Vol.35 No.11

Transactions of Information Processing Society of Japan

Regular Paper

A Knowledge-Based Method for Mathematical Notations
Understanding

YANJIE ZHAO," HIROSHI SUGIURA," TATSUO Toril ' and TETSUYA SAKURAT '

The understanding of mathematical notation by computer is still an unsolved problem. Resolving
this problem can lead to many important applications, particularly in the man-machine interface of
mathematical computation. We begin our research from fundamental concepts and formalization of
all mathematical notations. Based on these concepts and formalization, we study the syntax and
semantics of mathematical notation. According to the syntax and semantics, we implement a
knowledge base to solve the problem of knowledge representation of mathematical notation, and
implement a parser to translate mathematical expressions into their equivalent functional representa-
tions, which are independent of different applications. It is also possible to extend the knowledge
base by the user for satisfying the feature of immediate extensibility of mathematical notation.
Around the knowledge base and the parser, we can establish a universal interface for different
applications systems, to combine the understanding of the formalized mathematical expressions with

Nov. 1994

the document processing of them.

1. Introduction

Mathematical notation has become a language

for serious mathematical thinking. However up
to the present, human beings have difficulty to
directly input computational problems in mathe-
matical notation into a computer. We still have
to translate between mathematical expressions
and computer language programs. From a long-
term point of view, our research aims to do the
following :

1. To study the structure and meaning of all
mathematical expressions so as to recognize
their linguistic and logical properties.

2. To integrate document understanding with
document processing of mathematical
expressions.

3. To improve the man-machine interface in
many application fields, e.g., mathematical
computation (numerical computation, com-
puter algebra, and automated theorem prov-
ing), computer aided education, scientific
document processing (even automatic
proof-reading), algorithm representation,
and software specifications.

T Intelligence Engineering Laboratory, Kurume Insti-
tute of Technology
it Department of Information Engineering, Faculty of
Engineering, Nagoya University
111 Institute of Information Sciences and Electronics,
University of Tsukuba

2366

Research in mathematical notation is only a
part of the historical research of mathematics
before the age of the computer.? Modern
mathematical notation began at the start of this
century.” The research in computer processing
of modern mathematical notation has spread to
the following fields since 1961.

Early Programming Languages: early high-
level programming languages which contain
some mathematical notations since
19619719 It was at this time that the
necessity and applicability of mathematical
notation in computer science was realized.

Pattern Recognition : recognizing images of
mathematical notations.!¥~'® The first two-
dimensional grammar for some mathemati-
cal notations was developed in this
field.1419)

Document Processing : editing, typesetting and
printing all natural, original, and orthodox
mathematical expressions.?9-2" The inter-
active editing and typesetting of two-
dimensional mathematical expressions was
achieved.

Software Specification: executable languages
with mathematical symbols for expressing
formal specifications of computing systems
and their fast prototyping.2®-32)

Mathematical Software Interface: the two-
dimensional formula and graphical inter-
face of mathematical computation systems

Vol.35 No. 11

since 1985.25+33)-46) This kind of interface
permits the user to input two-dimensional
mathematical expressions directly, and
translates the user’s input into the input of
several different computer algebra systems.

In conclusion, the document processing of all
mathematical expressions has achieved some
success. On the other hand, the mathematical
software interfaces mentioned above use a neces-
sarily minimal sub-set of mathematical nota-
tions, and do not consider the whole (e.g., the
declarations in mathematical literature in
particular). Because they are developed as
computer languages, they avoid the ambiguities
of mathematical notation, but they have the
following problems in view of the use of natural
mathematical notation.

1. They lose part of the representation power
of mathematical notation.

2. They are different and have no universality.

3. They are not easy to extend by the user.

A user-friendly, two-dimensional editor to
input, typeset and print mathematical expres-
sions has been implemented. However, rigorous
research in computer processing of natural
mathematical notation is still in its infancy.
Much research has outgrown a very-high-level
programming language to approach the repre-
sentation of natural mathematical notation. In
contrast, we do not design and implement a new
very-high-level programming language, but we
begin our research from whole natural mathe-
matical notation. We give a knowledge-based
method for understanding mathematical expres-
sions in this paper, and then, plan to develop
many applications in different fields.

In Chapter 2, we begin by giving fundamental
concepts about mathematical notation. In Chap-
ter 3, we make a formalization of mathematical
notation to lay a foundation for our research. In
Chapter 4, we study the structure and meaning
of the formalized mathematical expressions to
lay a base for our knowledge-based understand-
ing method described in the following two chap-
ters. In Chapter 5, we implement a knowledge
base. In Chapter 6, we implement a parser based
on the knowledge base. In Chapter 7, we put
forward a scheme to realize a system of many
applications with a universal interface for mathe-
matical notation.

In Chapter 3, we define a formal representa-

A Knowledge-Based Method for Mathematical Notations Understanding 2367

tion which represents the recursive two-
dimensional structure of mathematical notation.
We divide the problem of understanding mathe-
matical notation into two sub-problems. The
first is how to input the formal representation.
There are several ways to do it, e.g., direct input
by mouse and keyboard, translation from usual
text data, and recognition from optical data.
The second is how to understand the formal
representation. In this paper, we start from the
first, and then, concentrate on the second.

2. Fundamental Concepts

What we are concerned with in our research is
only modern mathematical notation. We give
the fundamental concepts about modern mathe-
matical notation as follows.

Mathematical expression (in a broad sense)
means any expression (i.e., formula,
definition, graph, text, table, image, etc.) in
mathematical literature.

Mathematical expression (in a narrow sense)
(math expression, for short) means for-
mula, definition, as well as related text (e.g.,
let, define, where, for, if, given, etc., because
the native verbal language is always needed
in order to interpret and amplify the mean-
ing or usage of the non-verbal logogram
representations*”) in mathematical litera-
ture. This concept in the narrow sense is
used in our current research.

String used in mathematics (string, for short)
means a sequence of characters to construct
a minimal meaningful part of a math expres-
sion. Namely, a string is the morpheme of
math expressions, i.e., numeral, the core
part or index part of an object, operator,
separator or ellipsis in math expressions.

Character used in mathematics (character, for
short) means any member of any character
set, such as a Latin letter, Greek letter,
Arabic numeral, special letter, mathemati-
cal sign, or even a character of any native
language (even a chinese character or a
japanese katakana character), used in math-
ematics.

Mathematical motation (math notation, for
short) means the set of construction rules of
math expressions from strings; a logo-
graphic writing system for representing
mathematics but its spoken equivalent

2368

varies from language to language.*”

While reading a math expression, we see the
visual image of it at first, then we can understand
its meanings through its structure and with the
knowledge of mathematics. Math expressions
have complicated two-dimensional structures,
but they are not arbitrary graphics in a coordi-
nate system. Their components do not overlap
each other. The locations and geometric adja-
cents among a math expression’s components
relate with its meaning representation. We can
find the following features about their structures.
I. A string is a morpheme of a math expres-

sion. For example, the A,f, k and 2 are
strings in a function name f,,. The sin and
cos are also morphemes in sin®x + cos?x.
2. Math expressions have the following three
kinds of fundamental structures: 1) A row
of expressions to represent operators and
their operands (e.g., f/ f (x)dx and ab+ bc
+ca), and a sequence arranged horizon-
tally (e.g., a,b,¢,--), 2) A column of
expressions to represent other operators and

their operands (e.g., %), and a sequence

arranged vertically, and 3) A superscript-
subscript tree of expressions to represent
operation (e.g., x® and X) and modification
to make new mathematical objects from the
original one (e.g., £, i, £ and f,*"> are
made from f).

3. Any math expression can be derivated recur

X
sively from the three structures (e.g., %%—

yZ#z) . Math notation, as compared with
native languages, do not rely on phonetics

|_expression |::= |[expression

Transactions of Information Processing Society of Japan

Nov. 1994

to delimit structure boundaries and distin-
guish different meanings. They have com-
plicated recursive structures and can be
strictly expands according to these struc-
tures. So they have stronger representation
power and can avoid many ambiguities.*”
Next, we propose an abstract data structure
and a formal grammar.

3. Formalization

The formalization of math notation can
achieve the following intentions :

1. To give the formal definition of the universal
set of math expressions,

2. To determine the data structures of math
expressions, and

3. To define a two-dimensional meta-language
for describing the grammar of math expres-
sions, because Backus-Naur Form is incon-
venient for non-verbal math notation.

Now we give a brief definition of the formal
representation of math expressions as follows.

A formal expression (expression, in short) is
a string, or a structure of strings. Every expres-
sion occupies one rectangle of space denoted by
a box, like this : A string is put into a
box, which is called an atomic box. Every box
is located in a structure of boxes.

We define the formal representation of
mathematical expressions (formal representa-
tion or 2D formal representation, for short) in
Fig. 1.
where, the two undirected lines “—” mean hori-
zontal and vertical concatenate adjacent rela-
tions of two boxes. The six directed arrows “—”
mean super-script and sub-script subordinate

expression

ﬂ expression ' I

........ N Posmmsarecosass ooy

~
H
H
i

-
i["expression]
d 5

il expression |

[
weTITRST

expression

i|_expression |

- -
:|_expression |

-
1
1

v
........ 2)

........]

string € 3" ¥

Fig. 1

Definition of 2D formal representation.

Vol.35 No.11

adjacent relations of two boxes. The duet box
expression]| means the repetition of adjacent rela-

___________ 5

means option of the box [expresion]. The “|”
means disjunction. The “::=”" means
definition. 2* is the set of strings with the
character set 2}, which contains any characters
of native languages and mathematical signs. In
our implementation of the formal representation
(i.e., the equivalent 1D formal representation,
see an example following the Fig. 10 in Chapter
6), a string is a sequence of primitives and boxes
of TEX.?Y Therefore, we can express the type-
setting information (e.g., style, size, position,
etc.) of a string in TgX within an atomic box.

From the definition above, every math expres-
sion is a structure of a row or column of un-
directed linkages of boxes, a directed hexa-tree
of boxes, or only an atomic box. The set of
expressions produced by the formal representa-
tion is called to be Universal Set of Mathemat-
ical Expressions, and denoted by U. If we
denote the set of all math expressions as M, then
it is sure that M C U.

Boxes in the formal representation are used to
express not only the geometrical structures of
math expressions, but also the boundaries of
meanings to avoid many ambiguities and to
represent the user’s intention correctly. The
formal representation holds both the image
pattern and the meaning structure of math
expressions. For example, if f;*> means (f;)2, its
formal representation is in Fig. 2.

An operand of an operator and a factor which
occupies a row of boxes have to be put into one

the correct form is the not the

Fig.2 Example of correct use of boxes.

] 6]

Fig.3 Example of meaningful use of boxes.

A Knowledge-Based Method for Mathematical Notations Understanding 2369

Fig.4 Example of box usage for open-ciose structures.

box. Forexample, if 3! a* sin kzs means 2 (a*
k=1 k=1

sin(kzs)), it has to be represented as Fig. 3.

The open-close structure (i.e., (<), |+],[-] etc.)
must be within one box and the expressions
between the open and close signs must be within
one box. For instance, we have to build the
expression |a|b+ ¢|d| with the meaning (Ja| X b)
+(c¢x|d|) as shown in Fig.4, to distinguish
from another meaning |a X (|b+c|) X d|.

In addition, the same strings with different
sizes are regarded as the same string, e.g., in xe*,
the two x are the same string. But the letters
with different styles are regarded as different
letters, e.g., A, A, A, A, etc.

Someone may think that it is very troublesome
to input these box structures, considering both
the meaning and the visual image of math
expressions. But our aim is to establish a
man-machine interface for scientists and engi-
neers who work with mathematics. It is a
natural way for people who are familiar with
mathematics to construct math expressions with
suitable structures.

In the sense of the formal representation, we
study the knowledge about the relation between
structures and meanings of math expressions
accurately in the next chapter.

4. Structures and Meanings

The strings can be constructed into an in-
dependent object or operator which is often
called a mathematical symbol (defined in 4.1).
Math expressions are constructed recursively by
mathematical symbols (developed in 4.4). The
meanings of math expressions (explained in 4.2)
are determined by their structures and the
domains they belong to (discussed in 4.3), and
also rely on declarations of their variables
(revealed in 4.5).

4.1 Mathematical Symbols

Mathematical Symbol (math symbol, for
short) means an expression of an object (num-
ber, constant, variable, set, etc.), operator (+,
sin, [/ dx, etc.), delimiter (e.g., parentheses),
separator (e.g., comma), or ellipsis (---, etc.)
used in math expressions.

2370 Transactions of Information Processing Society of Japan

Nov. 1994

function: <function_name> (Jmeta-representation] , ... , [meta-representation])

domain: <domain_name>

Fig. 5 Definition of meta-representation.

Each math symbol plays a different role in the
structure of a math expression. Here, structure
means a math symbol adjacent relation defined
by formal representation. All math symbols can
be classified into fixed math symbols and
changeable math symbols.

Fixed math symbols are the math symbols
that are used to describe fixed individuals, opera-
tors and auxiliary symbols as follows:

Fixed individuals contain
numbers, constant names (such as 7, e, §)
and domain names (such as R).
Operators (must have operands) are +, —,
sin, !, [dx, 2%m, ||, etc.
Aucxiliary symbols (can not be independent of
other symbols) contain
delimiters to change operation priority,
such as (+) in (a+5) Xe, or to wrap
something as a whole to distinguish
other things, such as (-) in f(x, y),
separators as a boundary between two
components, such as the comma in f (x,

xZ) 3
ellipses to show a repetition structure, such
3 5 7
. x* x* x
as -+ 1n X—?—F*ST‘—T‘F

The meanings and usages of existing fixed
math symbols have been formed historically and
have been accepted by the whole world. Fixed
math symbols are invariant components of math
expressions. They do not need declarations to
say what they are.

Changeable math symbols are the math sym-
bols that are used to describe variables. There-
fore, they need declarations to say what they are
and what domains they belong to. They can
have different meanings and usages in different
documents, or even in the same document. Some
examples of changeable math symbols are vari-
able x, vector a, matrix A, function f, set A, and
arbitrary constant C,.

From this classification, we find that the fixed
math symbols determine the structure of math
expressions. Namely, fixed individuals are in-
dependent objects which do not need further
analysis. Operators connect their operands to

function: definite_integral (

function: integral_element (1)
domain: set_of_real_number ’

function: lower_bound([__])
domain: <subset of set_of_real_number> |,

function: upper_bound(["])
domain: <subset of set_of_real_number> s

function: integrand(C—])
domain: set_of_real_number)

domain; set_of_real_number

Fig. 6 Example of meta-representation for definite inte-
gral expression.

create an operation. Auxiliary symbols are also
similar to operators. For example, parentheses,
commas and ellipses can construct a structure
(ay, as,-, ay,). They connect ay, as---, a,
together to form an object, i.e., the comma seems
to be a connection operator, the ellipsis means a
repetition structure, and finally, the parentheses
wrap them as a whole to distinguish them from
other objects. Contrarily, changeable math sym-
bols are changeable components in a structure.

4.2 Meanings of Mathematical Expres-

sions

The meanings of a math expression is depen-
dent on its interpretation,*®*9 ie., fixed math
symbols have their names (values, constant
names, function names, etc.) in a native lan-
guage, and changeable math symbols have their
declared domains (sets of objects from which
they abstract), based on mathematical knowl-
edge. This kind of interpretation is the
denotational semantics of math expressions, and
can be represented as the form of functions with
their domains.*® Therefore, the meanings of any
math expression can be denoted by composed
functions with the codomains of these functions.

In our research, we define a meaning represen-
tation. It only says what to do, not how to do,
so it is independent of any concrete data types
and algorithms. In this paper, the math notation
understanding means a translation by computer
from a formal representation into its meta-

Vol. 35 No.11

representation defined as below.
Meta-representation of a math expression is
an object which contains function and its
codomain (both names are written in English)
to denote a meaning of the math expression, i.e.,
meta-representation is an object shown in Fig. 5.

For example, the math symbol f!:i:]dl—j
1

on domain R (set of real numbers) can have the
meta-representation shown in Fig. 6.
4.3 Relation between Structures and
Meanings

The same fixed math symbols in different
structures can describe different meanings, e.g.,
—in @ and in f: A—B and in p—(g—p).
Therefore, we have to distinguish different
meanings according to different fixed math sym-
bols in different structures.

Nevertheless, the same fixed math symbol in
the same structure can also have different mean-
ings, because the changeable math symbols
could belong to different domains, and the
output of a function may be in a different
codomain according to different input in the
same domain. In addition, one structure may
correspond to different function names. For
example, the structure of binary operation []
X[] means:

1. product of

(a) integers Z X Z—Z

(b) real numbers RX R—R

(C) matrics RX™x R™<n_, Rixn

(d)

2. Cartesian product of ---
3. vector cross product of ---
4.

Therefore, one structure can have different
function names, and one function name can have
different codomains with its parameters on
different domains. In other words, one structure
corresponds to different meanings—the function
and its codomain.

In light of what is mentioned above, knowl-
edge about the inclusion relations of domains is
also very important. With this knowledge, after
defining operator ¥~ on R, we can understand
J/ 2 because natural number set N CR.

4.4 Construction of Mathematical

Expressions
Math expressions can often be expressed con-

A Knowledge-Based Method for Mathematical Notations Understanding 2371

cisely and accurately while omitting many pa-
rentheses because of the following two agree-
ments.

First, operators permit a computational prior-
ity order. For example, factors are the top
priority, such as nl[x] |x|, e%,sinx, [f(x)
dx, 270 f (), afy), etc.; and then, second pri-
ority term, such as aX b, a-b, x/y, ANB, fol-
lows ; and then, the third one is addition, such
as binary +, —, U, and unary +, —, etc.

Secondly, some binary operators satisfy the
associative law, ie., VxVyVz((x [y)[Jz=
x[J(y Oz)=x[Jy[Jz), where [] denotes
an arbitrary binary operator with left-right oper-
ands. Some binary operators with -the same
priority satisfy only the left associative law, e.
g., for subtraction, a—b—c=(a—b) —c=+a
—(b—c) ; or only the right associative law, e.
g,a%%k bxkc=ax%(b%x*kc)+(a**
b) % % ¢ in FORTRAN.

The construction of a math expression finally
attains statements, which often need words or
phrases of native languages as components, e.g.,
“Let”, “Solve” and “for” in “Let x&R” and
“Solve f(x)=0 for x&R”. These words are
not math symbols ; but they are necessary for
understanding.

4.5 Declaration of Changeable Mathe-

matical Symbels

Declaration is a math expression which is
used to specify the meaning of changeable math
symbols, and to define new math notations
immediately. It influences the structure and
meaning of other math expressions through
defining structures of new math notations, and
through defining the domains and scopes of their
changeable math symbols. We call this kind of
influence to be a declaration effect.

Declaration effects are semantic structures to
show the domains, usages and scopes of declared
symbols in the structures of declarations.

We explain various declaration
(domain, usage and scope) as follows.

The domain of a declared changeable math
symbol is a set in which it exists. The descrip-
tion of domain in a declaration can be of the
following three kinds: 1) A definition with
equivalence. For example, “Let x=c¢” means
that x is a declared symbol, and has the same
domain as c¢. 2) Declared variables are ele-
ments of a domain, e.g., “Let x, yER”. 3) We

effects

2372 Transactions of Information Processing Society of Japan

can declare function f as “Let f& B*” with the
notation in 2). But the notation “f : A—B”,
with the same meaning, is popular in use.
Through the later notation, we can clearly recog-
nize the domain 4 and the codomain B of f.

Some function declarations also contain
definition to say how to do, and/or its usage to
say how to use. For example, when we read
“For xER,f[x]d:Ef x*, we know that the de-
clared symbol is £, that its domain is R, that its
codomain relies on the definition x2, that the x
is a typical element which is meanful only within
the definition, and that the usage of f is also
specified, i.e., it must appear in its scope at the
form f{ 1.

The specified scope in a declaration can be
divided into two kinds: 1) Usual Scope means
that the scope of a declared symbol is its follow-
ing document till its next declaration, or its
“removing declaration” (e.g., in
Mathematica’?), or the end of the whole docu-
ment. 2) Localized Scope covers only a
specified area of the document. One situation is
a “post-scope” declaration, e.g., “Let y=f (x),
where x& R”. Another is bound variable.*® A
bound variable is often declared within an

b
operation. For example, x in f f(x)dx is a
a

bound variable; its domain relies on the
domains of @ and b as well as the definition of
definite integral ; its scope is f (x). Therefore,
the analysis sequence of the operation with
bound variables is domains of bound variables,
and then, the bound variables, and finally, the
scopes of the bound variables, i.e., a and b, and
then, x, and finally, f (x).

5. Knowledge Base

All considerations in Chapter 4 are im-
plemented by a knowledge-based method, which
contains a knowledge base discussed in this
chapter and its parser discussed in the next
chapter. The knowledge base contains a series
of rules being explained as follows.

5.1 Rule

The structure and meanings of a math expres-
sion can be represented by a rule. Math expres-
sions can be understood through a series of rules
recursively. An abstract hierarchy of a rule is
shown below.

Rule is composed of

Nov. 1994

Structure, which contains a structure rule :
{category> — <{structure pattern
Declaration Effects, as an option
Meanings 1, which contains
Function, with the form <{function name
({category> or <(function) ,---)
Domain Rule 1, which has the form
{codomain) < <{domain_ pattern>

Domain Rule m,---

Meanings 7,---

The structure pattern describes the common
structure of a class of math expressions. It is
composed of fixed math symbols and sub-
structures. All its sub-structures are denoted by
categories (non-terminal symbols), and the fixed
math symbols as terminal symbols appear in
rules explicitly. While creating structure rules,
we must support the two agreements in 4.4, i.e.,
the priority order can be implemented through
arranging rules into a certain sequence. A typi-
cal priority order has been defined in 5.2. The
associative law can be represented in the rules of
the following forms: <A4> — <4> [] for
the left associative law only ; and <4> — (B>
[] <A4> for the right associative law only. Here,
[] denotes an arbitrary binary operator, 4 and
B denote categories. While analyzing a row of
boxes, the former begins from the back end and
the latter begins from the front end. For exam-
ple, in order to accept the structure of binary
operator X with its two operands, we can define
a structure rule: [erm]— [term] X [fctor] . In addi-
tion, the words written in native languages are
also regarded as fixed math symbols.

The declaration effects only appear in the
rules for describing declarations and operations
using bound variables to represent the semantic
structure of declaration. They are necessary
because the semantic structures have to be re-
presented explicitly, so that the language of math
expressions can be extended by the user (see
5.3).

One of the meanings describes one group of
the meanings of a structure. It contains the
naming function of the structure and its corre-
sponding domain rules. The function and a
codomain are composed of a meaning or result
of understanding. The domain pattern has the
same framework as its corresponding structure

Vol.35 No.11

pattern. For the given example [X[|

mentioned in 4.3, we can create the domain rules

like as : R—R X R for real number product, R”

«—R" X R” for real vector cross product, etc.

Note that there is a mixture of the terminology
“function” y=f (x) based on two ideas*® : the
idea of a function as a many-one correspon-
dence, and the idea of a function as a variable y
which ranges in relation to another variable x,
so that the value of y is always fixed by that of
x. We hold the second idea as an agreement
during creating any domain rules.

The whole knowledge base is composed of a
series of rules and background knowledge.
Background knowledge contains the correspon-
dences of domain symbols to domain names and
the domain inclusion relations. It can also be
extended by the user.

5.2 Categories

The naming of categories is convenient for
knowledge representation and user extension,
because there are only seven categories and they
all correspond to mathematical concepts.
Through the seven categories, we can organize
almost all math expressions into the knowledge
base in a typical priority order (the bottom is
prior to the top) as follows:

1. Expression is a statement, such as a declara-
tion, a definition, an equation-solving, or an
assignment, which is constructed by
logic_expressions.

2. Logic_expression is an expression which is
constructed by relation expressions and
logic operators, e.g., \V, A, etc.

3. Relation expression is an expression which
is constructed by addition expressions and
relation operators, e.g., €, &, C, &, =, ¥,
>, >, etc.

4. Addition expression is an expression which
is constructed by term expressions and addi-
tion operators, e.g., binary +, —, U, etc.
and unary +, —.

5. Term_expression is an expression which is
constructed by factor expressions, multi-
plication operators (e.g., X,-,/,=,0),
etc.), function composition operator O, as
well as omitted or invisible operators
between two factors (e.g., ab means a times
b).

6. Factor_expression is an expression which is
constructed by atom expressions, unary

A Knowledge-Based Method for Mathematical Notations Understanding 2373

operators (e.g., —, |, #, etc.), fraction stroke,
open-close operators (e.g., (+),[-], {-}.["]
||, etc.) exponential operation (e.g., e*),
complicated structured operations (e.g.,
T (x)dx, 270 f (r), etc), sinx, f(x,)
and indexed variables.

7. Atom expression is a minimal independent
mathematical object which does not contain
any expression within it. It has been declar-
ed in a declaration, or does not need declara-
tion. It can be a number, constant name (e.
g., imaginary unit i,2” base of natural loga-
rithm e,2” number x, and infinity oo),
domain name (e.g., set of real numbers R),
variable name, function name, or set name.
It needs no further analysis and interpreta-
tion.

5.3 Declaration Effects

To implement the declaration effects, we use a

series of primitives in a rule to describe all
necessary information about a declaration,
and to activate corresponding implementa-
tion actions in the parser. All primitives
used in this knowledge base are introduced
as follows :

symbol (formal expression of category,)
specifies where the declared symbols are.

equivalent (category) shows that the declared
symbol has the same domain as that of the
category.

domain (category,--) specifies where the
domain of the declared symbol is.

codomain (category,--) specifies where the
codomain of the declared symbol is.

typical element (category, --) specifies where
the typical variable is.

definition (category)
definition is.

usage ({rule>) describes the usage of the declar-
ed symbol through the rule.

scope (category,---) specifies where the scope of
the declared symbol is.

All primitives can be composed of different
groups for different declared symbols in a decla-
ration. In one group, the primitive symbol must
appear, others are optional. The omitting of the
primitive scope means that the usual scope is
specified.

For example, we define the following two
different structure patterns for function declara-
tions f: A—B and A5 B,

specifies where a

2374

Transactions of Information Processing Society of Japan Nov. 1994
#atom_ #atom__ #atom_ #atom #atom,_
[Ss10n i i Ssi i
#:;pressx }-E}- g;presslon -E_g— ;;gpressnon -E}_ ﬁﬁpresslon ;igpress:on
#atom_
expression
#4

Fig. 7 A structure pattern for a vector and its indexed element.

Structure pattern 1 :

| # atom _ expression # | } M [# atom _ expression # 2 I —

I # atom _expression # 3 ‘

Structure pattern 2 :

atom _ expressi})n #1 ;

The two structure patterns correspond to the
same declaration effect as follows :

symbol (# atom expression # 1)

domain (# atom_expression # 2)

codomain (# atom_expression # 3)

These primitives memorize the function name,
its domain and codomain for succeed under-
standing. Obviously, the user can define new
structure patterns whithout modifying the pars-
er, so the user (not only the programmer) can
extend different representations easily. There-
fore, the immediate extensibility of math nota-
tion can be achieved.

declaration effectsl

symbol(#atom_expression#1)
domain(#atom_expression#2)
codomain(#atom_expression#3)

symbol(|#atom_expression#5)
#atom_expression#4

domain(#atom_expression#3)
typical_element(#atom_expression#4)
usage(< rule for indexed variable shown in Figure 9 >)

Fig. 8 Declaration effects for a vector and its indexed
element.

rule |

atom _expression # 3

Another example shows how to process the
mapping structure with usage to describe math
expressions such as the following declaration for
a real vector and its indexed element. “q: n—
R, via i~ a;”. Its structure pattern is defined in
Fig.7. It corresponds to the following two
groups of declaration effects in Fig. 8.

According to these primitives, the parser
memorizes the formal representation of the two
declared symbols, their domains and codomain,
and creates a connection between the declared
symbols and the usage, and then, understands
the vector’s indexed variable, such as @, accord-
ing to the rule in the usage shown in Fig. 9.

Owing to use declaration effects, the parser
only knows the formal representation and the
primitives in declaration effects. Therefore, the
formal representation and the primitives can not
be modified and extended by the user. The
parser does not know any function names,
domain names, domain relations, category
names, and fixed math symbols. Therefore, the
user can extend and specify all of them by
creating new rules. Of course, a friendly inter-
face for user extension needs to be developed in

structure |

|#factor_expnessionl >

_————————————————— —
#atom _expression#35

#addition_expression

meaning; l

function

vector_element(clement_name(#atom_expression#5), index(#addition_.expression))]

domains

e
#atom_expression#S
fatom_expression#3 | <€
#atom_expression#2

Fig.9 A rule for usage of indexed variable.

Vol.35 No.11

the future. This interface supports a two-
dimensional knowledge representation language
which is revealed in an implementation example
in the next chapter.

6. Parser and Implementation

A parser has been implemented to accomplish
top-down structure analysis and bottom-up
meaning interpretation based on the knowledge
base mentioned above, which is stated briefly as
follows :

Data Structure :

An object list used to memorize every declared
object’s meaning, i.e., its formal representation,
domain, codomain, usage, scope, etc.
Algorithm :

Input : formal representation

Outout : its meta-representation

Step 1. If there are mathematical objects
memorized in the object list, make a match
between the formal representation and the
object in the object list one by one; if
matched, obtain a function and a domain of
the object as output, return with “success-
ful”.

Step 2. Pick up rules from knowledge base one
by one, to find a rule such that the structure
pattern in this rule matches with the
Jormal representation. If no rule can be
found in the knowledge base, make the
parser exit with “unknown”.

Step 3. If the rule has declaration effects, exe-
cute their primitives to memorize declara-
tion information into the object list, and
determine the analysis order of sub-
structures.

Step 4. Understand all sub-structures recur-
sively using this algorithm. After executing
this algorithm for each sub-structure, the
Sfunction and domain of the sub-structure
are obtained. If one of them failed, go to
Step 2.

Step 5. Pick up domain rules one by one from
the meanings list of the rule, to find a
domain rule whose domain pattern matches
with the domain pattern obtained by all
sub-structures. If both are matched, the
function in current meanings and the
codomain in the domain rule are composed
of the output. Then, return with “success-

ful”. If no domain rule can be found in thev

A Knowledge-Based Method for Mathematical Notations Understanding 2375

[ErorEr=]

Fig. 10 Formal representation of implementation exam-
ple.

rule, goto Step 2.

In this algorithm, we are not concerned with
the problem of ambiguities. It is not difficult to
modify this algorithm to be able to find ambigu-
ities in a math expression. A math expression is
ambiguous, if it leads to more than one [func-
tion, domain] after parsing. We will need
another study to handle the problem of ambigu-
ities of math expressions.

The knowledge base and the parser have been
implemented in CESP®" (an object-oriented
PROLOG). An implementation example is
given as follows.

Let yER,yH/— élr;(—xdx, where, R is a set
0

of real numbers, and «— means assignment. This
problem can be input as a 2D formal representa-
tion shown in Fig.10 by a two-dimensional
editor (remains to be implemented, which is
similar to MathType??).

In our implementation, this example is input
as a 1D formal representation, which is equiva-
lent to the definition of the 2D formal representa-
tion, shown below.

[column,

[row, \rm Let’,"y’, "\in’, \boldmath R’],

[row, "y’, \leftarrow’,

[row, [tres, \int’, back sup, \infty’,

back sub, '0’],
[column, [row, \sin’, ’x’], "\over”’,
'X’],
[row, \rm d’, x’]

]

]
]

The integral part within this example can be
understood according to the following rule in
the knowledge base in Fig. 11, which is re-
presented in a two-dimensional knowledge re-
presentation language (remains to be developed

2376 Transactions of Information Processing Society of Japan Nov. 1994

rule |
'structu:e_rulel
#addition_
expression#2
#factor__ > #addition 1l #atom,_,
‘ J. —[expressioﬁgl'— d Iexpression
|#addition_
|expression#1
declaration_effects |

symbol(#atom_expression)
domain(#addition_expression#1, #addition_expression#2)
scope(#addition_expression#3)

meanings]

function

definite_integral(integral _element(#atom_expression),
lower_bound(#addition_expression#1),
upper_bound(#addition_expression#2),
integrand(#addition_expression#3))

Fig.11 A rule for understanding definite integral expression.

in future). {meta-representation> ,--], <domain name)].
Finally, the parser translates the 1D formal Here, R is the abbreviation of the output
representation into the meta-representation as set of real numbers in this example; and N
follows in a list form: [[{function name) , means set of natural numbers.
[[computation,
[[declare, [variable, y], [domain, R]], void],
[[assignment,

[[assigned variable, [[declared variable, y], R]], R],
[[assign expression,
[[definite integral,
[[integral element, x], R],
[[lower bound, [[natural number, O], N]], N],
[[upper bound, [infinity, R]], R],
[[integrand, [[fraction,
[[numerator, [[sin, [[declared variable, x], R]], R]], R],
[[denominator, [[declared variable, x], R]], R]

Vol.35 No. 11

Up to the present, the implemented knowledge
base and the parser have had the ability to
understand the following kinds of formulas: 1)
variable declarations, 2) fixed constants, 3)
four arithmetic operations which contains the
omitted or invisible multiplication operator
between two factors, 4) elementary functions, 5)
indefinite and definite integrals, 6) summation,
7) function declaration, definition, and
function-call, 8) vector declaration and indexed
variable, 9) factorial, 10) fraction, 11) relation
=, etc. It has been shown that our knowledge-
based method is verified to be correct and
effective. We also plan to accomplish an appli-
cation to produce and verify a library which
contains the printing images and the meanings of
almost all mathematical formulas.

Our knowledge-based method is an extension
of context-free grammar parsing. This method is
different from other extensions and parsers
because of the different language it processes.
Our method has the following two distinctive
mechanisms for processing math notation mere-
ly: 1) declaration effects for describing seman-
tic structures and satisfying immediate exten-
sibility, and 2) the mechanism such that the
meanings of objects are determined by declara-

A Knowledge-Based Method for Mathematical Notations Understanding 2377

tion at first.
7. System

Based on the research of this paper, we put
forward a scheme for a system to integrate
document processing with document understand-
ing of math notation in Fig. 12.

Here, the Interface for User Extension pro-
vides the user with a way to create and extend
the knowledge base through the two-
dimensional knowledge representation language
shown in Fig. 11.

The Post-processors are application systems.
If the application is mathematical computation,
the post-processor contains the following three
processings : 1) Selection of Data Types: The
domain of a variable in mathematics has to
correspond to one of several data types, e.g., we
may select one among float type, double float
type, arbitrary float type or symbol type to
represent the set of real numbers R. 2) Selec-
tion of Algorithms: An operation in math-
ematics can correspond to many algorithms, e.g.,
for computing [f (x)dx, we have to select the
most suitable algorithm from many. 3) Trans-
lation into programs : The meta-representation
whose data types and algorithms have been

Document of Math
expressions in 1D

Document of Math Knowledge for.
expressions in 2D Mathematical Notations
n

Understanding

__________ ————

4
Interface for
User Extension

\

Formal Representation, Formal Representatio:
[e e e e e
| Y A
| [General Text Editor 2D Editor for
[General Text Editor] 2o Bdoctor
Y
1D Formal Encoder 2D Formal
Representation Decoder] Representation

Knowledge

Translation into
TgX Document

Parser

‘ Meta-representation '

{

[Post-processors (Application Syslems)]

I
|
|
]
|
|
|
|
|
|
|
|
i
|
|
|
|
|

(Document in TEX) %‘ﬁghdevel

Computational

Programs

Cixecumble
P

Results

Fig. 12 A system for integrating document processing
with document understanding.

2378 Transactions of Information Processing Society of Japan

determined is translated into high-level language
programs, or the inputs of existing application
systems directly. For example, we can translate
the meta-representation of the example shown in
Fig. 10 into a statement of Mathematica® like
the following

y=Integrate[Sin[x]/x,{x, O, Infinity}]
because Mathematica is a language of functions
and operations.

Up to the present, we have only implemented
the kernel of this system, i.e., the parser and the
knowledge base. Therefore, we believe that it is
valuable and necessary to take plenty of time to
implement the other parts of this system, which
will contain at least one post-processor in the
future.

8. Conclusion

We began with a research in mathematical
notation and their applications. The fundamen-
tal concepts and formalization were considered
at first. Based on them, we explored the princi-
ples of structure and meaning of mathematical
notation, and achieved a knowledge-based
method for understanding mathematical nota-
tion. This method has the following features :
1) independence of different applications, 2)
knowledge base extensibility by user, 3) close
connection of syntactic analysis and semantic
interpretation, and 4) brevity of the knowledge
representation. The perfect results and applica-
tions still require much research (e.g., ambigu-
ities, ellipses, etc.) in the future.

Acknowledgements We express much grati-
tude to Prof. Taketomo Mitsui (Nagoya Univ.)
who contributed much advice, provided many
important references, and improved the writing
style of this paper. We also express grateful
thanks to Visiting Prof Libo Lo (Univ. of
Michigan) for his discussion and advice particu-
larly in metamathematics. We would also like to
acknowledge Mr. Osamu Takata (Toyota Cen-
tral R&D Labs.) for his advice and help in the
implementation.

References

1) Cajori, F.: 4 History of Mathematical Nota-
tions, Vol.1 & 2, The Open Court Publishing
(1928-1929).

2) Kline, M.: Mathematical Thought, from
Ancient to Modern Times, Oxford University

Nov. 1994

Press (1972).

3) Sammet, J. E.: Programming Languages :
History and Fundamentals, Prentice-Hall (1969).

4) Wells, M.B.: MADCAP: a Scientific Com-
piler for a Displayed Formula Textbook Lan-
guage, Comm. ACM, Vol.4, No. 1, pp.31-36
(1961).

5) Balke, K. G. and Carter, G. L.: The COLASL
Automatic Coding Language, Symbolic Lan-
guages in Data Processing, pp. 501-537, Gordon
and Breach (1962).

6) Iverson, K.E.: 4 Programming Language,
John Wiley & Sons (1962).

7) Gawlik, H.J.: MIRFAC: a Compiler Based
on Standard Mathematical Notation and Plain
English, Comm. ACM, Vol. 6, No. 9, pp. 545-547
(1963).

8) Klerer, M. and May, J.: An Experiment in a
User Oriented Computer System, Comm. ACM,
Vol. 7, No. 5, pp. 290-294 (1964).

9) Klerer, M.: Interactive Programming and
Automated Mathematics, Klerer, M. and Rein-
felds, J. (ed.) : Interactive Systems for Experi-
mental Applied Mathematics (Proceedings of the
ACM, Symposium Washington, U.S.A., Aug.
1967), pp. 3-10, Academic Press (1968).

10) Klerer, M., Grossman, F. and Amann, C. H.:
Design Philosophy for an Interactive Keyboard
Terminal, Klerer, M. and Reinfelds, J. (ed.) :
Interactive Systems for Experimental Applied
Mathematics (Proceedings of the ACM, Sympo-
sium Washington, U.S.A., Aug. 1967), pp. 183
191, Academic Press (1968).

11) Klerer, M.: Experimental Study of a Two-
dimensional Language vs Fortran for First-course
Programmers, Int. J. Man-Mach. Stud., Vol. 20,
pp. 445-467 (1984).

12) Klerer, M., Grossman, F. and Klerer, R.: The
Automated Programmer System: Language
Design Issues for Scientific-Mathematical-
Engineering Applications Programming, Bou-
dreaux, J.C., Hamill, B.W. and Jernigan, R.
(ed.) : The Role of Language in Problem Solv-
ing 2, pp.245-260, Elsevier Science Publishers
(1987).

13) Klerer, M.: User-Oriented Computer Lan-
guages, Analysis & Design, Macmillan Publishing
(1987).

14) Anderson, R. H. : Syntax-Directed Recognition
of Hand-printed Two-Dimensional Mathematics,
Klerer, M. and Reinfelds, J. (ed.) : Interactive
Systems for Experimental Applied Mathematics,
(Proceedings of the ACM, Symposium Washing-
ton, U.S.A., Aug. 1967), pp. 436-459, Academic

Vol.35 No. 1l

Press (1968).

15) Fu, K.S.: Syntactic Methods in Pattern Re-
cognition, pp. 245-252, Academic Press (1974).
16) Anderson, R.H.: Two-Dimensional Mathe-
matical Notation, Fu, K.S. (ed.): Syntactic
Pattern Recognition, Application, pp. 147-177,

Springer-Verlag (1977).

17) Chang, S.K.: A Method for the Structural
Analysis of Two-Dimensional Mathematical
Expressions, Inf. Sci., Vol. 2, pp. 253-272 (1970).

18) Wang, Z. X. and Faure, C.: Structural Analy-
sis of Handwritten Mathematical Expressions,
Proceedings of the 9th International Conference
on Pattern Recognition, Nov. 14-17, 1988, Rome,
Italy, Vol. 1, pp. 32-34, 1IEEE Computer Society
Press (1988).

19) Nakayama, Y.: A Prototype Pen-input Mathe-
matical Formula Editor, Maurer, H. (ed.) : Edu-
cational Multimedia and Hypermedia Annual
(Proceedings of ED-MEDIA93 World Conference
on Educational Multimedia and Hypermedia,
Orlando, Florida, U.S.A., Jun. 23-26, 1993), pp.
400-407 (1993).

20) Kernighan, B. W. and Cherry, L. L.: A System
for Typesetting Mathematics, Comm. ACM, Vol.
18, No. 3, pp. 151-157 (1975).

21) Knuth, D.E.: The TgX Book (Computer &
Typesetting/ A), Addison Wesley (1984).

22) Schir, H.: Die Integration mathematischer
Formeln in den Dokumenteneditor Lara, Infor-
mationstechnik it, 28 Jahrgang, Heft 6, pp. 352~
360 (1986).

23) Crisanti, E., Formigoni, A. and Bruna, P. L.:
Easy TgX: Towards Interactive Formulae Input
for Scientific Documents Input with TgX, Désar-
ménien, J. (ed.) : Lecture Notes in Computer
Science, TpX for Scientific Documentation (2nd.
European Conference, Strasbourg, France Jun.
19-21, 1986 Proceedings), pp.55-64, Springer-
Verlag (1986).

24) Holdam, J. and N¢rgaard, C.: Gipsy: a Gram-
mar Based Interactive Document Processing Sys-
tem, Hewson, R. (ed.): Proceedings of 3rd.
International Conference on Text Processing
Systems, Oct. 22-24, 1986, Dublin, Ireland, pp.
141-147 (1986).

25) Arnon, D., Beach, R., Mcisaac, K. and Wald-
spurger, C.: CaminoReal : An Interactive Mathe-
matical Notebook, Vliet, J. C. van (ed.) : Pro-
ceedings of the International Conference on
Electronic Publishing, Document Manipulation,
and Typography, Apr. 20-22, 1988, Nice, France,
pp. 1-18, Cambridge University Press (1988).

26) Design Science Inc.: MathType 2.0 Mathemat-

A Knowledge-Based Method for Mathematical Notations Understanding 2379

ical Equation Editor User Manual (1989).

27) 1SO 31/X1: Mathematical Signs and Symbols
for Use in the Physical Science and Technology
(1978).

28) Spivey, J. M.: Understanding Z, A
Specification Language and Its Formal Seman-
tics, Cambridge University Press (1988).

29) Spivey, J.M.: The Z Notation, a Reference
Manual , Prentice Hall International (1992).

30) Norcliffe, A.: The Wider Uses of the Z
Specification Language in Mathematical Model-
ling, Johnson, J. H. and Loomes, M.J. (ed.):
The Mathematical Revolution Inspired by
Computing (Proceedings of a Conference in the
Institute of Mathematics and its Applications,
Brighton Polytechnic, Apr. 1989), pp. 145-155,
Oxford University Press (1991).

31) Boute, R. T.: Syntactic and Semantic Aspects
of Formal System Description, Microprocessing
and Microprogramming, Vol.27, pp.155-162
(1989).

32) Boute, R.T.: Funmath: Towards a General
Formalism for System Description in Engineering
Applications, Silvester, P. P. (ed.) : Advances in
Electrical Engineering Software, pp.215-226,
Springer-Verlag (1990).

33) Soiffer, N. M. and Smith, C.J.: MathScribe :
A User Interface for Computer Algebra Systems,
Char, B.W. (ed.) : Proceedings of the ACM
1986 Symposium on Symbolic and Algebraic
Computation, pp.7-12, Jul. 21-23, 1986, Water-
loo, Ontario, Canada (1986).

34) Soiffer, N. M.: The Design of a User Interface
for Computer Algebra Systems, Ph.D. Thesis,
University of California, Berkeley, Report No.
UCB/CSD 91/626 Apr. 1991 (1991).

35) Donnelly, D.: MathCAD for Introductory
Physics, MathSoft Inc. Cambridge MA. US.A.,
Addison-Wesley (1992).

36) MathStation, Ver.1.0, MathSoft, Inc., One Ken-
dall Square, Cambridge, MA, 02139 U.S.A.
(1989).

37) Soft Waterhouse, Inc.: DERIVE User Manual
3rd. Ed. (1989).

38) Young, D.A. and Wang, P.S.: GI/S: A
Graphical User Interface for Symbolic Computa-
tion Systems, J. Symbolic Computation, Vol. 4,
No. 3, pp. 365-380 (1987).

39) Wang, P.S.: Integrating Symbolic, Numeric,
and Graphics Computing Techniques, Mathemat-
ical Aspects of Scientific Software, The IMA
Volumes in Mathematics and Its Applications,
Vol. 14, pp. 197-208, Springer-Verlag (1988).

40) Doleh, Y. and Wang, P.S.: SUI: a System

2380 Transactions of Information Processing Society of J apan

Independent User Interface for an Integrated
Scientific Computing Environment, ACM Pro-
ceedings of the International Symposium on
Symbolic and Algebraic Computation, Tokyo,
Japan, Aug. 20-24, 1990, pp.88-95, Addison-
Wesley (1990).

41) Avitzur, R.: Milo, Paracomp Inc., San Fran-
cisco, U.S.A. (1988).

42) Bonadio, A. and others: Theorist Reference
Manual, Prescience Corporation (1990).

43) Bonadio, A. and others: Theorist Learning
Guide, Prescience Corporation (1990).

44) Kajler, N.: CAS/Pl: a Portable and Extensi-
ble Interface for Computer Algebra Systems,
Proceedings of 1SSAC’92, Berkeley, U.S.A., Jul.
1992, pp. 376-386 (1992).

45) Kajler, N.: Environnement graphique distribué
pour le Calcul Formel, Thése, Docteur en Sci-
ences, Université de Nice-Sophia Antipolis, Mars
1993 (1993).

46) White, J. and others: MathKit : Interactive
Texts for Math and Science, An Introduction,
Institute for Academic Technology, University of
North Carolina at Chapel Hill (1993).

47) Crystal, D.: The Cambridge Encyclopedia of
Language, Cambridge University Press (1987).
48) Kleene, S.C.: Introduction to Metamath-

ematics, North-Holland Publishing (1952).

49) Feys, R. and Fitch, F. B. (ed.) : Dictionary of
Symbols of Mathematical Logic, North-Holland
Publishing (1969).

50) Wolfram, S.: Mathematica, a System for
Doing Mathematics by Computer, Addison-
Wesley (1991).

51) CESP Ver.A00 by Al Languages Research Insti-
tute, Mitsubishi-Denki, 5-1-1 Ofuna, Kamakura,
Kanagawa, 247 Japan (1994).

(Received October 25, 1993)
(Accepted June 20, 1994)

Nov. 1994

Yanjie Zhao, born in Beijing,
China, in 1957, graduated from
Computer Science Department
of Nanjing University, China, in
1982 with the B.S. degree. He
became an assistant since 1982
and a lecturer since 1987 in
Radio-Electronics Department of Beijing Nor-
mal University, China. He also had the M.S.
degree in 1989 in Radio-Electronics Department
of Beijing Normal University, China. After
expired from the Doctor program from 1991 to
1994 in Depertment of Information Engineering,
Nagoya University, Japan, he became an assis-
tant in Intelligence Engineering Laboratory of
Kurume Institute of Technology, Japan. His
research interests are in Mathematical Notations
Understanding and Manipulating, Language
Processing, and Document Processing. He is a
member of IPSJ and SIAM]J.

Hiroshi Sugiura is an asso-
ciate professor of Department
of Information Engineering,
School of Engineering, Nagoya
- University. He is interested in
numerical integration, numeri-
cal method for ODE’s and
integro-differential equations.

He was born in Mie profecture in 1952. He
received his B.S. and M.S. degrees from Depart-
ment of Mathematics, School of Science Nagoya
University. He completed his doctoral course at
Department of Information Engineering, School
of Engineering, Nagoya University in 1981.
Since then, he was with the Department as a
research assistant and received D.E. degree from
Nagoya University in 1991. And he was promot-
ed to an associate professor in 1992. He is a
member of IPSJ.

Vol.35 No.11

Tatsuo Torii is a professor
of Department of Information
Engineering, School of Engi-
neering, Nagoya University. He
has been engaged in research
about numerical analysis and
mathematical software. His spe-
cial subjects are function approximation and
numerical integration based on the FFT tech-
nique.

He was born in Kumamoto prefecture in 1934.
He graduated from Department of Electricity,
Kyushu Institute of Technology in 1957. After
his 7 years career being with Shin Nihon Chisso
Corp., he joined Department of Applied Physics,
Faculty of Engineering, Osaka University as a
research assistant in 1964.

He received D.E. from Osaka University in
1972. In 1975, he joined Department of Informa-
tion Engineering, School of Engineering,
Nagoya University as an associate professor. He
was promoted to an assistant professor in 1976,
and to a professor in 1985. He is a member of
IPSJ.

A Knowledge-Based Method for Mathematical Notations Understanding 2381

Tetsuya Sakurai, born in
1961, graduated from Depart-
ment of Information Engineer-
ing of Nagoya University in
1986, and also had the D.E.
degree in Department of Infor-
mation Engineering of Nagoya
University in 1992. He became an assistant since
1986 in Department of Information Engineering
of Nayoya University and lacturer since 1993 in
Institute of Information Sciences and Electronics
of University of Tsukuba. His research interests
are in Root Finding Methods for Nonlinear
Equations, Application of Rational Approxima-
tion, and Mathematical Software. He is a mem--
ber of IPSJ and STIAMJ.

