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Texture Approach to Dynamic Contour Following

ROMAN DURIKOVIC, ' KAZUFUMI KANEDA ' and HIDEO YAMASHITA '

This paper proposes a method for following the contours of an object in an image with a roughly
estimated initial contour. The method is based on active contour model which converges the initial
contour close to the objects boundary. In general, active contour models are suitable for applications
of medical imaging such as extracting contours from images taken by using computed tomography
(CT) and magnetic resonance images (MRI). We have found the proposed active contour model
very useful in the area of anatomy, where the shape of a mouse embryo organ has to be reconstructed
from a set of contours extracted from microscopic images. A texture representation of an image and
texture energies in active contour models are utilized, something which is presented for the first time
in this paper. The proposed method makes it possible to establish the shape of an object even when

complex texture exists in or near the target obj

1. Introduction

Shape encloses information gained from local
properties of an image such as texture, topology
or color. The problem of distinguishing object
shape from its surroundings will be approached
as a process of finding boundary using texture
feature vectors and incorporating global shape
information.

This work aims at segmenting 2D objects from
2D images. The objects are taken from a
microscope with problems such as noise and
poor contrast. Objects such as embryo organs
are expected to tend towards having average
texture properties and average shapes. These
tendencies can be taken advantage of when
designing a set of energies in an active contour
model. Our approach is to design energies on a
texture space representation of an image. If an
object consists of many small cells or a little
broken parts (such cases occur often in micro-
scopic images) traditional methods'® using spa-
tial filters tend to extract edges of those cells and
broken parts while the proposed active contour
model in conversely has tendency to find the
shape of the target object.

The active contour models proposed by Kass
et al.” and Wang'® use image space representa-
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tion for the boundary. These models originally
require the object contour to be C! continuous.
This restriction implies errors in the approxima-
tion of C!discontinuous boundaries with cor-
ners. The setting of models’ parameters is
another problem. Even if we set parameters for
group of images, those parameters may not be
valid for other images (with different contrasts).
In order to avoid such problems, Etoh et al.®
provide a mixture density description of an
image and its decomposition on sub-regions.
This approach is similar to our method but our
method is inexpensive in comparison, because
they require a computationally demanding
region clustering algorithm.

Other investigators have incorporated global
shape information. Kita® constructed a stomach
model, the shape of which was based on and
extracted from different types of X-ray images.
This method fails in the case of poorly contrast-
ed images and when these are places where the
intensity average is almost the same. These
boundary finding methods are related to elastic
matching methods used for the similar problem
of image registration.»® Shapes with high cur-
vature points or corners are very difficult to
extract even with a probabilistic deformable
model with flexible constraints, as investigated
in Ref. 11). The advantage of the proposed
technique, as will be seen, is that the global
shape information is described from the texture
description of an image, moreover high curva-
ture points and corners can be easily followed.
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2. Texture Model

A kind of two dimensional noncausal random
field model called the “Simultaneous Autore-
gressive Model”, (SAR), has been used by many
researchers.®»® 1In this correspondence we con-
sider the second order SAR model as an appro-
priate toll for efficient texture description.

Let O denote the set of grid points in the M X
M lattice, ie, Q={(x y),0<x,y<M—1}
shown in Fig. 1. Let {I(x, y), (x, y)EQ} and x,
denote the intensities and mean of the intensities
in the lattice, respectively. Let N be the symmet-
ric second order neighborhood of a site, we can
write the following expression for gray level I(x,
y) and its neighborhood at the pixel site (x, ) :

I(x p)—pe= 3 O I(x&iye))

—pa]t+Voxw(x y) (1)
where a model parameter ®( j) indicates the
correlation between a site and its neighborhood,
ow is noise variance, w(x, y) is a noise sequence
approximated by a Gaussian random variable
with zero mean and unit variance. The symbol
‘@’ means addition in module M.

2.1 SAR Parameter Estimation

Two types of SAR models used in our texture
description are defined on two kind of neighbor-
hoods N;={(1,0), (0, 1), (—1, 0), (0, —1)} and
No.={(1,1),(—1,1),(—1, —1),(1, = 1)}. Our
interest is in {®(0, 1), ®(1, 0), on,} parameters
obtaining the horizontal and vertical texture
information from M, neighborhood and in {&(1,
1), ®(—1, 1), pw,} parameters obtaining the
diagonal texture information from N, neighbor-
hood.

®

Fig. 1 The neighborhood of a site (x, y) on a lattice M
X M. The rolling situation which appears on
the lattice borders according to operator @ is
shown.
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There are many existing methods for estimat-
ing the SAR parameters, but none of them can
guarantee both consistency (estimates converg-
ing to the true values of the parameters) and
stability (the covariance matrix in Eq. ( 1) must
be positive definite). Normally an optimization
algorithm is used to obtain the stable estimates.
The parameters of the SAR are used in obtain-
ing certain measures for classification and not
for texture synthesis. Thus it is convenient to use
computationally less demanding methods which
can provide rationally good parameter estimates.
A popular method® of estimation is that of least
squares.

We consider that the notation col[ A] gives us
a column representation of matrix A. In this
sense we represent the image intensities in neigh-
borhood N as column vector

Z(x, y)=col[I(x®i y®j)), (i ))EN].
(2)
Thus the least squares method yields the esti-
mates ® and gy of the exact parameters ® and
on~ by the expressions

6=12 2 Z(x »)Z7(x »)]"

(28200 1 ) (3)
=7 5, &5 ) ~8Z(x »)y
(4)

where the neighborhood N =N, or N,. The con-
sequent estimate ® is a column vector with ele-
ments @(j, j) written as
®=col[8(i /), (1 NEN]. (5)
Let the zzp be the mean in the lattice. The
feature vector for the region () is denoted by

F=O§,fz,fs,f4,ﬁ,ﬁ,[7) ~ (6)
=(8(0, 1), ©(1,0), 8(1, 1), 8(—1, 1), Gx,
P?st )US))

2.2 Segmentation

In the segmentation process, the image is
scanned from top to bottom and from left to
right by the M X M lattice region. The lattice
regions cover the image in d-pixel wide steps
both horizontally and vertically, overlapping
each other to smooth the borders between tex-
ture regions. For each of these regions, we
calculate the feature vector. The places where
texture features will vary dramatically are edge
locations of different regions.

A normalized Euclidean distance measure is
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Fig.3 Calculation of the sample function from texture

sampling of an image.

Left: example of image texture sampling and the
3D feature vectors (i, /5, fz) in a O neighbor-
hood. Right: calculated graph of the sample
function fz(x, y) defined for all (x, y)E OZ.

used as a similarity measure between texture
features Fi=(f"\", -, f+") and FF'=(f/, ---, f7)
with the following definition

; N 7 !z_tkz'_f;j)Z
ﬂ(FIF)_EI(ﬁi)2+(ﬂj)Z‘ (7)
3. Texture Contour Model

We assume parametric representation of an
active contour by v(s)=(x(s), y(s)), 0<s<1
and its minimized energy functional

EsmzkeLﬁlEz‘nt(V(S)) +Etexture<v(s))

+ Eimage(v(s))ds. (8)
The energies

=5 (&) () + wls) ()P,

(9)
Eimage= wsl ('x’ y)+ W4JV( Gy * I(X, y)) 2’
(10)
are internal and image energy, respectively ;
they are similar to the ones defined in Ref. 7).
The functions wi(s), w(s) and constants ws, wy
are appropriate selected weights, G5 %, denotes
convolution with a Gaussian smoothing filter of
a width g, and V(+)is the gradient operator.
The internal energy E;,. imposes a piecewise
smoothness constraint upon active contour »(s)
while image energy E;mqg. pushes the active con-
tour towards the lines and edges of an image.
New type of energy
Eroxiure= VeEedge+ VeEcorner (1 1)
called texture energy has been incorporated,

where v, and v, are constants.
In this section, we present two different tex-

Fig.2 Extraction of a circle sampled by texture on a
texture background.
Upper : given initial contour. Lower-left : final
contour equilibrium obtained with texture edge
energy only. Lower-right : contour equilibrium
gained in the image space only.

Fig.4 One example of a corner following,
Left : synthetic image with initial contour.
Right: final contour on target shape attracting
the triangle corners.

Fig.5 The extraction of a circle contour when there

exists poor contrast between circle and back-
ground.
Upper : synthetic image with roughly given ini-
tial contour. Lower-left: final contour of a
circle received from texture information. Lower-
right : contour in equilibrium received by scale
space employing.

Fig.6 Corners of the synthetic image of a linden leaf.
Upper : initial contour. Lower-left: final con-
tour using discontinuities and texture. Lower-
right: result contour from image scale space
employing.

Fig. 7 Optical microscope image of a mouse embryo.
Upper-left : initial contours of the mouse
embryo’s stomach. Upper-middle: final con-
tours of the stomach of the embryo using tex-
tures. Upper-right : result contours from image
scale space. Lower: enlargement of selected
areas from the upper images.
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ture energy functionals E.ye and E,ypmer which
attract active contour v(s) to the edges and cor-
ners of the image. To make these energies in
function, we assume that for each point within
the image, exactly one feature vector is given
from the segmentation step.

3.1 Edge Functional

At each point of the active contour »(s) we
define a normal N to the contour in a point
v(s). One auxiliary point ¥,/(s)is procured
for the point v(s), in order to introduce the
edge functional. It is defined for the arbitrarily
small constant £ >0 as follows :

Vi(s)=v(s)+ENs. (12)
Let us denote F,” and F, as the texture feature
vectors corresponding to both the auxiliary
point V" and the contour point ¥(s), respective-
ly. The edge locations are places where feature
vector ¥, varies sufficiently from vector F,.
Hence, edge functional is given by

Eea’ge: ﬁ,ll(F'u: Fn+) (]3)

The edge functional Eq. (13) was used with
the active contour shown in Fig.2. The in-
solvability of this problem using only image
space or scale space i.e. images smoothed by a
Gaussian filter™® is obvious.

3.2 Corner Functional

In order to find the locations of corners, we
use the curvature level of lines on a sample
function.

For arbitrary given point a=(a, @) in the
image and for all (x, y) within the small e&-
neighborhood Of centered at a, the sample func-
tion f,(x, y) shown in Fig. 3 is defined as

ﬁl(xr y>rﬂ(Fa1,az, Fx,y)- (14)
The notation F,, ., denotes a texture feature
vector corresponding to the point a. The sample
function describes the differences between the
feature vector in point @ and the feature vectors
in a small neighborhood of @. Let

Ife

1] Oy
®=tan A (15)
ox
be the gradient angle of the sample function and

let £=(—sin ®, cos ®) be a unit vector perpen-

dicular to the gradient direction. Thus the
corner functional is follows
2
Ecomer = <%) ( 1 6)

The image shown in Fig.4 is a synthetic one

Sep. 1994

with four triangle corners followed by active
contour with usage of the corner functional Eq.
(16).

3.3 Discontinuity Behavior

Discontinuities in the active contour ¥(s) of
the order 0<k <2 will occur freely'? at a point
v(8) when coefficient w;(s,) in Eq. (9) is set to
0 for all j>k. The second order continuity
constraint will be ignored where the Ep., is
greater than a threshold value. Thus the second
order continuity constraint will be controlled by

0 if Ecomer > threshold
wz(s):{ :
constant otherwise
(17)

where wy(s) is coefficient in Eq. (9).
4. Experiments

The boundary finding system was investigated
by testing on real and synthetic images. Unfor-
tunately, a method for an automatic setting of
parameters is unknown. We use to set parame-
ters manually according to our experiences.
When extracting contours from a series of micro-
scopic images, we set all the parameters M, d,
Ws, Ve, Ve Once for each initial contour within the
selected microscopic image. Afterwards, the
same parameters are used for all images from the
series of microscopic images.

The size of a small sample window (parame-
ter M) forming feature vectors varies from 8 to
18 pixels and the step between samples (parame-
ter d) from 4 to 9 pixels. Both depend on image
quality. Usually, the elastic parameters w; and
wyin Eq. (9) can vary within the interval (0, 1)
while parameters w; and w, corresponding to the
image energy, Eq. (10) fall in interval (—1, 0).
Structures of a mouse embryo which we get from
microscopic images imply that parameter v, and
ve occurring in Eq. (11) come from the interval
(=1,0) and (—5,0), respectively. Afterwards,
the functional minimum is found using the
variational methods."

4.1 Synthetic Images

Figure 5 shows a circle which is difficult to
distinguish from its background. The initial
contour only roughly agrees with the target
shape and the location. The extraction of fea-
ture vectors from samples of size 12 X 12 and step
4 pixels is achieved as a preprocessing step. The
parameter v. in Eq. (11) is set to zero because
we don’t have corners in this example and
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parameter v, can vary from —0.2to —0.3. The
final curve delineates the target with an approxi-
mately 1.1 pixel average error per contour point,
while methods not using texture information™®
sketch the target with one of 7.2

Another synthetic image is shown in Fig. 6.
The target is the shape of a linden leaf with a
sharp corners. This form is described by a
discontinuous contour. The background and the
stem are potential sources of confusion. The
final contour accurately describes the linden leaf
and avoids the other objects.

4.2 Real Images

An active contour model using global shape
information obtained from texture feature
vectors has been applied to a variety of objects
from real mouse embryo images taken by means
of an optical microscope. The results of the
method applied to the problem of depicting the
stomach from these images are shown in Fig. 7.

5. Conclusions

A method has been described for faithfully
following dynamic contour using a texture fea-
ture vector description. This work incorporates
texture approach into active contour deformable
models by definition of texture energies on edges
and corners. It was found to reduce the difficulty
when using active contour models in the case of
both real and synthetic images and to be relative-
ly insensitive to the problems of very concave
boundaries and complex textures. When solving
the problem of reconstruction from a set of
contours extracted from a series of microscopic
images, we do not need to set the parameters for
each image in the series separately, it’s sufficient
to set then once for each initial contour within
the selected image.

An area of further study in this work is the
problem of multi-contour extraction. In the
proposed model, the solution of the active con-
tour model gives us contour position which is
independent from positions of the other contours
lying within the image area. Additional con-
straints between each pair of active contour,
such as constraint between their centers can be
introduced in our contour model to help in
determining indistinguishable or broken bound-
aries.

Future orientation is extending the present
model to dynamic surface models in 3D space.
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