain the consistency in order

to identify S KMt+1 as well as NS KMt+1. We describe details in

the next section. The notations and symbols used for the expla-

nation are summarized in Table 1.

4. Overview
From the preliminaries in Section 3, we proved that only the

data objects whose current MBR belongs to S KMt are a sufficient

candidate set for skyline calculation of each snapshot t. This can

significantly reduce the cardinality of data candidates to be calcu-

lated in skyline computation. Therefore, we propose an efficient

method to maintain those MBRs by keeping two different lists in-

cluding S KMt and NS KMt where Mt = S KMt ∪ NS KMt and

S KMt ∩ NS KMt = φ.

Our proposed method can be roughly divided into 3 steps.

(1) Pre-computation maintenance (PRE)
According to new data updates from the stream at t, the

MBRs at t − 1 can be possibly changed in terms of phys-

ical MBRs and their pruning capability. This step tries to

identify the correct S KMt by paying low maintenance cost

as much as necessary before skyline calculation.

(2) Skyline calculation (SKY)
This process is straight-forward. We calculate a final skyline

result (S Kt) by one of many state-of-the-art skyline compu-

tation methods but using a smaller set of candidates, i.e., a

set of data objects whose MBR belongs to S KMt.

(3) Post-computation maintenance (POST)
Regarding to the final skyline result, we are able to detect

some data objects whose MBR belongs to S KMt but does

not appear in S Kt. In other words, these MBRs produce

unpleasant false positives degrading overall the pruning ca-

pability. In this process, we propose a heuristic rule to solve

this problem.

5. Proposed algorithms
5.1 Intialization (t = 0)

At the initialization (t = 0), we have to construct the initial

MBRs (M0) of all data objects (P0). That means, in each MBR

M0
i , M0

i .lb = M0
i .ub = p0

i for all i ∈ {1, 2, . . . ,N}. Hence, we

calculate the first skyline set of P0 and classify MBRs into 2 lists

as S KM0 = {M0
i /p

0
i ∈ S K0} and NS KM0 = M0\S KM0.

Moreover, we additionally introduce two important elements

to help easily identifying the relations between MBRs in S KMt

and NS KMt including an id list of MBRs in a dominance region

of each MBR (Mt
i .DRM) and a single id of MBR which is in an

anti-dominance region (Mt
i .adrm). These relations can be estab-

lished while executing skyline calculation by using the following

rules:

(1) If Mt
i is dominated by Mt

j on skyline computation, then

Mt
i ∈ NS KMt, Mt

i .admr = j and i ∈ Mt
j.DRM.

(2) If Mt
i is not dominated by any other MBRs, then Mt

i ∈ S KMt

and Mt
i .admr = nil (not applicable).

According to Definition 4 and Lemma 1, we conclude that

∀Mt
i ∈ NS KMt : Mt

i � nil while ∀Mt
i ∈ S KMt : Mt

i = nil, and as

long as Mt
Mt

i .admr dominates Mt
i , Mt

i must belong to NS KMt.

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 255

5.2 On a bulk of new data updates at t > 0
As a set of bulk updates Ut = {ut

1
, ut

2
, . . .}, each update tuple

describes how a new data tuple pt can be generated while the rest

(not indicated in Ut) pt
i = pt−1

i . For those unchanged data tuples,

their MBRs are also unchanged in the same way, so the system

does nothing in this case.

However, we need to verify some affected MBRs both in

S KMt−1 and NS KMt−1 whether they are still in the correct lists

at snapshot t due to new data updates. Therefore, we create an ad-

ditional list called a verification list (VL) containing MBRs which

are needed to be further investigated. There are only 2 cases that

need to be checked. Otherwise can be neglected. This process is

included in the pre-calculation maintenance.

(1) Mt−1
i ∈ NS KMt−1 and Mt

i affected by pt
i fall in either Case

II or Case III (referred to Section 3.7).

Because Mt
i .ADR is deteriorating, Mt−1

Mt
i .admr may no longer

dominate Mt
i . Therefore, we check if it still dominates, and

if not, Mt
i is pushed to VL.

(2) Mt−1
i ∈ S KMt−1 and Mt

i affected by pt
i fall in either Case I

or Case III (referred to Section 3.7).

Because the dominance capability of Mt
i (Mt

i .DR) has been

reduced, some MBRs in Mt−1
i .DRM may no longer be dom-

inated by Mt
i . We move j ∈ Mt−1

i .DRM which is not domi-

nated by Mt
i to VL.

(3) Otherwise

No change of MBRs’ status.

VL Refinement
We can see that all listed MBRs in VL used to be in NS KMt−1,

but possibly they are no longer able to be in NS KMt. This will

increase the number of MBRs in S KMt resulting in increasing

in the number of candidates in skyline calculation. At this pro-

cess, we try to check these MBRs again whether there exists at

least a MBR in S KMt dominating them before including them

into S KMt. Therefore, for each Mt
i ∈ VL, we search for any first

Mt
j ∈ S KMt that dominates Mt

i . If found, Mt
i is pushed back to

NS KMt and set Mt
i .admr = j. Otherwise, it is swapped to S KMt.

It is noted that there may be more than one Mt
j dominating

Mt
i , but we simply choose the first found MBR that dominates

Mt
i . In best practice, Mt

j to be chosen should be a MBR in

S KMt which gives the longest distance between Mt
i .lb and Mt

j.ub
(Mt

i .admr = max∀ j:Mt
j≺Mt

i
d(Mt

i .lb,M
t
j.ub)). However, to do this

approach consumes more time because we cannot avoid scan-

ning the entire list of S KMt while simply choosing the first found

dominating MBR can perform early termination.

5.3 Skyline calculation
Because the main objective of this paper aims to reduce the

number of candidates to be calculated in skyline computation re-

gardless of skyline computation algorithms. Therefore, we sim-

ply adopt the state-of-the-art Block-Nested-Loop skyline compu-

tation as default. According to Lemma 2, we calculate the final

skyline set at snapshot t (S Kt) by using a set of data points whose

MBRs belong to S KMt. Nevertheless, other complicated skyline

computation algorithms can be used for further improvements,

but this is out of the scope of this paper.

5.4 Post-compuation maintenance
After S Kt has been calculated, it is possible that some of can-

didates from S KMt do not finally belong to S Kt (false positives).

If Mi(∗, t) = Mt
i usually incurs a false positive for a long period

(too many consecutive snapshots), it is worth considering paying

maintenance cost to reconstruct and newly start a MBR from the

current snapshot t (Mt
i = Mi(t, t)) because of the possible higher

gains of pruning capability in the next iteration.

Lemma 3. The dominance and anti-dominance regions of a
newly-reconstructed MBR M′i = Mi(t, t) are not smaller than the
old Mi = Mt

i (a, t) where a < t.

Proof. The dominance region of Mi (Mi.DR) is x[l] ≥ Mi.ub[l]
for l ∈ {1, 2, . . . ,m}. However, M′i .ub = pt

i and pt
i[l] ≤

maxk∈[a,t] pk
i [l] = M′.ub. Hence, M′i .DR must not be smaller

than that of Mi. In the same way, the anti-dominance region of

Mi (Mi.ADR) is x[l] ≤ Mi.lb[l] for l ∈ {1, 2, . . . ,m}. However,

M′i .lb = pt
i and pt

i[l] ≥ mink∈[a,t] pk
i [l] = M′.lb. Hence, M′i .ADR

must not be smaller than that of Mi. �

MBR Reconstruction Strategy
MBR Mt

i that belongs to S KMt but pt
i is not included in S Kt

for a long period should be lowered the rank to NS KMt to de-

crease the cardinality of skyline calculation in each snapshot. In

this section, we discuss about a heuristic rule to decide which

MBR should be reconstructed followed by a running example.

Firstly, a record of the number of consecutive false positives

of each MBR should be tracked by adding a new MBR attribute

called Mt
i .c f p. At each iteration we calculate this parameter for

all MBRs in S KMt as follows:

Mt
i .c f p =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mt−1
i .c f p + 1 ; Mt

i ∈ S KMt ∧ pt
i � S Kt

0 ; Otherwise
We decide to reconstruct a MBR Mt

i when

Mt
i .c f p ≥ c f pths (2)

where c f pths is a false positive tolerance threshold, i.e., Mt
i : ∀k ∈

[t − c f pths, t] : Mk
i ∈ S KMk ∧ pk

i � S Kk.

Lemma 4. If Mt
i is reconstructed, a list of MBRs Mt

i dominates
(Mt

i .DRM) remains the same.

Proof. Due to Lemma 3, the dominance region of Mt
i does not

become smaller. Therefore, all MBRs that Mt
i dominated be-

fore reconstruction are still dominated by Mt
i after the reconstruc-

tion. �

Lemma 5. After Mt
i ∈ S KMt is reconstructed, Mt

i may change
its membership to NS KMt

Proof. According to Lemma 3, the anti-dominance region of

Mt
i may become larger. Therefore, it is possible that some

Mt
j ∈ S KMt can dominate Mt

i . �

Running example
Fig.3 illustrates an example of a MBR reconstruction. In

Fig 3a, there are 11 different MBRs in the space which can

be classified to S KMt and NS KMt. An arrow from Mt
i to Mt

j

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 256

x1

x2

(a) Before Mt
2

reconstruction

x1

x2

(b) After Mt
2

reconstruction

Fig. 3: Running example of an MBR reconstruction

shows the relation that Mt
i dominates Mt

j, i.e., Mt
j ∈ Mt

i .DRM
and Mt

j.admr = Mt
i . Assume that Mt

2
is decided to be recon-

structed at snapshot t and the recent data point pt
2

is as shown

in Fig.3a. After Mt
2
’s reconstruction (Fig.3b), both dominance

and anti-dominance region of Mt
2

have changed, and Mt
2

is no

longer in S KMt because it is dominated by Mt
3

while Mt
2
.DMR

({7, 8}) remains the same (no additional cost of finding). Note

that Mt
i ∈ NS KMt can be dominated by some Mt

j ∈ NS KMt (not

only limited to Mt
j ∈ S KMt).

In summary, while the process in pre-calculation maintenance

swaps some MBRs from NS KMt to S KMt, the process in post-

calculation maintenance dynamically swaps back some MBRs

from S KMt to NS KMt. This responses to behaviors of data

movement in an adaptive way.

6. Performance Evaluation
6.1 Datasets

In this experiment, we use both synthetic and real datasets to

simulate and show our proposed method’s performance.

(1) Synthetic dataset (SYN): Firstly, each data record p0
i is

uniformly random on each dimension as a point on the m-

dimensional data space [0, 100]m. We model a data value

on each dimension as a Gaussian random walk pattern fol-

lowing pt
i[l] = pt−1

i [l] + ut
i[l] where ut

i[l] = λ · et[l], et[l] ∼
N(0, 0.5) (normal distribution), 1 ≤ l ≤ m and

λ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

1 ,with probability p.

0 ,with probability 1 − p.
(3)

Hence, in each snapshot, the values of a data object (a

data point) change in some/all attributes with the probabil-

ity 1 − (1 − p)m. Therefore, given ND data objects in the

entire system, the number of update tuples is expected to be

(1 − (1 − p)m) · ND records in each snapshot, and the steps

of the changed values in each attribute is according to a nor-

mal distribution. We generate different synthetic datasets by

varying some parameters as shown in Table 2, which also

shows their default values.

(2) NBA Dataset (NBA): This NBA dataset aggregated by the

authors in [14] consists of all historical NBA information

both game plays and player statistics between 1991 and

2004. We aim find the skyline of players being active

Table 2: Parameter table for synthetic datasets

Parameter Default Range
N 5000 500-10000

m 3 2-8

T 10000 1000-50000

p 2.5% 0.5% - 20%

over that time period (only players who play more than 30

matches). By taking the end of each game as one snap-

shot, we need to compute the skyline after every game

play. In summary, there are 1225 players to be monitored,

16423 matches played (snapshots) and 312086 update tu-

ples in total. We selected 5 useful attributes from a record

of each player in each match including play time in min-

utes (MIN), points made (PTS), total rebounds (TOT), field

goal made (FGM) and field goal attempts (FGA). How-

ever, we extracted 3 attributes to evaluate players including

PTS A =
∑

PTS/
∑

MIN, TOT A =
∑

TOT/
∑

MIN and

FGR =
∑

FGM/
∑

FGA. In this dataset, we can see that

there are only at most 24 players changed (about 2% of entire

monitored players) their statistics in a consecutive snapshot.

(3) Stock Dataset (STK): This Stock dataset aggregated from

Yahoo! Finance*1 consists of the daily information of all

stocks in NYSE including open price, high price, low price,

close price and volume between 2004 and 2013. For the sce-

nario that we want to form a defensive investment portfolio,

stocks that have lower beta (not fluctuate with the market)

and a trend of increasing in price) than other stocks for a

long period of time in the market are preferable. Therefore,

we extract only 2 attributes including 200-day beta (β) and

a 200-day slope of a regression line of close price (2 dec-

imal precision). The system monitors which stock acts or

holds this characteristic for a long period of time and no bet-

ter other choices in the market (skyline). Therefore, we take

a daily change of these attributes as a snapshot. After data

cleansing, this dataset contains 1704 stocks, 2000 snapshots

and 1621833 update tuples (averagely 47.6% of entire mon-

itored stocks).

*1 Yahoo! Finance: http://finance.yahoo.com/

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 257

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

10 50 100 500 1000 5000 10000

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

False positive tolerance threshold (cfpths)

SKY (Proposed)

PRE (Proposed)

POST (Proposed)

SKY (Naïve)

Total Ratio (Proposed/Naïve)

Fig. 4: Preliminary result on c f pths

6.2 Experiment setup
We conduct some experiments by implementing algorithms

using C++ on a single commodity PC (Core i5 2.7GHz, 8GB

of RAM, 64-bit Windows 7). We test our proposed algorithm

as well as other competitive methods on the same environment.

The system is to process a large file dataset which contain a se-

ries of (D0,U1,U2, . . . ,UT) and find the desired output which

is (S K0, S K1, . . . S KT). Only synthetic datasets are generated 3

times in each case, and the results report the average case of them.

6.3 Benchmarks
We implemented the following methods for comparing with

our proposed method.

(1) Naive method (baseline): compute the skyline by default

skyline algorithm with entire data objects (D0,D1, . . . ,DT).

(2) Our proposed method: compute the skyline by default sky-

line algorithm with the data objects where their MBRs be-

long to S Kt described in Section 5.

6.4 Measurements
We measure the wall time clock of execution time. In the

naive method, there is only computation time due to skyline

computation (SKY(Naive)) while our proposed method’s to-

tal computation time must include skyline computation time

(SKY(Proposed)) and pre-computation maintenance time

(PRE(Proposed)) and post-computation maintenance time

(POST(Proposed)). In addition, a total ratio which is the total

time of the proposed method divided by that of the naive method

expresses the portion that our proposed method outperforms the

naive method.

6.5 Parameter Tuning
The false positive tolerance threshold (c f pths) is only one sys-

tem parameter described in the proposed method. Here, we study

an effect of this parameter to decide a suitable value. Fig.4 shows

the results of total computation time of the preliminary experi-

ment by using a default-setting synthetic dataset. At low c f pths,

POST(Proposed) is high because of frequent MBR reconstruc-

tions in that phase while SKY(Proposed) can be reduced from

SKY(Naive) because of less false positives in S KMt, and vice

versa. It shows that setting low c f pths around 10-100 giving more

preferable outcome than higher c f pths. In other words, paying

some maintenance cost to renew non-potential MBRs in S KMt is

worthy and able to reduce the overall computation time. There-

fore, we assign c f pths equal to 50 as a default parameter in all

experiments.

6.6 Results of the synthetic dataset
6.6.1 Impact of N

Increasing the number of objects to be monitored affects the

skyline computation time directly because of more candidates

to be processed at each snapshot. In Fig.5a, the total execution

time of the naive method tends to increase significantly because

of a larger set of candidates in skyline calculation in each snap-

shot. While the total execution time of the proposed method

also increases in the same way especially PRE(Proposed) and

SKY(Proposed), the growth rate of the proposed method is quite

smaller than that of the naive method noticed by a drop of the to-

tal ratio. This is because our proposed method identifies a much

smaller set of candidates to be processed in skyline computation

resulting in saving huge skyline computation cost. This result en-

sures that our proposed method is scalable on a large number of

data objects.

6.6.2 Impact of m
Normally the cardinality of skyline set is increasing exponen-

tially with the number of dimensions resulting in slower skyline

computation especially in the naive method shown in Fig.5b. In

the same way, the total execution time of the proposed method

goes up rapidly because the number of elements in S KMt in each

snapshot is likely to grow with dimensionality. Therefore, with

the fixed number N, the number of data objects which can be

safely pruned by MBRs becomes less in higher dimensionality.

Nevertheless, our proposed method stills outperforms the naive

method at least 20% even in high dimensionality, i.e., d = 8.

6.6.3 Impact of T
In this setting, we show the result of the proposed method when

using for long periods of time. Increasing the number of snap-

shots directly increases the number of times of skyline calcula-

tion. Ideally, the total computation time should grow linearly with

this factor. However, in practice, it also depends on the cardinality

of output resulting from data distribution and data updates. The

result in Fig.5c shows that the total ratio is kept constant from

T = 1000 to T = 50000. This means the benefit from using our

proposed method over the naive method is consistent regardless

of usage duration.

6.6.4 Impact of p
Another factor that significantly affects the proposed method is

how many data change in each snapshot; because, update tuples

possibly invokes the frequent MBR inclusion checking which

may lead to MBR updates (PRE(Proposed)) and MBR recon-

structions (POST(Proposed)). In Fig.5d, while the total execution

time of the naive method constantly fluctuates because of differ-

ent data updates (different skyline output and calculation time),

the total execution time of the proposed method tends to increase

with p especially the cost of PRE(Proposed) as expected. How-

ever, the advantage of using the proposed method is still signifi-

cant in spite of a large number of data updates at a snapshot.

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 258

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

70

80

90

100

500 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Number of objects (N)

SKY (Proposed)
PRE (Proposed)
POST (Proposed)
SKY (Naïve)
Total Ratio (Proposed/Naïve)

(a) Impact of N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

1000

2000

3000

4000

5000

6000

7000

2 3 4 5 6 7 8

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Dimensionality (m)

SKY (Proposed)

PRE (Proposed)

POST (Proposed)

SKY (Naïve)

Total Ratio (Proposed/Naïve)

(b) Impact of m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

50

100

150

200

250

300

1000 2500 5000 10000 20000 30000 40000 50000

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Number of snapshots (T)

SKY (Proposed)

PRE (Proposed)

Post-Maintain(Proposed)

SKY (Naïve)

Total Ratio (Proposed/Naïve)

(c) Impact of T

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

10

20

30

40

50

60

0.5% 1% 2.5% 5% 7.5% 10% 20%

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

Moving Probability (p)

SKY (Proposed)

PRE (Proposed)

POST (Proposed)

SKY (Naïve)

Total Ratio (Proposed/Naïve)

(d) Impact of p

Fig. 5: Experimental results of the synthetic dataset (SYN)

0

5

10

15

20

25

30

Proposed Method Naïve Method

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

SKY PRE POST

(a) NBA dataset (NBA)

0

0.5

1

1.5

2

2.5

3

3.5

4

Proposed Method Naïve Method

Ex
ec

ut
io

n
tim

e
(s

ec
on

d)

SKY PRE POST

(b) Stock dataset (STK)

Fig. 6: Experimental results of the real datasets

6.7 Results of the real datasets
We examine our proposed method’s performance on 2 differ-

ent real-life datasets which have totally different characteristics

including NBA and STK. NBA is quite larger than STK in terms

of the number of snapshots and the number of dimensions, but the

moving probability averagely is only 2% for each snapshot. The

result of NBA reported in Fig.6a show that the proposed method

obviously beats the naive method an order of magnitude. We later

found that, in this dataset, there is a group of outstanding players.

The MBRs of this group are able to prune other candidates effec-

tively with less MBR updates.

In the second dataset, STK, this dataset is related to stocks.

Unlike NBA, the data objects are frequently changed (many up-

date tuples) by its nature, and the moving probability is quite high

averagely at 47.6%. As a consequence, the result of this dataset

in Fig.6b reports the huge cost of PRE(Proposed) (mainly due to

MBR checks and updates) as expected in the proposed method

while the cost of SKY and POST are kept quite low. Never-

theless, our proposed method still saves the computation cost by

20% compared to the naive method.

7. Conclusion
In this paper, we proposed an efficient method for skyline cal-

culation when there are many data updates at each data snapshot.

This is useful for analyzing historical (time-series) data archive as

well as continuous skyline computation on data update streams.

In the assumed historical data series, the changes of data between

consecutive timestamps are expressed and kept as update tuples.

In practice, data insertion, deletion or any modification of a sin-

gle data object between timestamp can totally change the final

skyline set. Therefore, the naive method for this problem is to

re-compute the new skyline set every timestamp (snapshot). This

can be very expensive and time-consuming.

Basically the skyline computation’complexity largely depends

the number of input (candidates), data distribution and the num-

ber of dimensions. The proposed method tries to reduce the ex-

pensive skyline computation cost by reducing the number of can-

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 259

didates in skyline computation. Our proposed method makes used

of bounding boxes, i.e., MBRs to summarize and represent a se-

ries of data snapshots of each data object. Due to the proper-

ties of a MBR and our proposed data structures, we can identify

a smaller set of candidates for skyline computation by pruning

non-potential data objects while the accuracy can be guaranteed.

Moreover, we also discuss about the maintenance of our index

structures which is adaptive to data behaviors.

We compared the performance of our proposed method

through the experiments by using both extensive synthetic dataset

and 2 real datasets. The results obviously showed the benefits of

our proposed method over the baseline by measuring the total

execution time. Our proposed method can perform and process

each dataset faster than the baseline because the number of can-

didates can be largely reduced while the maintenance cost is low

resulting in the lower total execution time.

8. Acknowledgments
This research is partially supported by the Grant-in-Aid for

Scientific Research (A)(26240013) of MEXT, Japan.

References
[1] S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In

ICDE, pages 421–430, 2001.

[2] M. A. Cheema, X. Lin, W. Zhang, and Y. Zhang. A safe zone based ap-
proach for monitoring moving skyline queries. In EDBT, pages 275–
286, 2013.

[3] E. Dellis and B. Seeger. Efficient computation of reverse skyline
queries. In VLDB, pages 291–302, 2007.

[4] K. Hose and A. Vlachou. A survey of skyline processing in highly
distributed environments. VLDB Journal, 21(3):359–384, 2012.

[5] Y.-L. Hsueh, R. Zimmermann, and W.-S. Ku. Efficient updates for
continuous skyline computations. In DEXA, pages 419–433, 2008.

[6] Z. Huang, H. Lu, B. C. Ooi, and A. Tung. Continuous skyline queries
for moving objects. IEEE TKDE, 18(12):1645–1658, Dec 2006.

[7] B. Jiang and J. Pei. Online interval skyline queries on time series. In
ICDE, pages 1036–1047, Washington, DC, USA, 2009. IEEE Com-
puter Society.

[8] M.-W. Lee and S.-W. Hwang. Continuous skylining on volatile mov-
ing data. In ICDE, pages 1568–1575, March 2009.

[9] Y. W. Lee, K. Y. Lee, and M. H. Kim. Efficient processing of multiple
continuous skyline queries over a data stream. Information Sciences,
221:316–337, 2013.

[10] N. Mamoulis, K. Berberich, S. Bedathur, et al. Durable top-k search
in document archives. In SIGMODS, pages 555–566. ACM, 2010.

[11] M. Morse, J. M. Patel, and W. I. Grosky. Efficient continuous skyline
computation. Information Sciences, 177(17):3411–3437, 2007.

[12] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive skyline com-
putation in database systems. TODS, 30(1):41–82, 2005.

[13] O. Papapetrou and M. Garofalakis. Continuous fragmented skylines
over distributed streams. In ICDE, pages 124–135, 2014.

[14] A. Sultana, N. Hassan, C. Li, J. Yang, and C. Yu. Incremental discov-
ery of prominent situational facts. 2014.

[15] S. Sun, Z. Huang, H. Zhong, D. Dai, H. Liu, and J. Li. Efficient moni-
toring of skyline queries over distributed data streams. Knowledge and
Information systems, 25(3):575–606, 2010.

[16] Y. Tao, X. Xiao, and J. Pei. Subsky: Efficient computation of skylines
in subspaces. In ICDE, pages 65–65, 2006.

[17] L. Tian, L. Wang, A. Li, P. Zou, and Y. Jia. Continuous skyline track-
ing on update data streams. In APWeb/WAIM, volume 4537, pages
192–197, 2007.

[18] H. Wang, Y. Cai, Y. Yang, N. Mamoulis, et al. Durable queries over
historical time series data. IEEE TKDE, 26(3):595–607, March 2014.

[19] J. Xin, G. Wang, L. Chen, et al. Continuously maintaining sliding win-
dow skylines in a sensor network. In DASFAA, pages 509–521, 2007.

「マルチメディア通信と分散処理ワークショップ」平成26年12月

ⓒ2014 Information Processing Society of Japan 260

