
Electronic Preprint for Journal of Information Processing Vol.23 No.2

Regular Paper

Compressing Inverted Index Using Optimal FastPFOR

Veluchamy Glory1,a) Sandanam Domnic1,b)

Received: June 20, 2014, Accepted: November 10, 2014

Abstract: Indexing plays an important role for storing and retrieving the data in Information Retrieval System (IRS).
Inverted Index is the most frequently used indexing structure in IRS. In order to reduce the size of the index and
retrieve the data efficiently, compression schemes are used, because the retrieval of compressed data is faster than
uncompressed data. High speed compression schemes can improve the performance of IRS. In this paper, we have
studied and analyzed various compression techniques for 32-bit integer sequences. The previously proposed compres-
sion schemes achieved either better compression rates or fast decoding, hence their decompression speed (disk access
+ decoding) might not be better. In this paper, we propose a new compression technique, called Optimal FastPFOR,
based on FastPFOR. The proposed method uses better integer representation and storage structure for compressing
inverted index to improve the decompression performance. We have used TREC data collection in our experiments and
the results show that the proposed code could achieve better compression and decompression compared to FastPFOR
and other existing related compression techniques.

Keywords: Index Compression, Information Retrieval, Inverted File, FastPFOR

1. Introduction

Information Retrieval Systems play a very important role in
information processing because the source of information is ex-
plosive in recent years. Development of an effective and efficient
method of providing the information is essential in information
processing. Effective processing refers to the identification of the
relevant information (quality) whereas efficient processing means
minimizing the amount of space and time required to process the
data. Hence, the main objective of IRS is to provide maximum ef-
ficiency and effectiveness with the proper balance between them.
Simultaneous achievement of highly efficient and effective infor-
mation processing is quite a challenging task. Increase in the ef-
ficiency (retrieval speed) would affect the effectiveness (quality)
and vice-versa.

IRS is widely used in many applications such as digital li-
braries, search engines, e-commerce, electronic news, genomic
sequence analysis etc. [1], [2]. One of the efficient techniques
used to locate the data for fast retrieval in IRS is indexing. In-
verted index [3] is the most commonly used indexing structure
because query evaluations are done at faster rate when compared
to signature files [4], PAT tress [5] and Bitmaps [6].

An inverted index contains two main parts: a lexicon file (dic-

tionary) and inverted list (posting list). Lexicon files list all the
distinct terms (that appear in the document collection) and doc-

ument frequency which means the total number of documents in
which the term appears. Each inverted list contains a sequence of
document identifiers (id), term frequency (tf) and positions. Doc-
ument identifier (id) and term frequency (tf) indicate where the

1 Department of Computer Applications, National Institute of Technology,
Tamilnadu, India

a) glory.nitt@gmail.com
b) domnic@nitt.edu

term occurs and how many times the particular term appeared in
the document. The document identifiers are stored by increas-
ing order in each inverted list and each document identifier is
replaced by D-Gap (difference between the document identifier
except the first one). Since document identifier is distinct, the
d-gaps show some probability distribution. Depending on the
d-gaps probability distribution, many coding methods have been
proposed for compressing inverted list.

Index compression [7], [8], [9], [10], [11] can improve the per-
formance of IRS through transferring and keeping more data in
storage. In order to reduce the time-consuming transfers between
Hard disk and RAM, and increase the caching capacities of the IR
system, high speed compression strategies are applied on inverted
index. Compression techniques are classified into two categories
such as integer compression techniques and integer list compres-
sion techniques. Integer compression processes each integer in-
dividually whereas integer list compression compresses a group
of integers. Some of the earliest integer compression techniques
are Golomb Code (GC) [12], Rice Code (RC) [13], Elias Gamma
Code (EC) [14], Elias Delta Code (EDC) [14], Variable Byte
Code (VB) [15], Fast Extended Golomb code (FEGC) [16] and
Re-ordered Fast Extended Golomb code (RFEGC) [17]. Golomb
and Rice coding are much slower than Variable Byte code.
Also, Variable Byte code is twice as fast as Elias Gamma
and Elias Delta Code. Interpolative Code [18], Simple Family
(Simple-9 and Simple-16) [8], Frame-Of-Reference (FOR) [19],
[20], Patched coding methods (PFORDelta, NewPFD, OptPFD
and FastPFOR) [21], [22], [23] are integer list compression tech-
niques. Simple family, FOR and patched coding methods have
been used for faster decoding performance. Interpolative coding
is slower than Golomb coding [8], [22]. Simple family techniques
compress slightly better, but are generally slower. FOR can have
a competitive compression ratio, but sometimes compress poorly.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

FastPFOR (FastPFD) [23] gives competitive compression rates
and fast decoding, but its decompression (both disk access + de-
coding speed) might not be better.

In order to achieve better performance in compression as well
as in decompression, in this paper, we propose a new patched
coding technique called Optimal FastPFOR which is based on
FastPFOR. In Optimal FastPFOR, we have used new optimal
cost formula to compute an optimal (b) for compressing the block
of integers. We have also used fixed number of 128 bits for
every block to store the positions of the exceptions that occur
in that block to reduce the storage cost of the exceptions. We
have done experiments on the three standard datasets, namely
Gov2, Clueweb 09 and Yandex to evaluate the performance of the
proposed method and the results are compared with the existing
techniques.

The rest of the paper is organized as follows: Section 2 gives
the review of some of the compression schemes. The proposed
method is discussed in Section 3. In Section 4, experimental re-
sults are discussed. Finally, conclusions are derived in Section 5.

2. Compression Techniques

In this section, we summarize some of the integer compression
techniques which have been used for inverted list compression.

2.1 Integer Encoders
2.1.1 Unary Code

Unary code [15] represents an integer n as n − 1 one bits fol-
lowed by single zero bit or n − 1 zero bits followed by single one
bit. Unary code is advantageous when the small range of integers
are occurring more than the large range of integers.
2.1.2 Golomb and Rice Code

Golomb/Rice code is a parameterized code; it encodes an in-
teger into two parts. The integer n is divided by the divisor d.
Then, the quotient q is coded by unary code and the remainder r

is coded by binary code in log2 d bits. In Golomb code [12], the
parameter d is chosen depending on the distribution of the inte-
gers and normally the parameter value is 0.69∗avg, where the avg

is the average value of the numbers being compressed. In Rice
code [13], the parameter should be the power of two for making
more efficient to implementation with use of bitwise operators.
2.1.3 Elias Gamma and Elias Delta Code

Elias Gamma code [14] represents an integer n as two parts.
The first part is unary representation for the length of the binary
representation of the integer n i.e., unary (|B(n)|) and the second
part is the binary representation of the integer n without its most
significant bit i.e., ∼B(n).

Gamma code becomes inefficient when the integers are large.
In order to overcome that Elias delta code [14] was proposed
which is encoding the length of the binary representation of the
integer (|B(n)|) using the Elias gamma code. The second part is
the same ∼B(n). Elias Gamma and Elias Delta Codes are slower
than variable byte code [23]. Hence, these methods have not been
considered in the experiment.
2.1.4 Fast Extended Golomb Code and Re-ordered Fast

Extended Golomb Code (RFEGC)
Fast Extended Golomb Code [16] encodes an integer n based

on Extended Golomb Code (EGC) [24]. Here, the integer n is di-
vided repeatedly M times by the divisor d until the quotient (q)
becomes zero and the divisor is confined to powers of two. The
remainders ri (i = 1 to M) are saved in each division. M is coded
by unary code and remainders are coded by binary code.

RFEGC [17] is based on the ideas used in RC and FEGC to
represent the given non-negative integer n. In RFEGC, the given
integer n is divided by a divisor d (2k), a power of 2, recursively
L times until the condition either q1 + 1 ≤ (L − 1)k + L or qL = 0
is satisfied, where q1 = n/2k. Each remainder after the division is
encoded using two components: flag bit and data bits. The flag bit
is used to indicate whether the next remainder is still in the part of
current integer or not. The data bits are the binary representation
for that remainder.
2.1.5 Variable Byte Code

Variable Byte code [15] encodes the integer n into sequence of
bytes. The lower-order seven bits of each byte is used to store
the data part and the higher-order bit is used to check whether the
next byte is part of the current integer or not. Compared to bitwise
technique like Rice code, Variable Byte code requires a single
branching condition for each byte which is more cost-effective in
terms of CPU cycles.

2.2 Integer List Encoders
2.2.1 Simple Family

Simple-9 and Simple-16 encode the groups of integers within
a single 32-bit word. Basically, in Simple-9, there are nine pos-
sible ways of encoding a list of positive integers but it wastes the
bits when encoding some combination of integers. In order to
overcome this issue, Simple-16 technique was proposed by Anh
and Moffat [8]. Simple-16 uses the sixteen possible ways to en-
code the list. In Simple 9 & 16, each 32 bits is partitioned into
28-bits used for data bits and 4-bits used for describing the orga-
nization of the data bits. While using these schemes, they may
sometimes compress slightly better, but generally it is slow [23].
2.2.2 FOR

FOR compresses the fixed size block of integers. It finds the
maximum M and the minimum m value in the block and then all
the values in that block are coded by using b bits each. The bit
width (b) is calculated using the formula �log2(M + 1 − m)�.
2.2.3 PFOR

PFOR (or PForDelta when used in conjunction with delta cod-
ing) [21] approach is a Patched Frame-Of-Reference and it uses
a reasonably small bit width (b) to represent most of the values
in a block and the values in a range larger than 2b are treated as
exceptions, which are stored in a separate location. PFOR over-
comes the drawback of the FOR approach where the presence of
single large value increases the bit width (b) which leads to a poor
compression performance.

In PFOR approach, the integers to be coded are divided into
pages of fixed length 216 integers. For each page, the small
bit width b is calculated, but the data is encoded in blocks of
128 integers with a separate array for storing the exceptions (c).
Two storage arrays (normal data & exception data sections) are
used for coding the integers. One is for storing the excep-
tions (greater than 2b) and another for storing the normal values

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 1 PFOR storage structure.

Fig. 2 New PFD/Opt PFD storage structure.

(smaller than 2b) and the integer offsets pointing to the next ex-
ception in the block of 128 integers. These two storage arrays
are preceded by a 32-bit word containing two pointers. The first
pointer is pointing to the location of the first exception in the
block of 128 integers and the second pointer points to the location
of the first exception value in the storage array of the exceptions.
Each exception value and the offset value is stored in 32 bits and
b bits respectively. If the bit width b is too small to represent an
offset value in the normal data section, a compulsive exception is
created. The storage structure used in PFD is given in Fig. 1.
2.2.4 NewPFD and OptPFD

To get better compression than PFOR, Yang et al. [22] pro-
posed two new schemes called New PFD and OptPFD. These
schemes divide the data into blocks of fixed length 128 inte-
gers, and the small bit width b is calculated for each block. The
main difference between NewPFD and PFOR is the way in which
the exceptions are treated. NewPFD compresses the exceptions
where as PFOR does not compress the exceptions. Two storage
arrays are used in NewPFD for each block, one is for storing the
normal values (< 2b) and lower b bits of the exceptions (≥ 2b); an-
other is for storing the locations of the exceptions and the (32−b)
higher bits of the exceptions, which are compressed by simple
family technique. These two arrays are preceded by a 32 bit word
used to store the b, the number of exceptions, and the number of
32 bit words used to store the compressed exception values. The
bit width (b) is selected for each block and it does not allow more
than 10% of integers as exceptions. OptPFD works similarly, but
it uses optimal cost formula to optimize the compression ratio and
the decompression speed. The storage structure used by OptPFD
and NewPFD for implementation is given in Fig. 2.
Illustration:

Here, the NewPFD is taken for illustration and we find the min-
imal bit width b illustrated with an example.
Let a set of document identifiers be:
<2, 3, 5, 43, 45, 47, 48, 49, 52, 54, 56, 88, 91, 94, 146, 148>

D-Gap values for the given set of document identifiers are:
<2, 1, 2, 38, 2, 2, 1, 1, 3, 2, 2, 32, 3, 3, 52, 2>
NewPFD determines a value b such that most of the values

(90%) to be encoded are less than 2b and thus fit into a fixed bit
field of b bits for each block in the normal data section and it does
not allow more than 10% of integers as exceptions. According to
above condition, the bit width b = 6 is selected for the above
example (D-Gaps) and hence, the number of exceptions is zero.

As per the NewPFD storage structure, we need 96 (6∗16) bits

for the storage in normal data section, 32 bits in header section.
So NewPFD totally uses 128 bits to compress the data.
2.2.5 FastPFOR

In an attempt to offer better decoding speed and compression
rate, Lemire et al. [23] proposed FastPFOR technique which is
similar in design to OptPFD and NewPFD. In FastPFOR, the
small bit width b is calculated for every block of 128 integers
and the (max b − b) higher bits of the exceptions are stored for
every page of 216 integers in one of the 32 arrays. The differ-
ence between the maximal bit width (max b) and b is used to
locate the storage array (1 to 32) of the exceptions. The decod-
ing speed is achieved in FastPFOR when encoding and decod-
ing of the exceptions are done in bulk. The performance of the
FastPFOR depends on the way in which the exceptions are de-
termined, compressed and stored. More or less 10% of integers
treated as exceptions in a block may lead to a poor compression
performance. To optimize the number of exceptions (C), it uses
the cost optimization formula: 8+(b×128)+C×(8+max b−b) to
determine b for every block of 128 integers by varying the values
of b and C, So that it can achieve better search performance (disk
access + decoding) than NewPFD and OptPFD.

For each block of a page, FastPFOR compression technique
has the header section and it contains the sequence of bytes to
store the following information
• The bit width (b) – One byte
• Maximal bit width (max b) – One byte
• The Number of Exceptions (C) – One byte
• Location of the exceptions – C bytes.

The storage structure used by FastPFOR is given in Fig. 3.
Illustration:

The calculation of minimal bit width b is best illustrated with
an example.
D-Gap values: <2, 1, 2, 38, 2, 2, 1, 1, 3, 2, 2, 32, 3, 3, 52, 2>

According to the cost optimization formula: 8+ (b×128)+C×
(8+max b−b), the optimum bit length is chosen by the following
method.

In the cost formula, the value 128 indicates the number of in-
tegers in a block, since the example taken consists of 16 integers,
instead of 128, the value 16 is used for calculation. In the initial
iteration, b is assigned to max b value, hence C becomes zero, the
formula is reduced to 128 (16) × b. According to this formula,
cost value is calculated first.

For the given example (D-Gaps), Max b = 6 and b = 6.
Initially the best cost = 16 × b = 16 × 6 = 96; then b is decre-
mented by one in each iteration until b = 0.
(i) b is decremented by one, now b = 5, the number of excep-

tions is 3;
this cost = 8+ (16∗5)+ (3∗ (8+6−5)) = 8+80+27 = 115;
Check If (this cost < best cost) => (115 < 96) => false

(ii) Now b = 4, number of exceptions = 3;
this cost = 8+ (16∗4)+ (3∗ (8+6−4)) = 8+64+30 = 102;
So, 102 < 96 is false;

(iii) Now b = 3, number of exceptions = 3;
this cost = 8+ (16 ∗ 3)+ (3 ∗ (8+ 6− 3)) = 8+ 48+ 33 = 89;
So, 89 < 96 is true then best cost is 89 and assign b = 3 &
No. of exceptions = 3;

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Fig. 3 Fast PFOR storage structure (used per page).

(iv) Now b = 2, the number of exceptions = 3;
this cost = 8+ (16 ∗ 2)+ (3 ∗ (8+ 6− 2)) = 8+ 32+ 36 = 76;
So, 76 < 89 is true then the best cost is 76 and b = 2 &
No. of exceptions = 3;

(v) Now b = 1, the number of exceptions = 13;
this cost = 8+(16∗1)+(13∗(8+6−1)) = 8+16+169 = 193;
So, 193 < 76 is false, b is decremented by one, so b = 0 then
stop the iterations.

Finally b = 2 and the number of exceptions: 3 are determined
according to the cost formula.

The number of exceptions and the location of each exception
are determined after selection of (b). According to FastPFOR
storage structure, we need 32 (2∗16) bits for the storage in nor-
mal data section, 48 (8 + 8 + 8 + (3 ∗ 8)) bits in header section
and 12 bits for exceptions, so FastPFOR totally uses 92 bits to
compress the data.

3. Proposed Work: Optimal FastPFOR

In the patched schemes (PFOR, NewPFD, OptPFD and
FastPFD) the integers are broken down into small blocks which
are then compressed. In the original patched coding scheme
(PFOR), the exceptions are uncompressed and stored as 32 bits
each. On the other hand, newer alternatives, like NewPFD and
OptPFD store exceptions using simple family compression tech-
niques. Though OptPFD compresses better than PFOR, it is
slower than PFOR. Hence, the preferable scheme would be the
one which compresses like NewPFD with the PFOR’s speed. To
achieve this, FastPFOR was proposed by Lemire et al. [23]. But,
when it is compared to OptPFD, compression performance is in-
ferior because the number of exceptions is larger. If the num-
ber of exceptions is more, then the header size of the FastPFD
is increased and it affects the decompression speed (disk access
time + decoding time) of FastPFOR. If the number of excep-
tions is increased, the storage requirements for the locations of
the exceptions will also be increased, which in turn will reduce
the compression performance of FastPFOR. It is concluded that
the number of exceptions and the representations of the locations
of the exceptions is vital in enhancing the compression perfor-
mance of FastPFOR. After considering this, we have proposed
the new technique called Optimal FastPFOR in which new opti-
mal cost formula is used to optimize the number of exceptions
to be determined. We also use binary pattern to denote the loca-
tions of the exceptions. So that the proposed method will always
require 128 bits as the storage requirements for the locations of
the exceptions where as FastPFOR requires variable number of
bits for storing the locations. The steps used for encoding and
decoding in the proposed method are given below.

Algorithm for Encoding:
The following steps are used to encode the set of integers.
1. The given set of integers is divided into blocks of 128 inte-

gers.
2. For each block, the max b is calculated to represent the high-

est integer value in the block.
3. Then, recursively compute the optimal b by changing the

value of b, which in turn will vary the C value for each block
using the optimal cost formula given in Eq. (1) until get the
minimum compression size for the block.

Optimal cost = 128 + (C × (max b − b)) + b × 128 (1)

where C is the number of exceptions to be determined based
on 2b.

4. Using the optimal b, the number of exceptions is predicted.
5. The normal values, which are smaller than 2b, are repre-

sented using b bits each and lower b bits of exception values
are stored in a separate storage array (Normal data section).

6. The max b and b values computed for each block are used
to represent higher order bits of each exception value of the
block in (max b − b) bits. The represented value is stored
in one of 32 storage arrays (exception data section). The
difference between max b and b value is used to locate the
represented value in one of these arrays. These 32 arrays are
maintained for every page of 216 integers.

7. For each block of 128 integers, the following information is
maintained as header information in the header section.
∗ The optimal bit width (b) – One byte.
∗ Maximal bit width (max b) – One byte.
∗ Exception locations – 128 bits (binary pattern).

In the binary pattern, the position of ‘1’ bit indicates the pres-
ence of exception in the respective positions of the block. In ad-
dition to the 128 bits binary pattern, 32 bits binary pattern is used
to know whether all 32 arrays are used for storing exceptions like
FastPFOR. Each bit of the 32 bits binary pattern corresponds to
one array. If an array is not empty, the corresponding bit is set
to 1, otherwise set to 0. The storage structure used in Optimal
FastPFOR is given in Fig. 4.
Algorithm for Decoding:
The following steps are used to decode the compressed data.
1. For each page, all the exception arrays (1 to 32) are read

from the exception data section.
2. Then, for each block in a page, read max b and b from header

section and find their difference. If the difference is not zero,
then there are exceptions, so decode the 128 bits binary pat-
tern of the block to know the positions of the exceptions in
the block. Otherwise, there is no exception in that block.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

3. Decode each block of 128 integers according to the corre-
sponding bit width b of that block. The exceptions of the
block are decoded after identifying their locations in the
block through checking the 128 bits binary pattern of the
block and merging b bits read from normal data section and
(max b−b) bits read from exception data section of the block.

Repeat 1 to 3 until all the pages are decoded.
Illustration:
The calculation of minimal bit width b is best illustrated with an
example.
D-Gap values:
<2, 1, 2, 38, 2, 2, 1, 1, 3, 2, 2, 32, 3, 3, 52, 2>
The selection of bit width b will be done by applying 3rd&4th

steps of the encoding algorithm as follows:
According to the optimal cost formula:
128 × (1 + b) + (C × (max b − b))
The optimum bit length is chosen by the following method.
In the optimal cost formula, the value 128 indicates the number

of integers in a block, since the example taken consists of 16 in-
tegers, the value 128 is replaced with 16 for calculation. In the
initial iteration, b is assigned to max b value, hence C becomes
zero, binary pattern (128 (16) bits) does not exist and the formula
is reduced to 128 (16) × b. According to this formula, cost value
is calculated first.

For the given example (D-Gaps), Max b = 6 and b = 6. Ini-
tially the best cost = 16×b = 16×6 = 96; then b is decremented
by one in each iteration until b = 0.
(i) b is decremented by one, now b = 5, the number of excep-

tions is 3;
this cost = 16 ∗ (1 + 5) + (3 ∗ (6 − 5)) = 96 + 3 = 99;
Check If (this cost < best cost) => (99 < 96) => false

(ii) Now b = 4, number of exceptions = 3;
this cost = 16 ∗ (1 + 4) + (3 ∗ (6 − 4)) = 80 + 6 = 86;
So, 86 < 96 is true then best cost is 86 and assign b = 4 &
No. of exceptions = 3;

(iii) Now b = 3, number of exceptions = 3;
this cost = 16 ∗ (1 + 3) + (3 ∗ (6 − 3)) = 64 + 9 = 73;
So, 73 < 86 is true then best cost is 73 and assign b = 3 &
No. of exceptions = 3;

(iv) Now b = 2, the number of exceptions = 3;
this cost = 16 ∗ (1 + 2) + (3 ∗ (6 − 2)) = 48 + 12 = 60;
So, 60 < 73 is true then the best cost is 60 and b = 2 &
No. of exceptions = 3;

(v) Now b = 1, the number of exceptions = 13;
this cost = 16 ∗ (1 + 1) + (13 ∗ (6 − 1)) = 32 + 65 = 97;
So, 97 < 60 is false, b is decremented by one. As b = 0 stop
the iteration.

Finally b = 2 and the number of exceptions: 3 are determined

Fig. 4 Optimal FastPFOR storage structure.

according to the cost formula.
The number of exceptions and location of each exception are

found after selection of (b). We use 32 (2∗16) bits for the storage
in normal data section, 32 (8 + 8 + 16) bits in header section and
12 bits for exceptions, So Optimal FastPFOR totally uses 76 bits
to compress the data. But FastPFOR requires 92 bits including
48 (8 + 8 + 8 + 3 ∗ 8) bits for header section, 32 bits for nor-
mal data section and 12 bits for exceptions, to compress the same
data for the b determined according to the cost formula given in
Section 2.2.5. Compared to FastPFOR, Optimal FastPFOR needs
less number of bits.

4. Experimental Results

The main purpose of our experiment is to evaluate the per-
formance of compression techniques. We have implemented the
proposed code and tested on TREC document collections such as
Clueweb 09, Gov2 and Yandex. The storage requirements and
query processing time for each integer encoding method are mea-
sured using compression rate and search time for all the docu-
ment collections. We have used Intel Xeon processor machine
equipped with 16 GB of RAM and the 64-bit version of the win-
dows 7 Operating System in our experiments. We have imple-
mented our code in Java and used some of the source codes,
which are available as open source in Ref. [25].

In our experiments, we have applied the integer encoding meth-
ods to compress the document identifiers of the inverted lists,
which are constructed [26], [27] from TREC Web collections
(Clueweb 09, Gov2, Yandex). The GOV2 is a crawl of the .gov
sites, which contains 25 million HTML, text, and PDF docu-
ments. The Clueweb09 collection is a more realistic HTML col-
lection of about 50 million crawled HTML documents, mostly in
English. The formula used to calculate compression rate (bits per
integer) in our experiment is:

Compression (or Bit) Rate

=
Compressed Size of Inverted List (docids)

Total number of Document Identifiers in the List
(2)

Table 1 Bit rate (bits per docid) for TREC data collections.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

Table 2 Search performance time (in milliseconds) for TREC data collections.

Table 1 shows the bit rates achieved by optimal FastPFOR and
other encoding methods. From the results, Optimal FastPFOR
achieves 4.8%, 8.5% and 3.7% gain in compression compared to
the recent FastPFOR technique for Gov2, Clueweb09 and Yandex
collections, respectively. Our code also gives better results com-
pared to other existing methods.

In addition to the compression performance measurement, the
search performance of each coding method is measured and the
results are tabulated in Table 2. The search performance (or
query processing time/decompression performance) is measured
using the Eq. (3).

Search Time (ST) = Disk Access Time (AT)

+ Decoding Time (DT) (3)

In order to measure the search performance, a set of random
queries is generated for each collection. We used 100 random
queries for each data set to evaluate the search performance.
For each query, approximately 100,000 docids are retrieved and
decoded. Then, the search performance is measured by adding
the time taken to retrieve the data from the disk and the time taken
to decode the data.

The search performance measurements are shown in Table 2.
From the results, for retrieving the large number of docids, com-
pared to all other methods, Optimal FastPFOR has given the bet-
ter result for query processing time because it has the lower bit

rate, so it takes lesser time for accessing data from the disk. For
small number of docids, optimal FastPFOR gives competitive re-
sults. As a conclusion, it can give better or equivalent query pro-
cessing time depending on the size of the data to be retrieved. The
good compression technique must be characterized by minimum
bit rate and minimum decompressing time. So, among other tech-
niques, optimal FastPFOR is the better compression technique for
IR applications.

5. Conclusion

In this paper, we have proposed a new novel patched cod-
ing, Optimal FastPFOR which is based on FastPFOR. FastPFOR
technique is a recent fast decoding technique, but compression
performance is not as high compared to OptPFD technique.
OptPFD technique gives the better compression rate, but it does
not decompress fast. Our technique achieves better compres-
sion performance and decompression performance compared to
FastPFOR, OptPFD and other techniques. Through achieving
good compression, we can process the query and retrieve the data
quickly. From the experimental results it is observed that our
code yields better performance in both fast querying and space
efficient indexing.

c© 2015 Information Processing Society of Japan

Electronic Preprint for Journal of Information Processing Vol.23 No.2

References

[1] Kobayashi, M. and Takeda, K.: Information retrieval on the web, ACM
Computing Surveys, Vol.2, No.2, pp.144–173 (2000).

[2] Williams, H.E. and Zobel, J.: Indexing and retrieval for genomic
databases, IEEE Trans. Knowledge and Data Engineering, Vol.14,
No.1, pp.63–78 (2002).

[3] Zobel, J., Moffat, A. and Ramamohanarao, K.: Inverted files ver-
sus signature files for text indexing, ACM Trans. Database Systems,
Vol.23, No.4, pp.453–490 (1998).

[4] Faloutsos, C.: Access methods for text, ACM Computing Surveys,
Vol.17, No.1, pp.49–74 (1985).

[5] Morrison, D.R.: PATRICIA – Practical algorithm to retrieve infor-
mation coded in alphanumeric, Journal of Association for Computing
Machinary, Vol.15, No.4, pp.514–534 (1968).

[6] Chan, C.-Y. and Ioannidis, Y.E.: Bitmap index design and evaluation,
Proc. 1998 ACM SIGMOD International Conference on Management
of Data, pp.355–366 (1998).

[7] Scholer, F., Williams, H.E., Yiannis, J. and Zobel, J.: Compression
of inverted indexes for fast query evaluation, Proc. 25th Annual In-
ternational ACM SIGIR Conference on Research and Development in
Information Retrieval, Tampere, Finland, pp.222–229 (2002).

[8] Anh, V.N. and Moffat, A.: Inverted index compression using word-
aligned binary codes, Information Retrieval, Vol.8, No.1, pp.151–166
(2005).

[9] Zobel, J. and Moffat, A.: Inverted files for text search engines, ACM
Computing Surveys, Vol.38, No.2, pp.1–56 (2006).

[10] Trotman, A.: Compressing inverted files, Information Retrieval, Vol.6,
No.1, pp.5–19 (2003).

[11] Zhang, J., Long, X. and Suel, T.: Performance of compressed inverted
list caching in search engines, Proc. 17th International Conference on
World Wide Web, WWW ’08, ACM: New York, NY, USA, pp.387–396
(2008).

[12] Golomb, S.W.: Run length encoding, IEEE Trans. Inf. Theory, Vol.12,
No.3, pp.399–401 (1966).

[13] Rice, R.F.: Some practical universal noiseless coding techniques
(Tech. Rep.), JPL Publication Pasadena, CA: Jet Propulsion Labora-
tory (1979).

[14] Elias, P.: Universal codeword sets and representations of the integers,
IEEE Trans. Inf. Theory, Vol.21, No.2, pp.194–203 (1975).

[15] Salomon, D.: Variable-length codes for data compression, Springer-
Verlag (2007).

[16] Domnic, S. and Glory, V.: Inverted file compression using EGC and
FEGC, Proc. International Conference on Communication, Comput-
ing and Security, pp.735–742 (2012).

[17] Glory, V. and Domnic, S.: Re-Ordered FEGC and Block Based FEGC
for Inverted File Compression, International Journal of Information
Retrieval Research, Vol.3, No.1, pp.71–88 (2013).

[18] Moffat, A. and Stuiver, L.: Binary interpolative coding for effec-
tive index compression, Information Retrieval, Vol.3, No.1, pp.25–47
(2000).

[19] Goldstein, J., Ramakrishnan, R. and Shaft, U.: Compressing rela-
tions and indexes, Proc. 14th International Conference on Data Engi-
neering, ICDE ’98, IEEE Computer Society: Washington, DC, USA,
pp.370–379 (1998).

[20] Ng, W.K. and Ravishankar, C.V.: Block-oriented compression tech-
niques for large statistical databases, IEEE Trans. Knowledge and
Data Engineering, Vol.9, No.2, pp.314–328 (1997).

[21] Zukowski, M., Heman, S., Nes, N. and Boncz, P.: Super-scalar RAM-
CPU cache compression, Proc. 22nd International Conference on Data
Engineering, ICDE ’06, IEEE Computer Society: Washington, DC,
USA, pp.59–71 (2006).

[22] Yan, H., Ding, S. and Suel, T.: Inverted index compression and query
processing with optimized document ordering, Proc. 18th Interna-
tional Conference on World Wide Web, WWW ’09, ACM: New York,
NY, USA, pp.401–410 (2009).

[23] Lemire, D. and Boystov, L.: Decoding billions of integers per second
through vectorization, Software: Practice and Experience (2013).

[24] Somasundaram, K. and Domnic, S.: Extended golomb code for inte-
ger representation, IEEE Trans. Multimedia, Vol.9, No.2, pp.239–246
(2007).

[25] Lemire, D. and Boystov, L.: FastPFOR Java code (2013), available
from 〈https://github.com/lemire/JavaFastPFOR〉.

[26] Boystov, L.: Clueweb09 posting list data set (2012), available from
〈http://boytsov.info/datasets/clueweb09gap/〉.

[27] Silvestri, F. and Venturini, R.: Gov2 & Yandex Dataset, available from
〈http://integerencoding.isti.cnr.it/〉.

V. Glory received her B.Sc. degree
in Computer Science from Madurai
Kamaraj University and M.C.A degree
from Kalasalingam University, India in
2007 and 2010, respectively. Currently
she is a pursuing Ph.D. in Department
of Computer Applications at National
Institute of Technology, Tiruchirappalli,

India. Her research Interests is in Information Retrieval.

S. Domnic received his B.Sc. degree
in physics and M.C.A degree from
Bharathidasan University, India, in 1998
and 2001, respectively, and the Ph.D.
degree from Gandhigram Rural Univer-
sity, Gandhigram, India in 2008. He is
presently working as an assistant profes-
sor in the Department of Computer Appli-

cations, National Institute of Technology, Tiruchirappalli, India.
His current research interests are in Data Compression, Image
Compression and Information Retrieval.

c© 2015 Information Processing Society of Japan

