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The Relation between a Polygon Containment Problem
and the Problem of Sorting X+ Y

ANTONIO HERNANDEZ BARRERA

The polygon containment problem is the problem of deciding whether a given polygon P which
is allowed to have some kinds of motions, can be placed into another fixed Q. We show that the
polygon containment problem in the case of rectilinearly convex polygons under translation, the
problem of sorting X -+ Y and the problem of sorting sums of consecutive numbers are equivalent.

1. Introduction

1.1 An Overview of Polygon Containment
Problems

The polygon containment problem is the
problem of deciding whether a given polygon
P, which is allowed to have some kinds of
motions, can be placed into another fixed Q.
Here we briefly mention some of the results
obtained for it.

Suppose P and @ are m-gon and n-gon
respectively ; P can move while @ remains
fixed. Assuming only translations, an algorithm
that runs in O (mn log m) when both P and Q
are rectilinearly convex polygons appeared in
Ref. 3). Also under translation, the problem
considering P convex and Q any simple polygon
was solved in Ref. 4) using O (mn log mn). For
both P and Q being not necessarily convex and
even not connected, Avnaim and Boinnonnat
proposed in Ref. 2) an O (m?*n® log mn) algo-
rithm and showed that the method can be gener-
alized to an O (m*n® log mn) procedure when
rotations are also possible. All of these algo-
rithms compute the whole feasible region. Ap-
plications where knowing the whole feasible
region may be necessary, were mentioned in Ref.
3) and Ref. 4).

1.2 What This Paper Is About

If the size of the output in each specific case is
taken into account, it might be said that all of
the above-mentioned results are nearly optimal.
For example, when both P and @ are
rectilinearly convex polygons, it was proven in
Ref. 3) that the boundary of the set of feasible
placements of P inside Q is a rectilinearly con-
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vex polygonal region that could reach Q(mn)
edges, while the algorithm used there to obtain
that region is O (mn log m).

The results we present here show that the
difficulty of computing the feasible region in the
PCP (we will use “PCP” as an abbreviation for
“polygon containment problem”) under transia-
tion when both polygons are rectilinearly convex
ones is closely related to the difficulty of sorting
sets of numbers of the form X + Y. More pre-
cisely, we prove that these problems are equiva-
lent.

Sorting X + Y, where X and Y are the sets of
real numbers (x:)i<;<, and (¥;)1<;< . respective-
ly, consists of sorting the sums (x;+y;)i<i<n,
1<j<m. It has been studied before (Ref.5), Ref.
6) and Ref. 7)) but the question of how much
computation time is really needed is still open,
i.e. an optimal @(mn) has not been found.

That equivalence relation means that any
algorithm which solves one problem in @(mn)
can be transformed into a corresponding algo-
rithm for solving the other one within the same
bound. In fact, our proof consists of giving these
transformations.

By using that relation and the results in Ref.
7), we also prove here that the PCP under
translation in the case of rectilinearly convex
polygons and the problem of sorting the sums of
consecutive numbers

J

(a:)i<i<» any sequence of real numbers, are
equivalent when m=x.

2.

2.1 Reductions
When we say in this paper that a problem P

Preliminaries
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reduces to another 9, P—— Q, we mean that an
O(nm)+ T (n, m) (n+m is the size of all of
the problems we will discuss as can be seen in
subsection 2.2) algorithm for solving P exists,
where T (n, m) is the time complexity of Q.
P is equivalent to Q, P—Q, if P— Q and
g— P.

2.2 General Definitions and Notations

In what follows, we denote the abscissae and
the ordinate of a point p as p. x and p. y respec-
tively.

A polygon P is rectilinear if the edges of its
boundary are either vertical or horizontal. P is
rectilinearly convex if it is rectilinear and the
intersection of every horizontal or vertical line
with P is a connected (possibly empty) segment.
See Fig. 1.

Suppose P and Q are rectilinearly convex m-
gon and n-gon respectively. @ is fixed in the
coordinate system with origin O, while P is in
the coordinate system with origin O, which can
translate.

Problem P1 Find all placements of O, in
the fixed coordinate system so that P is
contained in Q.

It was proven in Ref. 3) that the set of place-
ments in which P is contained in Q is a
rectilinearly convex polygon with at most nm
bounding edges. That set of placements will be
denoted here by H (P, Q) and it will be always

I

(a) (b)

Fig.1 (a)Rectilinearly convex.
(b ) Nonrectilinearly convex.
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assumed that it is described by its vertices given
in some order.

Let us think of 4 and B as staircase polygonal
lines as in Fig. 2. Suppose that 4 (B) refers to
the origin O, (Oz). We will consider that B and
its coordinate system are fixed and A4 with its
coordinate system can translate. We suppose that
the bottommost edge of B (the topmost edge of
A) is horizontal and its left (right) extreme is at
some point in the infinite. On the other hand, the
rightmost edge of B (the leftmost edge of A4) is
vertical and its upper (lower) extreme is also at
some point in the infinite.

We assume that B is represented by vertices
by, bs, *++, b, and A by vertices a1, as, ***, am a$
in Fig. 2.

Problem P2 Find the vertices of the recti-
linear polygonal line that O4 would describe in
the fixed coordinate system as A4 slides along the
edges of B.

In other words, we want a description of all
the positions that O, would reach if, beginning
at some point in the infinite with the topmost
edge of 4 “touching” the bottommost edge of B,
A translates to the right until it is possible to go
upward without intersecting B, then 4 translates
in that direction until the distance between some
pair of horizontal segments is zero, etc. Notice
that in essence, what we want is to solve a
polygon containment problem in which both
regions are not bounded. So we can call that
rectilinear polygonal line H (A4, B).

If Oa is placed at a position O in the system
Os, the coordinates of the vertex a; (1<;7<m)
in the fixed coordinate system are (O.x
+a;.x,0.y+a;.y) that we will denote as a?.

Problem P3 Sort X+ Y, where X and Y
are the sets of real numbers (z;)i<;=, and
(ys)1<j=m respectively, i.e. sort the sums
(.Z'z'+yj)lgi£7z, 1</ < me

am

ay A

I
|

Fig.2 The staircase polygonal lines 4 and B.
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We will use in some parts of this paper the
term X —Y (meaning the set (x;—y;)i<i<n
1<j<m) instead of X + Y, because it is clearer
with respect to the situation we are discussing.
Obviously, sorting X + Y is equivalent to sort-
ing X—Y.

3. The PCP Reduces to Sort X+ Y

First we prove P2—— P3.

A contact between ¢; and b; is the intersec-
tion between 4 and B which arises when ¢; and
b: are coincident (Fig.3) as A slides along the
edges of B. Notice that a contact between two
vertices does not always arise as A slides along
the edges of B.

Initially suppose O, is placed in a position O
so that there is contact between b, and g, that
is, am="b.

Let’s consider the sets Xy={b;*y}i<;<, and
Yv={a% y}i<j<m Let’s denote the difference
biry—al-yas(7,7)v.So Xv— Yv={(i,/)v, 1<
1<n, 1<j<wm}. For the sake of simplicity we
assume now that no two pairs in Xy— Yy are
the same, i. e. there is not ¢, 7, v, s, 1 <7, » <,
1<7, s<m, such that (7,7)v=(7,5)v.

Loosely speaking, our algorithm computes all
contacts, in the order they take place, between
vertices in B and vertices in A as the latter
translates. Note that, if for a certain location p of
O4, a; contacts b;, and we know that the next
contact as A slides first upward and after to the
right is 4, and as, then the next two positions of
Os are (p.x,p.y+(br.y—ab.y)) and (p.x
+(br.x—al.x),p.y+(b,.y—al.y)), where
the last one is the position for O4 in which b,
contacts gs. This observation tells us how to
obtain all the positions of Oa.

So, the problem is to obtain b, and as. Let

..._._A....
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Fig.3 A contact between @; and b:.
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(Xv— Yv)* be the sorted set Xy— Yy.

Lemma 3.1 Suppose b; touches g; (1<7<
n, 1<j<m) for a certain location p of O,.
Then, the next contact as A4 slides upward and to
the right is between b, and as if (#,s)y is the
next pair in (Xy— Yv)* following (7,7)v on the
condition that b,. x—af. x>0.

Thus, to compute the set of points which O,
can be at, it is only necessary to scan the
sequence (Xy— Yy)* asking for the pairs which
satisfy the condition of the lemma.

It should be noticed that the running time of
this algorithm would be dominated by sorting.
The rest could be done in O (nm). Here, we
should merge m sorted sets {b;.y —al.y}(1<;
<m). Initially, we could insert the minimum
element of each set in a priority queue.! By
deleting the minimum from the priority queue
and inserting the corresponding element from
the sets {b;.y —af.y} we could sort Xy— Yy in
O (nm log m), since there would be O (nm)
operations, each one taking O (log m). This
equals the upper bound shown in Ref. 3). Could
Xv— Yy be sorted in less time, taking into
consideration the particular structure of this set ?
We already said that for this problem of sorting,
the question of how much computation time is
really needed is still open. It was proven in Ref.
7) that, for two given sequences of numbers
(x:)<i<n and (y;)i<j<n, there exists an algo-
rithm to compute the N? sums {x;+ y;)1<;, j<x in
O(N?) comparisons. In fact, such an algorithm
was presented there, but unfortunately, its perfor-
mance was analyzed just in terms of compari-
sons and the existence of an algorithm with a
similar bound in the case of a more general
study remains still unknown.

Thus, we have proven the following theorem :

Theorem 3.2 P2——P3.

Now we are ready to prove the main result of
this section :

Theorem 3.3 Pl-——P3.

Proof The algorithm described in Ref. 3) to
compute the set of placements of P so that P is
contained in Q consists of three parts :

(1) Divide P and @ each into four quadrant
parts. The lower right quadrant for example,
consists of the bottommost edge, the steps up
and to the right and the rightmost edge. In a
similar way we can describe the lower left, upper
right and upper left quadrants.
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(2) Determine the placements for matching
quadrant parts (with open edges extended to
rays).

(3) Intersect the four regions of step (2),
giving the set of possible positions of P inside

0.

As was shown in Ref. 3), (1) can be done in
O(m+ n) while (3) requires O (mn). The algo-
rithm designed for the second step took
O (mn log m). Then, the whole algorithm com-
plexity depends on (2). It is straightforward to
recognize in the quadrant parts the staircase
polygonal lines defined in the problem P2. So
P1——P2. It follows from Theorem 3.2 that Pl
—P3. []

4. Sorting X+ Y Reduces to Solve the
PCP

In this chapter we prove that P3— P1.

Let’s make some assumptions in relation with
the problem of sorting X — Y. They do not
result in any loss of generality. We will consider
X and Y two sorted sets of numbers on the real
line (it can be done in O (max (n log n,m log
m))),le o<t <, n< < <y, We
also assume y,=ux, (otherwise we can get sorted
X—Y by sorting X —{y;,—a,y;€ YV}, a such
that yn,—a=x1).

Theorem 4.1 P3—— P2.

Proof Using the set Y, we construct the
staircase polygonal line 4. Let’s generate the
vertices @, 1<j<m in such a way that all of
them lie on the same line L. Let’s consider that
the clockwise angle between this line and the
abscissae axis, measured from L, is some 8, 0<
6<90°. We consider that, for every j, 1 <<,
a;.x=y; The bottommost edge extends to a ray
to the left while the rightmost edge extends to a
ray upward. We construct the polygonal line B
in a similar way, assuming that every vertex 5;,
<7<, lies on L. See Fig. 4. These construc-
tions can be done in O (m-+n).

Let’s suppose that an algorithm for deter-
mining H (A4, B) (the path O, describes as A
translates along the edges of B) is known. Let
ho, I, +--, hy be the list of its vertices, where /
is a vertex with its ordinate in the infinite. We
can notice that Vv 34, j such that ,= ¢’ and
that V¢, 7 3 v such that ;=% These lemmas
follow from here,

Lemmad.2 Vo, 1<o<k F4,/, 1<i<n,
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Fig.4 Generation of the polygonal lines used in the
proof of theorem 4. 1.

1<j<m, such that h,.x—h.x=x;—y;.

We remark that it is possible to have z;— y;=
Xe—yiforsome 7, j, b, [, 1<4, k<n, 1<j, [<
m, 15k or j+/.

Lemma 4.3 Vi, j, 1</<#, 1<;<m, Jo,
1<v<k such that x;—y,=h,.x— ho. 2.

Lemma 4.2 and lemma 4.3 tell us that, except
for repetitions, i.e. equal values in X — ¥, the
elements of X' — Y can be sorted from H (A4, B)
immediately. Let X—Y denote {/,.x—
ho.xh<y<s, the set X — Y with no repetitions
and let X —Y * denote the sorted set X — Y.
The difficulty now lies in sorting X — ¥ from
X — Y™ A naive approach using binary search
would yield an O (mn log mn). We show that
it is possible to sort X — Y from H (A4, B) by
using a perturbation on X and Y so that degen-
eracies will be eliminated.

Let § be a real value on the condition that
0<8<minsjnd(xs— yo)—(xi— y5),
(xi—y5) <{(xw—y)}-

It is clear that § can be obtained in O (mn) by

scanning X — Y *.

We can find in O(mn) sequences o=
(ai)lgién and [)):(Bj)|<;‘<m such that

(1) @—BiFa—pB, Vi, j, k1, 1<i, k<
n, 1<7, [<m, ik or j=/.

(i) 0<ai—p;<s, Vi, j, 1<i<n, 1<;<

m.

Let’s define the sets X’ and Y as
i=xi+a 1<i<n
yi=yi+ B 1<;j<m

X" and Y satisfy that

(1) xi—vi<zn—y=xi—y;<xi—y; < zs
—y, 1<4, k<n, 1<, [<m

(1) mi—yiFxe—ys Vi, j, b, 1, 1<, k<



Vol.35 No.12

n, 1<j, [<m, {+korj+l,
so X — Y can be sorted from X' — Y'*. []
Therefore, it is immediate that
Theorem 4.4 P3— Pl

5. Yet Another Equivalent Problem

The results we present in this section derive
from those in Ref. 7). There, the following
problem was considered : Let a1, as, ---, a» be n
numbers and let’s define for 1<;<;<#n

J
U(Z,]) = kzidk

Problem P4 Sort the set of numbers A*=
{6(i, /), 1<i<j<n}

Theorem 5.1 If we consider that in the
problem of sorting X 4 Y, the size of both sets
X and Y is the same, i. e. #=m, then P3—— P4,

Proof See the explanation in Ref. 7) about
how an algorithm for sorting A* can be adapted
to sort (x:+yi)i<ijen [
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Theorem 5.2 P4—P3
Proof Suppose we are given » numbers a,
as "+, an. Without loss of generality we assume

n is odd. Let’s take N= n-2|-1

similar idea to that in Ref. 7), we will define the
2N values x1, X2, ***, Zns Y1, Yoo > Yn as fol-
lows :

yn=any real number

. Following a

YN—i=YN—i+1— A: 1</<N-1
T1—=an — U1
Xi=aN+i-17T Ti-1 2<i<N

The set A* can be represented as shown in
Fig. 5.

Therefore, the set A" can also be represented
as shown in Fig. 6.

If we take a look at the three regions indicated
in the pyramid of Fig. 6, we can understand that
actually, the central one is X 4 Y, the region on
the left is the set{y;—y;, 1<;j<i<N} and the

o(1,2N —1)

PN

o(1,2N ~2) a(2,2N — 1)
o(1,2N = 3) o(2,2N — 2) o(3,2N — 1)

a(1,2)

(2N —2,2N — 1)

PN

a(1,1) a(2,2) o(2N —2,2N —2)  o(2N —1,2N - 1)
Fig. 5 Representation of A*.
N + YN
z1 +yN zN +y1
N0 TN &)
YN YN -1 —_— Y23 z1 + zy — TN —TN_1

Fig. 6 Another way of seeing A™.
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region on the right is the set {x,—x;, 1 <;< ;<
N}

The last two sets are subsequences of ¥ — Y
and X — X respectively. Hence, an algorithm for
sorting X 4+ ¥ may be used to sort each region.
By merging the three sorted sets, set A* will be
finally sorted. []

6. Conclusions

The main result of this paper is a proof of the
equivalence between the polygon containment
problem in the case of rectilinearly convex poly-
gons under translation, the problem of sorting
X+7Y and the problem of sorting sums of
consecutive numbers.
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