Vol.36 No.3

Transactions of Infermation Processing Society of Japan

Regulay Paper

Development of Methods for Reducing the Spins
of Guest Multiprocessors

Himenorr Umeno, T Hipeakr Amano T and Kenr Sarjo Tt

Methods are presented for reducing the spins of operating systems (OSs) that are running
in guest multiprocessors, which are virtual machines (VMs) that contain multiple logical
processors sharing a main memory area. VMs are functional copies of a real host computer.
Different OSs can be run in different VMs concurrently. A hypervisor is a program that
allocates real resources to, controls, and schedules multiple VMs. Three methods are present-
ed by which a hypervisor can inform a guest OS, which means an OS in a VM, of the processor
allocation forms, which mean dedicated real processors or shared real processors by VMs.
According to the information, the guest OS determines whether or not it should spin. Only the
hypervisor knows the processor allocation forms, because it allocates real processors to guest
OSs. Three other methods for reducing the spin of guest OSs are presented. The guest OSs
call the hypervisor when they are going to spin, and the hypervisor schedules partner logical
processors, which belong to the same VM, before scheduling the spinning logical processor
again. These methods are different in the timing at which the hypervisor reschedules the
spinning logical processor. The first, called WAPD, sets a spinning logical processor in a wait
state until all its partners that are ready have been scheduled. The second, called WOPD, sets
a spinning logical processor in a wait state until one of its partners that are ready has been
scheduled. The third, called RSLP, requeues the spinning logical processor at the last position
in the ready queue. These three methods have been experimentally implemented, and their
effects have been measured and estimated quantitatively. For small workloads, the three
methods have comparable performance. According to experiments, WOPD cannot suppress an
excessive spin of a guest OS for large workloads that have heavy spin activities. WAPD has
a slightly (0.02-0.27%) larger overhead than the RSLP, and its performance is comparable to
that of RSLP. For large workloads, WAPD has a slightly (3-494) better performance than

Mar. 1995

RSLP.

1. Introduction

A virtual machine (VM) is a functional copy
of a real host computer”. Most instructions of
a VM are executed directly by the real host
computer. A virtual machine system (VMS)
consists of multiple VMSs running concurrently
on the real host computer. Different operating
systems (OSs) can be run on différent VMs
concurrently. They are basically independent
of each other. A guest OS means an OS on a
VM. It runs on a VM and has to run in a real
machine environment without modifications,
managing its own allocated resources and
scheduling its own tasks, processes, and
threads. A hypervisor is a control program that
allocates real processors to and schedules VMs.
The widely used logical partition system? is
one of the implementation forms of VMSs.

In mainframe computers “shared-main-
memory multiprocessor” (hereafter simply

T Development Department 3, General Purpose
Computer Division, Hitachi Ltd.
i1 Software Development Center, Hitachi Ltd.

681

called “multiprocessor”) systems are generally
used. An N-way multiprocessor means a multi-
processor consisting of N processors sharing
main memory. A host multiprocessor is a real
host computer that is run in multiprocessor
mode. An N-way host multiprocessor consists
of N real processors sharing main memory.
Similarly, a guest multiprocessor is a VM that
is run in multiprocessor mode. An N-way guest
multiprocessor consists of N logical processors
sharing their main memory area. We present
several methods for improving the performance
of the guest multiprocessors.

VMs are used as follows. Only one OS runs
in a real machine environment. On the other
hand, multiple OSs in VMs run concurrently in
a virtual machine environment?®. VMs are used
to develop and test multiple OSs, to advance the
normal production run of OSs while developing
new 0Ss, and to run multiple OSs constantly for
production use under one real host computer.

When VMs are run in an N-way real host
computer, N1 (<N) real processors may be
dedicated to an Nl-way guest multiprocessor,

682 Transactions of Information Processing Society of Japan

and N2 (=N—N1) other real processors may
be shared by other VMs. Other forms may be
used.

An OS running in a real multiprocessor mode
will spin, (that is, loop) in disabled state, which
means it cannot be interrupted, to get a lock,
request a system process, wait for an event, and
so forth. For this purpose, in a real machine a
kernel of an OS has to spin on a real processor
and cannot relinquish the processor because it
has to manage and schedule its own tasks,
processes, and threads. In this case, we can say
that other real processors surely run a process
that clears the spinning conditions, and there-
fore the spin finishes in a short time. Thus, in
a real machine, the spin works well.

An OS running in a guest multiprocessor
mode will run in the same way as in a real
machine and will spin in the same cases. Such
spins may waste CPU time, because logical
processors that clear spin conditions are not
always scheduled by the hypervisor. Moreover,
the spin may cause system failure of a guest OS
because it may spin excessively, that is, it may
spin over the frequencies designated by itself.

Conventionally, handshaking is taken to
avoid this disadvantage in a VM. The hyper-
visor and a guest OS are basically independent.
The hypervisor gives only hardware architec-
tures to the guest OS, and does not know which
tasks and processes the guest OS is executing.
A guest OS usually does not recognize that it is
running in a VM. Handshaking means that the
guest OS shakes hands with the hypervisor and
lets the guest OS know that it is running in a
VM, and take some action to improve its per-
formance in the VM. There are many kinds of
handshaking. A hypervisor-call issued by the
spinning logical processor to suspend the spin is
an example of this handshaking. When it spins,
the guest OS determines whether it is running in
a logical processor of a VM, and if so, it calls
the hypervisor, which will suspend it and sched-
ule another logical processor®”.

We have to give additional consideration to
reducing the occurrence of spins in guest multi-
processors for the following reasons:

First, issuing a hypervisor-call is not always
better than continuing to spin. In VMs there
are multiple OSs running concurrently, and two
forms of processor allocation are used? : One is
processor dedication, and the other is processor
sharing. In processor dedication, N real proces-
sors are dedicated one-to-one to N logical proc-

Mar. 1995

essors of an N-way guest multiprocessor.
Therefore, spinning gives a better performance
than issuing a hypervisor-call, because the spin-
ning of the guest OS soon finishes in the VM, in
the same way as in a real machine.

Second, it is not clear what the hypervisor
should do in response to a hypervisor-call.
When it is in multiprocessor mode, a guest OS
runs on multiple logical processors. When the
guest OS is going to spin and issues a
hypervisor-call on a logical processor, the
hypervisor should schedule other logical proces-
sors that clear the spin conditions. The schedu-
ling is difficult, because the hypervisor is unable
to determine which logical processor can clear
the spin conditions.

Conventionally, revised scheduling disciplines
are given for an OS and revised application
programs are used to reduce spin times in a real
machine®®. They revise process schedulers
and application programs, respectively. First,
let us consider revised scheduling disciplines. It
is shown how multiprogramming and data-
dependent behavior affect the spin times of
processes, and so complicate the choice
between spinning (busy waiting) and blocking
(relinquishing the processor). Revised schedu-
ling disciplines to reduce the spin times of
processes® are given. One such discipline is
that the scheduler should never unschedule a
process holding the lock. Next, we turn to
revised application programs. The perfor-
mance of application programs can be im-
proved by a combination of spinning and block-
ing. That is, application programs may spin
under thresholds to get a lock, and if they
cannot get it, they may block?.

An OS can use the revised scheduling disci-
plines because it knows the activities of its
processes. The OS knows when and which
process gets and releases a lock, and when and
which processes are synchronizing. It provides
application programs with macro-instructions,
such as Lock, Unlock, Wait, and Post, for
supporting their activities. The application
programs use these macro-instructions to
request the services of the OS. Therefore, the
OS can know their activities.

We cannot apply these conventional disci-
plines to the hypervisor, for the following rea-
sons. First, the hypervisor and guest OSs are
basically independent, except for the handshak-
ing. All the guest OSs are also independent of
each other. The hypervisor cannot recognize

Vol.36 No.3

what a guest OS is spinning for, because the
spinning is an internal process of the OS. It
may be spinning to go and get a lock, to wait
for an event, to request a process. The hyper-
visor cannot know which logical processor of a
VM gets and releases the lock, or when,
because the OS in the VM generally locks and
unlocks by using nonprivileged instructions,
such as the Compare & Swap instruction, which
are directly executed by hardware. Moreover,
the hypervisor cannot know which logical proc-
essor of a VM has finished synchronizing vari-
ous events, or when, because the synchronizing
is an internal activity of processes of the OS in
the VM.

Second, an OS is usually made for a real
machine, and not for a VM. If we try to apply
the revised conventional scheduling disciplines
to the hypervisor, we have to redesign the logic
of guest OSs for VMs. That is, the guest OS
has to inform the hypervisor of the timing of its
dynamic locking and unlocking, and the com-
pletion of events associated with its spins. This
requires large modifications of the OS. There-
fore, this redesign is not practical, because the
hypervisor has to run currently available OSs,
which are widely used now and designed for
real machines. We can only require the guest
OSs to contain the basic and simple handshak-
ing, which requires only small modifications.

Third, application programs run in enabled
state, and therefore, even if they spin excessive-
ly, they are interrupted by timers set by an OS,
and the OS will run normally. On the other
hand, the kernel of an OS spins in disabled state
for several reasons. The kernel contains a
process-scheduler and runs in non-process
mode. It cannot block—that is, wait or relin-
quish the processor—because no other kernel
reactivates it. If the guest OS should spin
excessively, it may fail or put the processor
off-line, and its performance will be reduced.

Therefore, we present additional methods for
reducing the spin of OSs in guest multiproces-
sors :

1. How the hypervisor informs a guest OS
of the processor allocation forms. In proces-
sor dedication, spinning may be better than
calling the hypervisor. On the other hand, in
processor sharing, calling the hypervisor is
better than spinning, because the hypervisor
can allocate a real processor on which the guest
OS has been spinning to other logical proces-
sors. The guest OS cannot recognize the proc-

Development of Methods for Reducing the Spins of Guest Multiprocessors 683

essor allocation forms, because only the hyper-
visor manages all the real processors and allo-
cates some of them to the guest OS. Therefore,
the hypervisor determines the forms of the
processor allocation to all VMs, and has to
inform the guest OS of the processor allocation
forms. According to the information, the guest

OS can determine whether or not it should spin.

We provide the following three new ways of

handshaking, which are different as regards

how the hypervisor informs the guest OS of the
processor allocation forms. Only one of the
three ways can be used.

(1) The hypervisor sets the data showing the
processor allocation forms in the commu-
nication area between the guest OS and
the hypervisor.

(2) The guest OS issues a hypervisor-call,
which requires the hypervisor to inform
the guest OS of the data showing the
forms, in its Initial Program Loading
(IPL) processes.

(3) The hypervisor supports a new external
interrupt, which informs the guest OS of
the forms.

2. When to schedule a spinning logical
processor again. In responding to the
hypervisor-call issued by a spinning logical
processor to suspend the spin, the hypervisor
has to determine when to schedule the spinning
logical processor again. Below, we present
three new methods by which the hypervisor can
respond to the hypervisor-call. In them, the
hypervisor sets the spinning logical processor in
a wait state, and schedules the partner logical
processors, which belong to the same VM as the
spinning logical processor, before rescheduling
the spinning logical processor. These methods
are different as regards the timing at which the
hypervisor schedules the spinning logical proc-
essor again.

(1) The hypervisor sets the spinning logical
processor in a wait state due to spinning
until one of its partners that are ready has
been scheduled. This is called “Waiting
for One Partner to be Despatched”
(WOPD).

(2) The hypervisor sets the spinning logical
processor in the wait state until all its
partners that are ready have been
scheduled. This is called “Waiting for All
Partners to be Despatched” (WAPD).

(3) The hypervisor requeues the spinning logi-
cal processor at the last position in a

684 Transactions of Information Processing Society of Japan

ready queue. This is called “Requeuing
the Spinning Logical Processor” (RSLP).

We have experimentally implemented these
three methods, and measured and evaluated
their performance. The results show that the
WAPD method has the best performance of the
three for large workloads that have heavy spin
activities in floating scheduling, where any real
processor can schedule any logical processor.

We will be able to apply these methods to
OSs that virtualize real processors. One such
OS is Mach!V, which supports multiple tasks
and multiple threads in a task. Each thread is
a logical image of a real processor, and can run
on any real processor in a multiprocessor.
When threads manage system resources at a
user level, the kernel, which schedules the
threads, cannot know their behaviour. There-
fore, we can find similar situations in them®?.
For example, a user level thread may spin for
several reasons, such as to get a lock, or to wait
for the processing of other threads. The spin
may cause excessive spin because other threads
are not always running. We will be able to
apply the above methods to study how to sched-
ule the spinning threads.

Section 2 describes conventional methods for
reducing the spin of the guest OSs. Section 3
presents new methods for controlling the spin
of guest OSs and their evaluation. Finally, our
conclusion is presented in Section 4.

2. Conventional Methods for Reducing
the Spins of Guest OSs

2.1 Spins of Application Programs

A process of an application program may
spin (be busy wait) or block (relinquish a
processor) to get a lock®*%. There has been
considerable research on how the spin times
can be reduced. In a real machine there is only
one OS to be run. In a single OS, several
methods for reducing spin times have been
adopted :

1. Revised scheduling disciplines. In a sin-
gle OS it is shown how multiprogramming and
data-dependent behavior affect the spin times
of processes, and so complicate the choice
between spinning (busy waiting) and blocking
(relinquishing the processor). Scheduling disci-
plines revised to reduce the spin times of
processes are given in Zahorjan and
Lazowska®: In discipline A the scheduler
never unschedules a process holding the lock.
In discipline B it does not schedule a currently

Mar. 1995

unscheduled spinning process unless the lock is
free. In discipline C it does not reschedule a
spinning process that happens to be descheduled
because its time quantum has expired until all
other processes have reached the synchroniza-
tion points.

2. Revised application programs. The per-
formance of application programs can be im-
proved by a combination of spinning and block-
ing. That is, the application programs may spin
below certain thresholds to get a lock, and if
they cannot get it, they may block®.

These two methods can help to provide us
with effective concepts, but they cannot be
applied unaltered to the hypervisor, for the
following reasons :

1. The hypervisor gives only hardware
architecture to a guest OS (that is, an OS in
a VM). All the guest OSs are independent of
each other. Similarly, the hypervisor and guest
OSs are also basically independent except for
the handshaking. Therefore, the hypervisor
cannot recognize (a) what the guest OS is
spinning for : it may be to go and get a lock, to
wait for an event, to request a process, and so
forth, (b) which logical processor of a VM
gets and releases the lock, or when, and (c)
which logical processor of a VM has finished
synchronizing various events, or when.

2. Application programs never know that
they are running in a VM. The hypervisor
never knows the behaviour (locking, unlocking,
spinning, and so forth) of the application pro-
grams under an OS. In turn, application pro-
grams never know whether or not they are
running in a VM. Therefore, they do not call
the hypervisor to improve their performance.

3. An OS is usually made for a real
machine, and not for a VM. If we try to apply
the above conventional methods to VMs, we
have to redesign the logic of OSs for VMs.
That is, the OS has to inform the hypervisor of
the timing of its dynamic locking and unlock-
ing, and the completion of events associated
with its spins. The OS may be modified to spin
under a threshold, and if it cannot detect an
event, it may call the hypervisor. The threshold
is dependent on the number of logical proces-
sors of VMs and that of the real host proces-
sors. This redesign and modification are not
practical, however, because the hypervisor has
to run currently available OSs, which are wide-
ly used now and designed for real machines.

Therefore, we have to consider further in

Vol.36 No.3

Section 3 how to reduce the spins of OSs in
guest multiprocessors.

2.2 Spins of OSs

A kernel of an OS in multiprocessor mode
will spin in disabled state, which means it can-
not be interrupted, in the following cases :

1. To get a lock. A kernel of an OS has to
get a lock to access shared resources (Fig.1).
When it succeeds in getting the lock, it can
access the shared resources; otherwise, has to
spin in disabled state. The OS sets a count for
the spinning, and when the count expires, the
OS may fail. It cannot relinquish its processor
in a real machine environment. This is because
it has to schedule its own processes, tasks, and
threads. For this purpose, some instructions
are provided to serialize the memory accesses
of multiprocessors, namely, Compare & Swap
(CS), Compare Double & Swap (CDS), and
Test & Set (TS) instructions!®.

2. To wait for a partner processor to com-
plete a process. An OS running on a processor
(IP0) detects a process (P) running on a part-
ner processor (IP1), which belong to the same
multiprocessor (Fig.2). The process (P) is a
system process, and not a user process. Then
the OS spins in disabled state on the processor
(IP 0) to wait for the process (P) to complete
on the partner processor (IP 1). At the comple-
tion of (P) some state is set by the partner
processor (IP1). The OS spins in disabled state
on the processor (IP0) until it detects the state.

Set
count
Lock
instruction -
Lock Access shared
QK <" resource
. Noo
Spin === Lockword

, 7 Shared resource. ™
s Access to this \
! resource is H

R i !
controlled by the /
0< B‘;ﬁnCh AN _ above lockword. “
count T .

<0
- ----> Data access
——— Control flow
Exceptional ST
process {.____) Shared data area

}

Fig.1 Spin to get lock.

Development of Methods for Reducing the Spins of Guest Multiprocessors 685

An example of this process (P) is queuing some
entities. The OS sets a count for the spinning,
and when the count expires the OS may fail. As
in case 1, the OS cannot relinquish its processor
in a real machine environment.

3. To wait for a partner processor to com-
plete a requested process. An OS running on a
processor (IP0) requests a partner processor
(IP1), which belongs to the same multiproces-
sor, to carry out some process (Fig.3). This
process is a system process, and not a user
process. Then, the OS spins in disabled state on
the processor (IP0) to wait for the partner
processor (IP1) to complete the process. The
OS sets a count for the spinning, and when the

1PO P1
(Partner
processor)
l Set
count
r Process(P)
: State Yes completion
detected T
Spin No |- Set a
~c--4 7 | State
Branch on ‘gtat::
o<\comt /Ll
Queuing
=0 some
entities
Exceptional (Process P)
process
l —> Control flow

- - = Data access

Fig.2 Spin waiting for partner to complete its process.

IR0 1P1
(Partner
Request processor)

process (P)E====z-
Set Request

counter | = s-----ssEsS e

Process(P)
sets
completion
~flag (f)

f=1 '

~——> Control flow

Exceptional
process

= ==>Request signal
- - =~ Data access

Fig.3 Spin waiting for partner to complete requested
process.

686 Transactions of Information Processing Society of Japan

count expires, the OS may fail. An example of
such a request is to purge hardware registers
for address translation features. As in case 1,
the OS cannot relinquish its processor in a real
machine environment.

An OS is in disabled state in these spins,
because the spins belong to the OS kernel,
which runs in disabled and nonprocess mode.
Certainly, these spins finish in a short time in a
real machine environment, because a partner
processor releases the shared resources or com-
pletes its waiting or requested process in a
short time. On the other hand, in a VM environ-
ment, other partner logical processors, which
belong to the same VM as the spinning logical
processor, are not necessarily running, because
real processors may run other VMs. Therefore,
an OS may spin more times in a VM than in a
real machine; that is, it may waste CPU time.
Moreover, the OS may fail, because it may spin
over the frequencies designated by itself.

On the other hand, a process of an application
program is enabled for hardware interrupts.
Therefore, the process will be suspended by the
end of a time slice, which is detected by a timer
interrupt, and other interrupts. Other processes
will then be scheduled. Therefore, the system
does not fail, even if the process spins over the
frequencies designated by the application pro-
gram.

2.3 Processor Allocation Forms

The hypervisor allocates the real processors
of host multiprocessors to VMs, where guest
0OSs do not know the forms of the processor
allocation. Below, we explain the conventional
processor allocation forms, because spin prob-
lems are closely related to the processor alloca-
tion forms. There are two forms: processor
dedication and processor sharing.

1. Processor Dedication

In processor dedication, all the logical proces-
sors of a guest multiprocessor (VMI1) are
dedicated one-to-one to real processors (Fig.
4)%. In this case, more real processors than
there are logical processors of the guest multi-
processor (VMI1) are required to run other
VMs.

2. Processor Sharing

Conventionally, real processors are floatingly
shared®. A logical processor of a VM may
share a real processor with other logical proces-
sors of the VM or other VMs (Fig.5). More-
over, a logical processor may be run on any real
processors that have floating attributes. Figure

Mar. 1995

Host multiprocessor

Total dedication

| Other VMs

Guest multiprocessor
(VM1) IP: real (instruction) processor
LIP: logical (instruction) processor

Fig.4 Processor dedication.

Host multiprocessor with
floating attribute

Floatingly o
scheduled LIPs -~

AN
N ~
. ~ N
. Lt . RN
LA / v N FOTRY
o . . o N
[%d .l < o s NN
2 7 7 S

Guest multiprocessor Guest multiprocessor
(YM1) (VM2)
IP: real (instruction) processor
LIP: logical (instruction) processor

N
R

Fig.5 Floatingly shared real processors.

5 shows that the logical processor LIPi may be
run on a real processor IPj for any (i, j), i=1, 2,
3,i=1,2,3.

2.4 Conventional Methods for Reducing

the Spins of Guest OSs

Conventionally, handshaking is done to
reduce the spin of a guest OS. The hypervisor
and a guest OS are basically independent. The
hypervisor gives only a hardware environment
to a guest OS, and does not know which task
and process the OS is scheduling. An OS runs
ina VM as in a real machine. An OS usually
does not recognize that it is running in a VM.
Handshaking means that an OS shakes hands
with the hypervisor and lets the OS know that
it is running in a VM, and take some action to
improve its performance in the VM. There are
many kinds of handshaking. A hypervisor-call
to suspend the spin is one of them: When it
spins, an OS determines whether it is running in
a VM, and if so, it calls the hypervisor, which

Vol.36 No.3

Hypervisor

Despatch

l_“*,ﬁjﬁ% il

0S in VM1 ‘l’

VM2

y f-q-- or
Another logical
processor of VM1

Spin

'

I

Hypervisor—call _
VM1, VM2: Virtual Machines

Fig. 6 Conventional Handshaking for suspending spin
of OS.

will suspend it and schedule other logical proc-
essors of the VM (VM 1) or another VM227
(Fig. 6).

The conventional methods have the following
problems. Therefore, we have to consider fur-
ther how to reduce the spin times of guest OSs.

1. Calling the hypervisor to suspend the
spin is not always better than spinning. We
have to give careful consideration to processor
allocation forms, which mean dedicated or shar-
ed real processors by VMs. In the processor
dedication, N real processors are dedicated
one-to-one to N logical processors of an N-way
guest multiprocessor (Fig.4). Therefore, the
spins perform better than the hypervisor-calls,
because the spins expire in the VM in the same
way as in a real machine. On the other hand, in
processor sharing (Fig.5), calling the hyper-
visor is better than spinning, because the hyper-
visor can allocate a real processor on which an
OS has been spinning to other logical proces-
sors. OSs cannot recognize the processor allo-
cation forms, because only the hypervisor man-
ages all the real processors and allocates some
of them to VMs. Therefore, the hypervisor has
to inform a guest OS of the processor allocation
forms. The guest OS can determine whether or
not it should spin according to the information.
Therefore, we have to consider how the hyper-
visor informs the guest OS of the forms of
processor allocation.

2. What the hypervisor should do in
response to the hypervisor-call. When it is in
multiprocessor mode, a guest OS runs on multi-
ple logical processors of a VM. When the guest
OS is going to spin on a logical processor, the
guest OS issues the hypervisor-call on it. In
response to the hypervisor-call, the hypervisor

Development of Methods for Reducing the Spins of Guest Multiprocessors 687

should suspend it and schedule its partners,
which are other logical processors belonging to
the same VM as the spinning processor. This is
because only the partners can clear the spin
conditions. Therefore, the hypervisor has to
schedule the partners, and determine when to
schedule the spinning logical processor again.
The hypervisor cannot know which logical
processor of the VM clears the spin conditions
and when.

We present, roughly speaking, two new
methods for solving the above two problems.
One contains three methods of handshaking,
which informs guest OSs of processor alloca-
tion forms. On the basis of the information, the
guest OSs determine whether or not they should
spin. The other contains three methods, which
present how and when the hypervisor should
reschedule the spinning logical processor in
relation to its partners, which are logical proc-
essors belonging to the same VM as the spin-
ning logical processor.

3. New Spin Control for Guest Multi-
processors

3.1 How Hypervisor Informs Guest OSs of
Processor Allocation Forms

According to the above discussion, in proces-
sor dedication (Fig. 4), the spin of a guest OS
does not cause problems and is even desirable.
On the other hand, in processor sharing, calling
the hypervisor to suspend the spin is better than
spinning. Therefore, we can present the follow-
ing three types of handshaking based on the
processor allocation forms :

1. Setting a flag in a communication area
between a guest OS and the hypervisor. When
it is IPLed, a guest OS calls the hypervisor to
inform it of an address of the guest OS’s com-
munication area (Fig. 7). Then, the hypervisor

When the hypervisor dedicates real processors to a VM,
It sets the flag () of the VM to 1

(i Hypervisor (Real main memory)

0 . 0S8 informs hypervisor of Xy in its IPL
Mapping---~1"" (New hypervisor—call)

0S in VM —‘
(OS’s main memory) ‘

Cémmunication area
f = 1: Real processors are dedicated
= 0: Otherwise
Fig.7 Communication area between OS and hyper-
visor (New handshaking).

688 Transactions of Information Processing Society of Japan

Hypervisor

Despatch

Spinning logical i
processor (LIP0) ~, I I

OS in VM1 \VMZ
or

Should OS [
spin ?
y
T n

Another logical
processor of VM1

Decision of -] _ Hypervisor
processor call
allocation To release
forms Spin lock or
012 = to complete

process

VM1, VM2: Virtual Machines

Fig.8 Determining whether to spin or to call hyper-
visor based on processor allocation forms (New
handshaking) .

sets a flag (f) in the area to control the spin of

the guest OS:

f=1: The VM has dedicated real processors
(Fig.4). That is, real processors are
dedicated one-to-one to logical proces-
sors of the VM. In this case, spins give a
better performance than hypervisor-calls.
Therefore, it is better for an OS in the
VM to spin than to call the hypervisor. It
depends on the policy of the OS whether
or not the OS actually spins without the
hypervisor-calls.

f=0: Otherwise (Fig.5), real processors are
shared. In this case, if the OS continues
to spin, it may have an excessive spin;
therefore, the OS should not continue to
spin, and should call the hypervisor to
suspend the spin.

Figure 8 shows how the guest OS uses the
above-mentioned flag (f) as its spin control
data. That is, when it has decided to spin, the
guest OS additionally checks the flag f. It spins
only if f=1; otherwise, it calls the hypervisor.
The hypervisor despatches the partner logical
processors that will release a lock or complete
some processes expected or requested by the
spinning logical processor (LIP0). When con-
trol is returned to the spinning logical processor
(LIPO), the spin conditions are checked again.
In most cases, the spin conditions are cleared.

Moreover, the hypervisor can dynamically
change processor allocation forms by setting
the flag f suitably.

2. Returning codes of the hypervisor-call
to the guest 0OS. When it is difficult to get the
above communication area, the hypervisor can

Mar. 1995

inform the guest OS of the forms of processor
allocation by means of return codes. The guest
OS calls the hypervisor in its IPLing, and the
hypervisor returns the codes to the guest OS. In
this method, a change of processor allocation
forms requires the guest OS to be IPLed again.

3. Supporting a new external interrupt.
The hypervisor may support a new external
interrupt to inform the guest OS of the proces-
sor allocation forms. The guest OS has to
process the new external interrupt.

Of these three types of handshaking, the
communication area method (1) is the most
desirable, because it is simple, has a low OS
overhead, and is the most flexible.

3.2 When Hypervisor Reschedules Spin-

ning Logical Processors

In the processor dedication (Fig. 4) it is pref-
erable for a guest OS to spin. In the processor
sharing (Fig.5) the guest OS should not spin,
and should call the hypervisor. We discuss here
what the hypervisor should do in response to
the hypervisor-call.

A guest multiprocessor consists of multiple
logical processors, which are called partners of
each other. The hypervisor and the guest OSs
are independent, and the hypervisor does not
know which task and process the guest OSs are
scheduling, or when. Therefore, the hypervisor
does not know which logical processor can
clear the spinning conditions, or when. We can
say that the hypervisor has to suspend spinning
logical processors, which are going to spin, in
shared processor allocation, and schedule their
partner logical processors, because only the
partners can clear the spinning conditions.
Therefore, we can present three methods that
differ in the timing at which the hypervisor
schedules the spinning logical processors again.
We call these methods “Waiting for One Part-
ner to be Despatched” (WOPD), “Waiting for
All Partners to be Despatched” (WAPD), and
“Requeue Spinning Logical Processors”
(RSLP).

3.2.1 Methods for Rescheduling

1. WOPD Method

The hypervisor schedules logical processors
of VMs by managing their states. When it is
going to spin, a logical processor (LIP0) calls
the hypervisor, which places it in “a wait state
due to spinning.” One of the partners of the
logical processor (LIP0) may clear the spinning
conditions of the logical processor (LIP0).
Therefore, we can say in the first method that

Vol.36 No.3 Development of Methods for Reducing the Spins of Guest Multiprocessors 689
Waiting state Waiting state Kaiting state
is cleared by is cleared by is cleared by
LIP1’s running LIP2’s running LIP3’s running
. Faiting N N N
LIPO . state'due - - - pe——- - - - H— - - - ‘F'—A ———————
Spinning || to spin ! \ | |
logical Y7 Reag ' Despatch Despatch |
y v_Despatc _ y_Despatch v Despatch
processor I --I—-—al- - - '.—-P-. ' ‘—{)
Call'Hyp. Call'yp. + Call'Hyp.
- Spin T | Spin ! Spin ! No Spin
! 1 ,
Runnin,
on [— —
!
e L

Running

Lip2

LIP3 Running
state

Call Hyp.: Call Hypervisor

Clearing spin
conditions

LIP: Logical Processor

Fig.9 Example of LIP behaviour in WOPD method
(LIP 3 clears spin conditions).

the hypervisor clears the wait state of the logi-
cal processor (LIP0) when it despatches at
least one of the partners of the logical proces-
sor (LIP0). After the wait state of the LIP0 is
cleared, the logical processor (LIP0) is set in
ready state, and therefore will be despatched
soon. We call this the “Waiting for One Part-
ner to be Despatched” (WOPD) method.
Figure 9 shows an example of the behaviour
of logical processors, one of which (LIP3)
clears the spin conditions of LIP0 in the WOPD
method. The figure shows that the spinning
logical processor (LIP0) that is redespatched
spins again, because the despatched partners
(LIP1 and LIP2) do not clear the spin condi-
tions. All the partners will be despatched
before long, and the spin conditions of the logi-
cal processor (LIP0) will be cleared in the end.
This method may not work well for guest OSs
that have heavy spins, in which high activity
levels are related to the spins, and therefore the

activities of their kernels are also high. This is
because the spin conditions are not always
cleared when the spinning logical processor is
rescheduled.

2. WAPD Method

The second method ensures that the spinning
conditions of a spinning logical processor that
issued a hypervisor-call are cleared by its part-
ners. The hypervisor places the spinning logi-
cal processor in the wait state until all its
partners that are in ready state have been
despatched at least once since its last
hypervisor-call. This is called the “Waiting for
All Partners to be Despatched” (WAPD)
method. It may decrease the response of the
VM that contains the spinning logical proces-
sor. Figure 10 shows an example of the behav-
iour of logical processors containing a spinning
logical processor (LIP0). LIP0 issues the
hypervisor-call at point t;, and is set in a wait
state due to spinning. The spinning conditions

LIPO's waiting state due to spinning
is cleared because all of LIP1,LIP2,
and LIP3 have been despatched here. -

s

Waiting 2!
LIPO: state due |- - -
Spihning to spinning !
logical geatldy o
processor ate
; __ Call'Hyp.
Spin

e
LIP2
L1p3 |Running

1

l—— o~ -~ - = - -
Clearing spin
conditions

Call Hyp.: Call Hypervisor

LIP: Logical Processor

Fig.

10 Example of LIP behaviour in WAPD method

(LIP 2 clears spinning conditions).

690 Transactions of Information Processing Society of Japan

| Hypervisor - --,
| Hpenisor |

Requéue LIPO at the last position in the ready queue

HEE®® '

Ready queue
Order of despatching

| Hﬁervisor—call

| VM: virtual machine
T LIP: logical processor

Fig.11 Requeuing Spinning Logical Processors
(RSLP).

are cleared at point t; by LIP2. At point ts,
logical processor 1 (LIP1), LIP2, and LIP3 have
been despatched after the last hypervisor-call
of LIP0. Therefore, LIP0 is set in ready state
there, and is soon redespatched. LIP0 does not
spin with the same spin conditions after being
redespatched.

3. RSLP Method

The third method provides a queuing opera-
tion. That is, the hypervisor requeues a spin-
ning logical processor (LIP0) that called the
hypervisor at the last position in a ready queue
(Fig.11). When one of its partners is in a
time-slice-end queue, LIP0 is enqueued into the
last position of the time-slice-end queue. In
floating scheduling, all ready logical processors
are enqueued into the same ready queue.
Therefore, the spinning conditions of LIP) are
probably cleared because all its partners are
despatched before it.

3.2.2 Implementation

The implementation of the WAPD, WOPD,
and RSLP methods is described below (see Fig.
12-14). The scheduler of the hypervisor imple-
ments these methods by setting real processors
in disabled state and by using a lock related to
ready queues. Therefore, the processing for the
implementation is indivisible and exclusive.

1. Structure of a ready queue. A ready
queue consists of three subqueues: a proper-
ready queue, a time-slice-end queue, and an
out-service queue. The proper-ready queue
contains ready logical processors that can be
run and despatched. Precisely speaking, when
it is in a wait state due to spinning, an LIP is
enqueued into the proper-ready queue. This is
because it takes more overhead to make its
own queue and enqueue it into the queue than to
enqueue it into the ready queue. The LIP
cannot be despatched until the wait state is
cleared. When a running logical processor has

Mar. 1995

consumed a full time slice, it is enqueued into
the time-slice-end queue. When it has con-
sumed a designated service quantity of CPU
busy time, it is enqueued into the out-service
queue. The designated service quantity is
determined by the service ratios of VMs. For
example, in two VMs we will specify VM1 :

VM2=30:70. The designated service quan-

tities of VM1 and VM2 are 30 and 70, respec-

tively.

A scheduler of the hypervisor enqueues all
the logical processors in the time-slice-end
queue into the proper-ready queue, when the
proper-ready queue is empty. In that case,
when the time-slice-end queue is empty, the
scheduler enqueues all the logical processors in
the out-service queue into the proper-ready
queue.

2. Data areas. The hypervisor defines the
following control blocks in its memory :

(1) Virtual Machine Control Block (VMCB).
This control block manages a virtual
machine and contains its states.

(2) Logical Processor Control Block (LPCB).
This control block manages a logical
processor and contains its states.

For an N-way guest multiprocessor the
hypervisor defines one VMCB and N LPCBs,
where each LPCB contains the address of the
next LPCB and an address of the VMCB that
contains the address of the first LPCB (Fig.
12).

(3) An LPCB, which defines a logical proces-
sor (i), contains the following data areas
that are used to indicate the states of the
logical processor :

A SPin Wait state flag (ASPWi) : This con-

sists of one bit.

ASPWi=1: The logical processor (i) is wait-
ing for all its partners that are ready and
runnable to be despatched.

Despatching MASK (DMASKI) : This consists

VMCB: virtual machine
control block

LPCB: Logical processor
control block

Fig.12 Chain of LPCBs in VM.

Vol.36 No.3

of N bits for an N-way guest multiprocessor.

DMASKIi(j) means its j-th entry; this corre-
sponds to the logical processor (j), which is a
partner of the logical processor (i) when j=
i.

DMASKIi(j) =1, where j=#i: A logical proces-
sor (j), which is not the logical processor (i),
is ready and not yet despatched to an N-way
guest multiprocessor j=0,1,--, (N—1),
except 1. In this case, the logical processor
(i) is waiting for the logical processor (j) to
be despatched.

Development of Methods for Reducing the Spins of Guest Multiprocessors

691
(4) A VMCB contains the following counter :

Global SPin Wait state counter (GSPW) : The
number of LPCBs whose ASPW=1.
3. WAPD method (Fig.13 and 14). For a

hypervisor-call of a logical processor (i) (LIP
(i)), the hypervisor checks the states of all its
partners and updates its DMASK; (D, ® in Fig.
14) : For all j (==1), when LIP(j) is ready, not
in a wait state due to spinning, and not yet
despatched,
DMASKIi () «1.
This means that LIP (i) must wait for LIP(j) to

LIPO,LIP1,LIP2,LIP3: Logical
processors
of one WM

DMASKI belongs to LIPi’'s LPCB
fori=0,1,2,3

DMASKI (j) corresponds to LIPj
for j=0,1,2,3

DMASKI (j) =1: LIPi is waiting
for LIPj to be
dispatched

DMASKIi (j) =0: Otherwise

Fig. 13 Control data for WAPD.

' GSPW |

VMCB-! |

1 1

1 1

_________ 1
[t et 1
| :

'
'DMASKO ASPWO |
g iL0]0 JoJo] [o]
LIP0's LPCB - -1 !
N i
yooTTTT T rmrrmmmmm
| |
| DMASKI1 ASPW1,
| .
vvatscs- 0 Lo [0 To] [0]
! o 1 2 3 '
R |
e
1 DMASK2 ASPW2,
1 t
tpzstpes -~ [0 [0 [0 [o] :
Lo 12 3 :
I DMASK3 ASPW3!
'
urssircs--i [0 [0 [0 o] [o]|
L0 1z 3 . !
GSPW
LIPQ issues
hypervisor call

to suspend spin LIP1 despatched
\ \

These control data

areall cleared
'GSPW :
DMASK0, ASPWO !
GSPW 1 3 |
|DMASKI1, ASPW1
LIP1 issues 2
hypervisor call uP2,UP3 |DMASK2, ASPW2 ‘
to suspend spin despalched 'DMASK3 ASPW3 |

AY Ay
() —= o), ——), ‘l '!
ait
Running-. _ ___ 4 aetlo spinning due to spinning due (° spinaing____ z-
DMAS 0 DMASKO
o[[3 1] ofofr]
0o 1 2 3
0 1\ 2 3 @ ;,‘y ait
ASPWO Tt ecemo L= due to spmnmu = ady
s & o o
s / ﬂ
St e e e 2= Runnmg-' o 1 2 3
ASPW1
_ > Running
Ready-~ - ... _______ T
Pt M EE)@) : Order of events \“‘~nning
Ready
LIPO, LIP1, LIP2, LIP3: Logical processors of one VM
Fig.14 State transition of logical processors in WAPD.

692 Transactions of Information Processing Society of Japan

be despatched. When LIP(j) exists,

ASPW of the LPCB of LIP(i)«1, and
GSPW of the VM, which contains LIP (i),

is increased by 1.

When the hypervisor despatches LIP(j) (its
ASPW of LPCB=0) (LIP1, @ in Fig.14) of a
VM, and GSPW of the VM =0, that is, at least
one logical processor of the VM is in a wait
state due to spinning, the wait state of the one
logical processor may be cleared by despatch-
ing LIP(j). Therefore, the hypervisor checks
the DMASKSs of all partners of LIP(j): For
any LIP(k)

(k=j) if DMASKk (j) =1 (this means that LIP
(k) is waiting for LIP(j) to be despat-
ched), the DMASKk (j) <0 (® in Fig.
14) (that is, LIP(j) has been despat-
ched), for k=0, 1, ---, N—1, except j.

Moreover, if DMASKk changes from=0 to 0
as a result of the above (@ in Fig. 14), it means
that all partners of LIP(k) have been despat-
ched. Therefore, the wait state of LIP(k) is
cleared, that is,

ASPW of LPCB of the LIP (k) <0, and
GSPW of the VM is decreased by 1.

4. WOPD method. When to set an LIP in a
wait state due to spinning: Responding to a
hypervisor-call issued by a logical processor
(LIP0) of a VM to suspend its spin, the hyper-
visor checks the states of all the partners of
LIP0. If one of its partners is in running state,
no action is taken. If one of its partners is
ready and not in a wait state due to spinning,
the hypervisor sets LIP0 in a wait state due to
spinning.

When to clear an LIP’s wait state due to
spinning : When it despatches a VM'’s logical
processor (LIP1) that is ready and not in a wait
state due to spinning, the hypervisor checks the
state of the VM. If one of the logical proces-
sors of the VM is in a wait state due to spin-
ning, the hypervisor clears the wait states of all
the partners of LIP1.

5. RSLP method. Responding to a
hypervisor-call issued by a logical processor
(LIP0) to suspend its spin, the hypervisor en-
queues LIPO at the last position in the ready
queue. To be more precise, the hypervisor
checks the states of all the partners of LIP0.
When one of them is in an out-service queue,
the hypervisor enqueues LIP0 at the last posi-
tion in the out-service queue. This is because
LIPO should run after all its partners. When
one of them is in a time-slice-end queue, the

Mar. 1995

hypervisor enqueues LIP0 at the last position in
the time-slice-end queue. Otherwise, the hyper-
visor enqueues LIP0 at the last position in the
proper ready queue.

3.3 Evaluation

3.3.1 Qualitative Evaluation

Here, we evaluate the three methods qualita-
tively.

1. Waiting time. The WOPD sets a spin-
ning LIP in a wait state due to spinning until
one of its partners that are ready has been
despatched. WAPD sets a spinning LIP in a
wait state due to spinning until all its partners
that are ready have been despatched. RSLP
enqueues a spinning LIP at the last position in
a ready queue. The queuing makes the LIP
wait for another LIP of another VM. There-
fore, the waiting time of WOPD is shorter than
that of WAPD and RSLP.

2. Suppression of excessive spin. WOPD
may not be able to suppress excessive spin of a
guest OS because it allows the hypervisor to
redespatch a spinning LIP of the guest OS
before its spin conditions are cleared. WAPD
and RSLP certainly suppress excessive spin of
any guest OSs, because they allow the hyper-
visor to redespatch the LIP only after its spin
conditions are almost cleared.

3. Influence of the number of VMs. RSLP
enqueues a spinning LIP at the last position in
a ready queue. The queuing makes the LIP
walit for another LIP of another VM. There-
fore, when the number of VMs is large, the
queuing will badly affect the performance of
the VM that contains the spinning LIP. WAPD
and WOPD enqueue the spinning LIP into a
ready queue in normal order and set its flag for
the wait-state-due-to-spinning so that it is on.
When all its partners that are ready in WAPD
or one of its partners in WOPD have been
despatched, the LIP can be redespatched at
once. Therefore, except that VMs normally
compete with each other for real processors,
the number of the VMs does not affect the
timing at which the spinning LIP is redespat-
ched.

4. Overhead. WAPD will have a slightly
larger overhead than RSLP, because it has to
manage the wait state due to spinning. WOPD
will have a smaller overhead than WAPD,
because its management of a wait state due to
spinning is simpler than that of WAPD.

3.3.2 Quantitative Evaluation

We experimentally implemented the three

Vol.36 No.3 Development of Methods for Reducing the Spins of Guest Multiprocessors 693

Table 1 Workloads.

| # ‘ Workload
1 | Batch (4800 jobs)
Compile, Link, Go

2 | Batch (4000 jobs)

Compile, Link, Go
3 | Batch (3600 jobs)
Compile, Link, Go

4 | Heavy 1/O requests
issuing frequent EXCPs
5 | TSS:Total 100 terminals

(generated transactions)
6 | TSS:Total 400 terminals

(generated ‘transactions)
7 | Batch (endless test jobs

issuing frequent SVCs)
All VMs have multiple virtual
Storage OSs running.

CPU: 40 — 50 MIPs/real processor

EXCP: EXecute channel program

methods (WOPD, WAPD, RSLP), and mea-
sured the system performance to compare and
evaluate them. Table 1 shows the workloads of
batch jobs (#1,#2,#3,), a heavy 1/O request
job(#4), Time Sharing System (TSS) jobs (# 5,
#6), and endless batch jobs issuing frequent
SVCs (#7). These workloads are comparable
to those of real user systems.

We evaluated the following items :

1. The number of hypervisor-calls needed to
suspend a spin. The number shows the
activity level of OS kernel associated with
the spin.

2. Internal throughput ratios (ITR), which

w

means the total number of transactions
processed per unit of real processor busy
time (1s).

External throughput ratios (ETR), which
means the total number of transactions
processed per unit of real time (1s).
CPU overhead of the hypervisor. (This is
the overhead of the scheduler of the hyper-
visor.)

The measurement conditions were as fol-
lows :

1.

The host processors were large main-
frames, which were two-way or four-way
shared-main-memory multiprocessors.
Two or four VMs were used.

Real processors were allocated in float-
ingly shared forms.

We show the measurement data in Tables 2,
3 and 4.
The measurement methods were as follows :

1.

3.

In Table 2, batch jobs were measured once
for each of the three methods (WOPD,
WAPD, and RSLP), as shown in # 1 and #
4. The workload of the heavy I/O request
was measured twice for each of the three
methods, as shown in # 2 and # 3.

In Tables 3 and 4, batch jobs were mea-
sured once for each of the two methods
(WAPD and RSLP), as shown in case-1
and case-4. The workload of the heavy I/
O request was measured twice for each of
the two methods, as shown in case-2 and
case-3.

The data in cases 5-7 in Tables 3 and 4

Table 2 Comparison of three methods in floating scheduling.

| items WOPD | WAPD RSLP Workloads & Environment
[Hyp.Call -*s 893.27 680.39 #3 (Batch) in Table 1
1 Guest p x 2 95.69 95.04 95.92 | 3~-way host multiprocessor
ETR *3 69t 6.85 6.25 | 3 VMs (each VM is 3-way)
OVH x4 1.73 1.99 1.76
Hyp.Call 210.58 234.53 21642 #4 (Heavy 1/O) in Table 1
2 Guest p 45.07 45.93 45.75 | 4—way host multiprocessor
ETR 23.78 23.81 2385 | 3 VMs (each VM is 4—-way)
ITR 3371 32.79 33.08 Interval: 5 minutes
OVH 14.15 14.61 14.48
Hyp.Call 203.13 228.91 210.21
3 Guest p 44.92 45,89 45.45 Ditto
ETR 23.77 23.79 23.54
ITR 3376 32.78 32.89
OVH 14.17 14.62 14.39
Hyp.Call 70.42 62.26 52.08 #7 (Batch) in Table 1
Guest p 75.38 76.31 76.26 | 4—way host muitiprocessor
4 ETR 190 | 192 1921 3 VMs (each VM is 4—way)
ITR : 122600 . 226 225 | Interval: 15 minutes |
| OVH 4.84 477 4.95 N

*1: Number of hypervisor—calls / CPU busy time (sec)
*2: Guest CPU utilization % / real processor

*3: External Throughput Ratio: Ends / Real time (sec)
*4: Overhead: Scheduler CPU utilization (%)

*5: Not measured

694

Transactions of Information Processing Society of Japan

Table 3 Comparison of WAPD and RSLP in floating

Scheduling.
Case Items WAPD RSLP Workload
Hyp. Call ** 1,284.18 1,328.74 #1 (Batch) in Table 1
1| Guest p ** 43.75 43.03 4—-way host muitiprocessor
ETR *3 4.729 4.585 4 VMs (each is 4—way)
ITR x4 9.690 9.566
OVHD * 9| 2.48 2.37
Hyp. Call 267.77 274.21 #4 (Heavy I/O) in Table 1
2| Guest p 21.20 29.62 4—way host muitiprocessor
ETR 16.324 16.631 2 VMs (each is 4—way)
ITR 34.265 34.658 ETR,ITR:
OVHD 8.92 8.68 EXCP *‘counts/sec
Hyp. Call 103.55 10359 | #4 (Heavy I/O) in Table 1
3| Guest p 49.01 49.72 2—~way host multiprocessor
ETR 16.415 16.722 2 VMs (each is 2—way)
ITR 26.379 26.636 ETR,ITR:
OVHD 5.86 5.67 EXCP counts/sec
Hyp. Cali 18.43 18.51 *7| #2 (Batch) in Table 2
4| Guest p 96.63 96.65 2--way host multiprocessor
ETR 9,017 9.034 2 VMs (each is 2-way)
ITR 9.279 9.296
OVHD 0.25 0.23
Hyp. Call 1,484.42 1,474.52 #5 (TSS) in Table 1
5| Guest p 56.34 56.10 2—way host muitiprocessor
ETR 53.438 53.438 2 VMs (each is 2—way)
ITR 107.652 108.196
OVHD 1.20 1.15
Hyp. Call 12,091.00 8,037.23 #6 (TSS) in Table 1
6| Guest p 99,37 99.08 2—way host multiprocessor
ETR 53.878 52.333 2 VMs (each is 2—way)
ITR 53.911 52.370
OVHD 0.46 0.34
| Hyp. Call 64,292.55 57,472.43 #6 (TSS) in Table 1
: 71 Guest p 97.02 97.24 4—way host muitiprocessor
| ETR 76.839 73.735 2 VMs (each is 4—way)
| ITR 76.924 73.808
| OVHD 1.28 1.01
All VMs have multiple virtual storage OSs running.

*1: Hypervisor call:

times/CPU busy time (sec)

*2: Guest CPU utilization % /real processor

*3: External throughput ratio: ends/real time (sec)

*4: Internal throughput ratio: ends/CPU busy time (sec)
*5: Overhead: scheduler CPU utilization (%)

*6: EXCP: EXecute channel program
*7: Estimated value

Table 4 Number of hypervisor-calls and throughputs
in floating scheduling.

[
ETR (WAPD) |

Case | Hyp. Call (WAPD) | Hyp. Cali (RSLP) ETR (RSLP)
4 18.43 18.51 9.017 9.034
103.55 103.59 16.415 16.722

2 267.77 27421 | 16.324 16.631

1 1,284.86 1,328.74 4729 4.585
I 1,484.42 1,474.52 53,438 53438
‘ 6 12,091.00 8,037.23 | 53.678 52.333
7 64,292.55 57,472.43 ‘ 76.839 73.735

ltalic data show heavy spins.

are averages of the data sampled every
two minutes during 10-14 minutes of
measurement. Their workloads were
TSS jobs (#5, #6 in Table 1). We used a
terminal simulator, which generates trans-

actions with edit commands and subcom-
mands. We describe only the averages,
because the sample data were almost the
same and their deviations were very small
(Iess than 0.1 in ETR and ITR) in the
same conditions.

Table 2 shows that the three methods
(WOPD, WAPD, and RSLP) have comparable
performances when the workloads are small
and the frequency of hypervisor-calls is low. It
may be possible to say that WOPD has the best
performance of the three because it has the
largest number of best ETRs and ITRs. It is
not preferable for large workloads, however.

We measured larger workloads. In WOPD
we experienced many excessive spin-loops for

Vol.36 No.3

large workloads. For example, there were
excessive spin loops in five VMs, where all the
VMs were 5-way multiprocessors, in a five-way
host multiprocessor system, and in floating
scheduling. Guest OSs were multiple virtual
storage OSs. Three of the five OSs in the VMs
had excessive spin loops and set several (two or
three) logical processors off-line. Only after
they had run for many hours, or sometimes for
over ten hours, did the guest OSs detect exces-
sive spin loops.

We consider the cause of the excessive spin
loop to be as follows: In WOPD, the spinning
logical processor does not wait for all its part-
ners that are ready to be despatched. This is to
avoid waiting too long, and to avoid decreasing
the system performance. For this reason, the
spinning logical processor is possibly redespat-
ched before its partner, which clears its spin
conditions, is despatched. The more guest OSs
spin, the more the hypervisor redespatches their
spinning logical processors before their spin-
ning conditions are cleared. As a result, the
guest OSs have excessive spin loops. There-
fore, excessive spins are caused by heavy spin
activities of guest OSs.

We exclude WOPD from performance mea-
surement because a guest OS sets its processor
off-line when detecting excessive spins; there-
fore, we cannot use its performance data. We
focus our evaluation on the remaining two
methods (WAPD and RSLP). Table 3 shows
the measurement data for the two methods.
The workloads contain batch jobs, a heavy 1/0
request job, and TSS jobs. Guest OSs are
multiple virtual storage OSs.

A guest OS issues hypervisor-calls in its spin.
Therefore, the high frequency of its hypervisor-
call to suspend a spin signifies its heavy spin
activities. In this sense, Cases 1 (batch), and 5
-7 (TSS) in Table 3 have heavy spin activities.

Table 3 shows that in floating scheduling the
two methods (WAPD and RSLP) have compa-
rable performance. Table 4 focuses on the
number of hypervisor-calls, which makes the
hypervisor shake hands with the guest OSs to
avoid their excessive spins, and system through-
put. These tables show that :

1. WAPD has a slightly (0.02-0.27%) larger

overhead than RSLP.

2. WAPD has a comparable performance to

RSLP when the number of hypervisor-
calls is small (Table 4, Case 4, 3, 2).
3. WAPD has a better performance than

Development of Methods for Reducing the Spins of Guest Multiprocessors 695

RSLP when the number of hypervisor-
calls is high (Table 4, cases 1,5-7). This
means that for large workloads that have
heavy spins, WAPD has a better perfor-
mance than RSLP.

4. Conclusion

When all the logical processors of a VM have
one-to-one-dedicated real processors, a spin of
an OS in the VM works as well as in a real
machine. When a real processor is shared by
logical processors of VMs, it is better for OSs
in the VMs to call the hypervisor to suspend
their disabled spin. We have presented new
handshakes whereby the hypervisor dynami-
cally informs guest OSs of the processor alloca-
tion forms (i.e., dedicated or shared), and on
the basis of the information the guest OSs
determine whether or not they should spin.

Moreover, we have presented how the hyper-
visor should react in response to a hypervisor-
call to suspend a spin of an OS in a VM. The
hypervisor does not know which logical proces-
sor of the VM clears the spinning conditions, or
when, because it is the guest OS that schedules
the logical processors. Therefore, the hyper-
visor adopts one of the following three methods
in response to the hypervisor-call

1. Waiting for one partner ready to be de-
spatched (WOPD). The hypervisor sets
the spinning logical processor in the wait
state until at least one of its partners that
are ready has been despatched.

2. Waiting for all partners ready to be de-
spatched (WAPD). The hypervisor sets
the spinning logical processor in the wait
state until all its partners that are ready
have been despatched.

3. The hypervisor requeues the spinning logi-
cal processor (RSLP). The hypervisor
enqueues the spinning logical processor
again at the last position in a ready queue.

We have implemented these methods, and
measured and evaluated them. As a result, we
found that

1. For small workloads the three methods
have comparable performances.

2. According to experiments, WOPD cannot
suppress an excessive spin of a guest OS
for large workloads that have heavy spin
activities.

3. WAPD has a slightly (0.02-0.27%) larger
overhead than RSLP.

4. For large workloads, WAPD has a slight-

696 Transactions of Information Processing Society of Japan

ly (the difference of ETR is 3-494) better
performance than RSLP.
Acknowledgement We thank Mr. K. Une
and Mr. K. Suzuki of General Purpose Com-
puter Division (GPC), Hitachi Ltd., for their
cooperation in performance measurement. We
also thank Mr. T. Kuwabara and Mr. Y. Oh-
shima of GPC for their management of this
work.

References

1) Goldberg, R.P.: Architectural Principles for
Virtual Computer Systems, Ph.D. dissertation,
Div. Eng. Appl. Phys.,, Harvard Univ., Cam-
bridge, MA (1972).

2) Borden, T.L. et al.: Multiple Operating Sys-
tems on One Processor Complex, IBM Syst. /.,
Vol. 28, No. 1, pp. 104-123 (1989).

3) Zahorjan, J. and Lazowska, E.D.: Spinning
Versus Blocking in Parallel Systems with
Uncertainty, Performance of Distributed and
Parallel Systems, IFIP, pp. 455-472 (1989).

4) Karlin, A. R.: Empirical Studies of Competi-
tive Spinning for a Shared-Memory Multi-

processor, ACM Symposium on Operating Sys-

tems Principles (13), Vol. 25, No.5, pp. 41-55
(Oct. 1991).

5) Doran, R. W. et al. : Amdah! Multiple-Domain
Architecture, Computer, pp. 20-28 (Oct. 1988).

6) Bean, G.H. et al.: Logical Resource Par-
titioning of a Data Processing System, IBM,
PR/SM™ Patent, Priority, July 29 (1987).

7) Umeno, H. and Ohmachi, K.: A Method for
Supporting Virtual Machine Multiprocessor

Systems, Proceedings of the 19th Annual Con-

vention IPS Japan, pp. 265-266 (1978).

8) IBM: IBM System/370-XA Start Interpretive
Execution, SA22-7095.

9) HDS: EX™ Series Multiple Logical Proces-
sor Feature™ (MLPF™) User's Guide, FE-
91EX036-1.

10) IBM: System/370-XA Principles of Opera-
tion, SA22-7085.

11) Open Software Foundation and Carnegie
Mellon University : Mach 3 Kernel Interface
(1991).

12) Marsh, B.D., Scott, M. L. et al.: First-Class
User-Level Threads, ACM Operating System
Review, Vol. 25, No. 5, pp. 110-121 (1991).

(Received May 6, 1994)
(Accepted November 17, 1994)

Mar. 1995

Hidenori Umeno was born
in Ohita, in 1947. He received
the B.S. in mathematics from
Kyushu University in 1970.
From 1970 to 1976, he was with
Central Research Laboratory,
Hitachi Ltd.,, where he made
researches in productivity improvement of com-
pilers. From 1976 to 1993, he was with Systems
Development Laboratory, Hitachi Ltd., where
he made researches in performance and reliabil-
ity improvement of virtual machines, file sys-
tems, and operating systems. Since 1993, he has
been with General Purpose Computer Division,
Hitachi Ltd., where he has been engaged in the
development of logical partition systems of
mainframes. His main research fields are per-
formance and function improvement of virtual
machines, logical partition systems, operating
systems, and computer architectures. He
received a best paper award of Information
Processing Society of Japan (IPS]) in 1982.
Since 1991, he has been a part-time instructor of
Musasi Institute of Technology. He is a mem-
ber of IPS] and ACM, and an affiliate of IEEE
Computer Society.

Hideaki Amano was born in
Kyushu in 1968. He received the
B. Eng. in Electrical Engineering
from Fukuoka University in
1992. Since 1992, he has been
with General Purpose Computer
Division, Hitachi Ltd., where he
is mainly developing virtual machines of gen-
eral purpose computers.

Keiji Saijo was born in 1960.
He received the B. Eng. and
M. Eng. in Nucleonics from
Nagoya University in 1982 and
in 1984, respectively. Since 1984,
he has been with Software
Development Center, Hitachi
Ltd., where he has been engaged in the develop-
ment of virtual machine sysems and logical
partition systems.

