Vol. 36 No.3

Regular Paper

Transactions of Information Processing Society of Japan

Mar. 1995

A General-Purpose Reasoning Assistant System EUODHILOS

~— Basic Features and Potential Usefulness —*

Every universe of discourse has ils logical structuve.
S. K. Langer (1925)

Hajmve Sawamura, Tosumro Minamr, T Kaoru Yokoraft
and Kyoko Onasui't

Much work has been devoted to special-purpose reasoning assistant systems whose under-
lying logics are fixed. In contrast to such a trend, this paper is devoted to a new dimension
of computer-assisted reasoning research, that is, a general-purpose reasoning assistant system
that allows a user to define his or her own logical system relevant for the intended problem
domain and to reason about it. In the first half of the paper, the need, significance and design
principle of EUODHILOS: a general-purpose system for computer-assisted reasoning, is
discussed, then the system overview is described, placing emphases on the following three
points: (1) an expressive and tractable framework for representing a logic, (2) a powerful
and flexible proof construction facility, and (3) a visual reasoning-oriented human-computer
interface for ease of use. In the latter half, the potential and usefulness of EUODHILOS are
demonstrated through experiments and experiences of its use by a number of logics and proof
examples therein, which have been used or devised in computer science, artificial intelligence

and so on.

1. Introduction

A new dimension of computer-assisted rea-
soning research is explored in this paper. It
aims at a general-purpose reasoning assistant
system that allows a user to interactively define
the syntax and inference rules of a formal
system and construct proofs in the defined sys-
tem. We have named this system EUOD-
HILOS, an acronym reflecting our philosophy
or observation that every universe of discourse
has its logical structure.

In these days, various logics play important
and even essential roles in computer science
and artificial intelligence (e. g., Ref. 41), 42)),
and surprisingly in aesthetics which has been
thought of as being in a directly opposite posi-
tion to logic (e. g, Ref. 19), 20)), as well as in
other scientific theories (e.g., Ref. 4),27), 45)) .
Specifically, it can be said that logics provide
expressive devices for objects and their prop-

* This paper is a revised version of the paper
presented at the Seventh International Confer-
ence on Logic Programming, 1990, Jerusalem.

T Institute for Social Information Science, FUJI-
TSU LABORATORIES LTD., 140 Miyamoto,
Numazu, Shizuoka 410-03, JAPAN

1 Software Laboratory, FUJITSU LABORA-
TORIES LTD,, 1015 Kamikodanaka, Nakahara-
ku, Kawasaki, Kanagawa 211, JAPAN

542

erties, and inference capabilities for reasoning
about them. It is also the case that symbols
manipulating methods provided in logics are
basically common to all scientific activities. So
far, people have made use of a wide variety of
logics, including first-order, higher-order,
equational, temporal, modal, intuitionistic, rele-
vant, type theoretic logics and so on. However,
implementing an interactive system for devel-
oping proofs is a daunting and laborious task
for any style of presentation of these logics.
For example, one must implement a parser,
term and formula manipulation operations
(such as substitution, replacement, juxtaposi-
tion, etc.), inference rules, rewriting rules,
proofs, proof strategies, definitions and so on,
depending on each logic under consideration.
Thus, it is desirable to find a general theory of
logics and a general-purpose reasoning assis-
tant system that captures the uniformities and
idiosyncrasies of a large class of logics so that
much of this effort can be expended once only.
A similar observation and motivation can be
found in the papers of Ref. 14) and 15),
although the approaches differ. In this paper,
we aim at building a general and easy to use
system which handles as many logics as
possible and allows us to reason in various
\7\7ay525)’35).

Vol. 36 No.3

There are three major subjects to be pursued
for such an interactive and general reasoning
support system. One is a framework expressive
enough to describe a large class of logics. The
second is the kind of reasoning styles suitable
for human reasoners which should be taken into
account. More generally, reasoning (proving)
methodology, which reminds us of program-
ming methodology, needs to be investigated.
The third subject is reasoning-oriented human-
computer interface that may be well estab-
lished as an aspect of reasoning supporting
facilities. An easy to use system with good
interface would be helpful in the conception of
ideas in reasoning, and in their further promo-
tion.

We believe that a general-purpose reasoning
assistant system incorporating these points
should cater to the mathematician or program-
mer who wants to do proofs, and also to the
logician or computer theorist who wants to
experiment with different logical systems
according to the respective problem domains.

This paper is organized as follows. In the
first half of the paper, following the discussion
of the need, significance and design philosophy
of EUODHILOS, a system summary of EUOD-
HILOS is described. We emphasize the follow-
ing three points: (1) an expressive and trac-
table framework for representing a logic, (2) a
powerful and flexible proof construction facil-
ity, and (3) a visual reasoning-oriented human-
computer interface for ease of use. In the latter
half of the paper, the potential and usefulness of
EUODHILOS are shown through experiments
and experiences of its use by a number of logics
and proof examples therein. These have been
used or devised in computer science, artificial
intelligence and other related fields.

2. Need, Significance and Design Philoso-
phy

Much work has been devoted to special-
purpose reasoning assistant systems whose
underlying logics are fixed (e.g., Ref. 5), 7), 12),
18), 43), 44)). However, we are exploring a
new dimension in a general-purpose reasoning
assistant system.

We first take up some issues concerned with
the generality in reasoning assistant system and
several aspects of viewing such a generality.
We have already found and recognized that in
these days a logic or logical methodology forms
a kind of paradigm for promoting computer

A General-Purpose Reasoning Assistant System EUODHILOS 543

science, artificial intelligence and so on. And
we stated that it is desirable to find a general
theory of logics and a general-purpose reason-
ing assistant system that captures the uniform-
ities and idiosyncrasies of a large class of logics
so that much effort for providing reasoning
facilities can be expended once only and hence
we aim at building an easy to use and general
reasoning system which handles as many of
these logics as possible. This was our first
motivation for pursuing the generality in rea-
soning assistant system. The second issue
comes from a rigorous approach to program
construction. AbrialV claims that a general-
purpose proof checker could be perhaps one of
a set of tools for computer aided programming
when we consider program construction from
various theories. We are certainly in a situa-
tion that before embarking on the construction
of a program we need to study its underlying
theory, that is to give a number of definitions,
axioms and theorems which are relevant to the
problem at hand. Note that every program
(universe) to be constructed (studied) has its
underlying theory (logical structure). The
third issue concerns the construction of a logi-
cal model, or more generally methodology of
science. We observe that human reasoning
process consists of the following three phases:
(1) making mental images about the objects or
concepts, (2) making logical models which
describe the mental images, (3) examining the
models to make sure that they coincide with
mental images. It is not conceivable that phase
(1) could be aided mechanically since some
part of phase (1) is very creative. On the other
hand, it is very likely that phases (2) and (3)
could be largely supported mechanically by
allowing the modification or revision of the
definition of the language used for the modeling
and by introducing certain reasoning devices.
These are just the points that a general-purpose
reasoning assistant system is intended to sup-
port. Philosophical aspects of the generality
from a logical point of view can be found in
Ref. 20) and 10). A logic is, in a broad sense, a
way of doing things. In this sense it is not a
surprising fact that there may exist a number
of logics for things. Also it is well known that
a logic has various styles in its formulation
such as Gentzen’s LK, NK, Hilbert’s linear
style, etc., and that these are mathematically
equivalent. However, if a logical system is to
be viewed as a form of representation of a

544 Transactions of Information Processing Society of Japan Mar. 1995

system of self-consciousness, then we will have
to think of these various logic formulations as
different!'®.

All this discussion may be summarized as, to
borrow Langer’s statement?®, “Ewvery universe
of discourse has its logical structure”. Thus it
eventually supports our discussions about the
need and significance of the generality in rea-
soning assistant system from the philosophical
point of view.

The above discussion led us to the research
and development of general-purpose reasoning
assistant system EUODHILOS with the follow-
ing outstanding features :

- Use of the definite clause grammar (DCG)

in representing a logic

» Proving methodology using sheets of

thought

+ Reasoning-oriented human-computer inter-

face.

In what follows, we will sketch each of these
features in more detail.

3. An Overview of EUODHILOS

We list the main functional features of
EUODHILOS and explain them briefly. We
start by describing the language of a logic to
EUODHILOS. Fundamentally, EUODHILOS
has almost no defaults except some logically
proper conventions in representing a logic.

3.1 Formal System Description Language

What is a logic? What language should be
expressive enough to describe or deal with
logics? The answers to these questions could
turn out to define the formal system description
language for capturing the uniformities and
idiosyncrasies of a large class of logics so that
it can be used as the basis for implementing
proof systems. There have been some attempts
to pursue the formal system description lan-
guage. In this, these attempts have shared the
goal of EUODHILOS, e.g., Prolog is employed
as a logic description language in Ref. 34),
AProlog in Ref. 9) and 24), typed A-calculus
with dependent types in Ref. 14) and 15), a
specification language for a wide variety of
logics in Ref. 1), an attribute grammar formal-
ism .in Ref. 32), a metalanguage ML in Ref. 13)
and a higher-order logic in Ref. 28).

Almost all of contemporary logics may be
considered as having a logical framework con-
sisting of a proof theory and a model theory. A
proof theory specifies the syntactical part of a
logic and a model theory specifies the seman-

tical part of a logic. In this paper we are mainly
concerned with specifying the syntactical aspect
of a logic. The syntax of a formal system is
made up of two constituents: language system
and derivation system.

(1) The language system

A language is a tool for talking about objects

and is formed from underlying primitive sym-
bols. A logical language is one in which propo-
sitions are expressed and reasoned about. It is
usually specified by utilizing some of the follow-
ing: variables, constants and functions as indi-
vidual symbols, predicates (including equality),
logical connectives, auxiliary symbols, etc.
Attributes such as type, sort, arity, operator
precedence are sometimes associated with
some of these symbols. Once these primitive
symbols are specified, complexities such as
terms, formulas, etc., are constructed from
them by formation rules. Also, notational con-
ventions for defining or abbreviating symbols
may be required. At this point, we face our
next fundamental question: what kind of
metalanguage is natural and sufficient to
describe such an object language?

(2) The derivation system

The derivation system gives us a means of

manipulating a logical language. It is specified
by axioms, inference rules, derived rules, rewrit-
ing rules, and concepts of proofs, etc. Insofar
as we confine ourself to the existing types of
formal systems, we can enumerate primitive
operations. Included in these are substitution,
replacement, juxtaposition, detachment, renam-
ing, unification and instantiation. These
are common operations within various logics
except for the differences of languages. Since we
are considering a general-purpose reasoning
system for logics, we have to provide a general
method for those symbol manipulations. So,
our next fundamental question is: what sort
of primitive operations and constraints on ob-
jects are sufficient to manipulate logics and how
could these be provided in a generic manner?
In addition to these questions, we need to pay
attention to the concepts “free”, “bound” and
“something is free for a variable in an expres-
sion”.

In what follows, we will attempt to answer

these fundamental questions.

3.2 Specifying a Logical Syntax and the
Expressiveness of the Definite Clause
Grammar

In EUODHILOS, an object language to be

Vol. 36 No.3

used is designed and defined by a user. The
meta language is definable also. This is indis-
pensable for the schematic specifications of
axioms, inference rules and rewriting rules and
schematic proofs. A current solution for for-
mal system description language is to employ
so called definite clause grammar formalism
(DCG)*9, where the problem of recognizing or
parsing a string of a language is transformed
into a problem with a proof that a certain
theorem follows from the definite clause
axioms which describe the language. The DCG
formalism for grammars is a natural extension
of context-free grammar (CFG). As such, DCG
inherits the properties which make CFG so
important for language theory such as the
modularity of a grammar description and the
recursive embedding of phrases which are char-
acteristic of almost all interesting languages,
including the languages of logics. It is, how-
ever, well known that CFG is not fully adequate
for describing natural language, nor even many
artificial languages. DCG overcomes this inade-
quacy by extending CFG in the following three
areas®”: (i) context-dependency, (ii) parameter-
ized nonterminal, (iii) procedure attachment.

These also yield great advantages for specify-
ing logical grammars, compared with those
mentioned above. DCG provides for context-
dependency in a grammar, so that the permis-
sible forms for a phrase may depend on the
context in which that phrase occurs in the
string. DCG is somewhat similar to attribute
grammar in the sense that context free gram-
mar is made context sensitive by associating a
semantical facility with grammar rules®®. The
necessity for context-dependency is often en-
countered in defining logical syntax (see an
example in intensional logic below).

Let us describe some concrete examples of
the syntax definition in order to see the para-
digm of definite clause grammar formalism.
The defining clause of first-order terms such as
“If f is a function symbol of arity 2 and t and s
are terms, then f(t, s) is a term” is represented
as

term (f(T,S)) -->

functor2,“ (”,term (T),“,” term (S) ,“)”;

functor2-->“f”.
The defining clause of terms in the intensional
logic!® such as “If A is a term of type (a, b) and
B a term of type a, then A°B is a term of type
b” is represented as

term(A°B, b) —->

A General-Purpose Reasoning Assistant System EUODHILOS 545

term (A, (a,b)),“°”, term(B, a).
However, we found that it is not a good way to
force users to specify the internal structures of
expressions manipulated by a computer. This
is necessary as well for the uniform treatment
of various logical grammars. In EUODHILOS,
the internal structures of expressions will be
automatically generated from the definite
clause grammar rules (see below). Thus, the
above rules can be simply given to EUOD-
HILOS as follows :

term-->functor2, “(”, term, “,”, term, “)”;

functor2--> “f”. and

term (b) —>term((a,b)), “°”, term(a).,
respectively.

Furthermore, the definite clause grammar
formalism is slightly augmented with operator
precedence and special constructs to handle
proper logical concepts such as variable bind-
ing, scope, substitution/variable occurrences,
schema variables. In EUODHILOS, the special
built-in construct “bind-op” deals with the con-
cept of a variable being bound over the scope of
a sub-expression. For example, in the following
two clauses, the nonterminal “variable” denotes
a bound variable and its scope is over “for-
mula”.

formula-->bind op, variable, formula;
bind op-—>“¥V”"[“3”"|“A";

The expression like “P[X]” represents the
variable “X” possibly occurs in an expression P,
and the expressions “Plel/e2]” represents the
results obtained by replacing one or more
occurrences of e2 in P by el. Then, either the
template to show which occurrences are to be
replaced has to be given by the user, or EUOD-
HILOS automatically generates the possible
templates in context, later chosen by the user.
In this manner, EUODIHILOS handles substitu-
tion (or replacement) problems which gener-
ally fall into one of the following categories ;
partial substitution like substituitivity of equals
(e.g., P(a), a=bFP(b/a)) and total substi-
tution like specialization (e.g., Vx.P(x)F P(a/
x) provided a is free for x in P). The special
nonterminal with the prefix “meta” is used to
define meta/schema variables in the definite
clause grammar.

3.3 Automatic Generation of a Parser and

an Unparser

Once a definite clause grammar definition for
a logical syntax has been given, it is first
converted to the definite clause grammar as-
sociated with the internal structures of expres-

546 Transactions of Information Processing Society of Japan

sions. The conversion is done with the help of
an operator declaration provided by a user,
which is for indicating which syntactical ele-
ment should be viewed as an operator in the
grammar rule. Then the bottom-up parser for
the new grammar is automatically generated,
employing the BUP generation method for the
definite clause grammar??. The reason why we
do not generate a top-down parser for the
defined language is to avoid the anomaly of
left-recursiveness which often appears in the
ordinary definition of a logical syntax. The
automatic method for generating the internal
structures of the expressions of a language
have been provided by us*®. The unparser (or
generator) for the internal structures is also
automatically constructed with the help of the
operator precedence declaration provided by a
user. The generated parser and unparser are
internally used in all the succeeding phases of
symbol manipulations.

It is clear that our approach based on DCG is
far superior to the other approaches based on
attribute grammar (e.g., Ref. 32)), in which we
have to provide the internal and external repre-

Mar. 1995

sentations of expressions, and hence those auto-
matic generations of a parser, an unparser and
internal structures greatly lighten a user’s bur-
den in setting up his or her own language and
taking care of it. Readers interested in the
details of the algorithms can find these in Ref.
26).

3.4 Specifying a Derivation System

A derivation system consists of axioms, infer-
ence rules and rewriting rules. Axioms are
simply presented in a list of formulas. For the
specification of rules, there are two important
issues to be considered: side conditions and
dependency.

An inference rule is specified in natural
deduction style®*" in three parts: the deriva-
tions of the premises of the rule, the conclusion
of the rule, and the restrictions that are
imposed on the derivations of the premises and
the conclusion, such as variable occurrence
conditions and substitution conditions. Actu-
ally, inference rules are presented schemati-
cally in terms of meta/schema variables as
follows :

[Assumption;] [Assumption.] --- [Assumption,]
Premise; Premise, Premise,
Conclusion

where brackets are used to encompass a tempo-
rary assumption to be discharged, “ : ” denotes
a sequence or a subtree of formulas which is a
part of a proof from the assumption and each
assumption is optional. If a premise has the
assumption, its subtree of a proof indicates a
conditional derivation. In forward reasoning,
an inference rule may be permitted to apply if
all the premises are obtained in this manner and
the application condition is satisfied. In back-
ward reasoning, discharging assumptions,
generating some assumptions and checking the
application conditions are in general impossible
and hence delayed until completing the partial
proof tree under construction.

In our approach, the side conditions of a rule
are supposed to be described in terms of the
built-in primitive side conditions and their com-
binations. Schematically, among those primi-
tive conditions are

(a) *t* is free for *x* in *P*,

(b) *x* is not free in *P*, and

(c) *a* is an eigenvariable,

where the expressions like *t* are placeholders
to be substituted for. Then EUODHILOS can
check those side conditions automatically in the
proof process. For other side conditions which
can not be handled in this way, we have pro-
vided the interface with a user-programmed
side conditions checker for EUODHILOS.

The dependency of a conclusion on tempo-
rary assumptions is automatically calculated by
the ordinary method for the natural deduc-
tion'® 3V, Other dependency calculation also can
be specified in EUODHILOS if we specify it
by using both an idea of dependency as a tag/
label and rewriting rules. For example, let us
consider the A-introduction rule of some rele-
vant logic,

A® B¢

ANB?
where the superscript @ denotes dependency on
which the formula depends. The rule says that
we can infer the formula AAB with depen-
dency « if we have A and B with the same
dependency a. Such a rule may be very natu-

Vol. 36 No.3

rally specified within the rule description con-
vention of EUODHILOS by incorporating
dependency into an object formula, as follows:
a=>A a=>B
a=>A/\B
Then some operations on dependency ¢ may be
needed, but they are easily describable as
rewriting rules (see the subsection 4.9).

Defining the derived rules is allowed if they
are justified for validity on a sheet of thought
described below. The derived rules would
become useful when we wish to shorten the
lengthy and tedious derivation steps.

Rewriting rules are useful for handling
equational reasoning often appearing in ordi-
nary mathematical practice. A rewriting rule is
specified with a pair of forms before and after
rewriting in the following schematic format:

€XP1

exp:
The rule is applied to an expression when it has
a subexpression which matches to the exp:, and
the resulting expression is obtained by replac-
ing the subexpression with the appropriate
expression of the exp,. EUODHILOS automati-
cally generates many possible forms of an
expression which may be obtained by succes-
sive applications of a given rewriting rule.
Users can then choose an intended one from
them.

Many well-known styles of logical stipulation
can be treated within this framework—for
example, Hilbert’s, Gentzen’s, equational, and
even tableau styles.

3.5 Proof Construction Facilities

The major drawback of reasoning in formal
logic is that derivations tend to be lengthy and
tedious because of the detailed level of deriva-
tions required in reasoning. Furthermore, per-
forming formal derivations is time-consuming
and error-prone. Readers may notice that such
a situation is quite similar to the formal devel-
opment of programs in which programs can be
derived or transformed and properties of pro-
grams can be established. Using computers for
formal reasoning can overcome the problems
with errors and the time-consuming task. The
current version of EUODHILOS has the follow-
ing unique facilities which are able to support
natural and efficient constructions of proofs in
the defined formal system.

(1) Sheets of thought

This originated from a metaphor of work or
calculation sheet and is apparently analogous

A General-Purpose Reasoning Assistant System EUODHILOS 547

to the concept of sheet of assertion which is due
to C. S. Peirce?®. He actually developed an
extensive diagrammatic calculus which he
intended as a general reasoning tool. A sheet of
thought, in our case, is a field of thought where
we are allowed to draft a proof, to compose
proof fragments or detach a proof, to reason
using lemmas, etc., while a sheet of assertion is
a field of thought where an existential graph as
an icon of thought is supposed to be drawn.
Proving by the use of sheets of thought turns
out to yield proof modularization which is
considered important particularly for proving
in the large. It may be beneficial to note that
proof modularization is approximately equal to
the concept of program modularization, to
borrow the term of software engineering.

(2) Tree-form proof

As mentioned above, inference and rewriting
rules are presented in a natural deduction style.
This naturally induces the construction of a
proof into a tree-form proof with a justification
for each line (node) indicated in the right
margin. For example, the justification (Al {1,
2}) of the following proof tree says that the
conclusion B is obtained by the rule named DI
from the two premises A and ADB, and it
depends on the assumptions named 1 and 2
above the premises.

AR2B (51, 2))

Consequently it leads to the explicit representa-
tion of a proof structure, in other words, proof
visualization.

(3) Schema (meta) variables

The Schema variables are useful not only for
the schematic specifications of axioms, infer-
ence rules or rewriting rules, but also for sche-
matic proofs. EUODHILOS is supposed to
make the meta and object distinction at the
time of language definition. Then substitution
and unification viewed as the common and
primitive symbol operations are supposed to
operate on schema variables, in addition to the
usual variables.

3.6 Proving Methodology

In EUODHILOS, a proof is to be constructed
interactively and the human reasoner retains
the initiatives in the proof process with the
facilities playing the careful assistant role with
responsibility for confirming the viability of
each proof step.

The predominant style of interactive reason-

I

ing is goal-directed, in other words, top-down or
backward reasoning, whereby the user breaks a
goal into subgoals. It is, however, desirable
that reasoning or proof construction can be
done along the natural way of thinking for
human reasoners. Therefore EUODHILOS
supports the other typical methods for reason-
ing as well. They include bottom-up reasoning
(forward reasoning), reasoning in a mixture of
top-down and bottom-up, reasoning by using
lemma, schematic reasoning, etc. These are
accomplished interactively on several sheets of
thought. Below, we will describe various proof
methods of EUODHILOS in detail.

(1) Input of logical expressions

Derivations begin with giving any of assump-
tions, premises, theorems and conclusions to
sheets of thought. Axioms and theorems are
inputted simply by pointing one at a time from
the axiom list and theorem database respective-
ly. Then one can expand a proof tree upward
or downward by applying a rule to it. It is
always possible to test whether formulas at the
top of a proof tree are axioms or theorems by
invoking the test command.

(2) Forward and backward reasoning

Forward reasoning is often used when we try
a proof from initial formulas in a trial and error
fashion. In larger proof development activities,
one hopes to conquer a big and complex task by
backward reasoning, dividing it into smaller
and simpler ones and then putting the results
together. Generally, a proof will be attained by
a mixture of them—partly forward and partly
backward.

In order to deduce forward by applying an
inference rule, we usually start a proof by input-
ting formulas used as premises of the rule and
in a natural deduction setting by further in-
dicating assumptions to be discharged. Then
one may select an appropriate inference rule
from the rule menu which has been automati-
cally generated at the time of logic definition,
or one may input a formula as the conclusion.
If one selects a rule, then the system applies the
rule to the premises and assumptions, and
derive the conclusion. If he/she gives the con-
clusion, then the system searches the rules and
tries to find one which coincides with this deduc-
tion. EUODHILOS can search the candidates
of applicable inference rules to the given prem-
ises as well and hence we may simply choose
the intended one. In natural deduction setting
of a formal system, forward reasoning may be

548 Transactions of Information Processing Society of Japan Mar. 1995

done without inputting or indicating assump-
tions to be discharged. This implies that at an
appropriate stage of a proof, we have to decide
which assumption we should discharge. This
comes from such a proper form of an inference
rule that assumptions in natural deduction rules
may not be necessarily used in the derivations
of premises. Instead, EUODHILOS helps us
doing this task in a natural way. Let us con-
sider the proof composition from the following
two proof trees.

[P]' - [PP o
: QJF

A) (.01, 2D, E(DIB}).
By simply composing them (see (5) below), we
get

Pg—r(gm, 2).

Then the proposition P in the consequence is
not known whether it is P!, P2 or any other P
outside this proof tree. EUODHILOS supports
the following discharging method :

(a) If the proposition P in the consequence is
meant to be P'(P?), then we choose P'(P?) as a
discharged assumption and get the new proof
tree with the new justification (DI{2]) ((DI
{1])) respectively.

(b) If the proposition P in the consequence is
meant to be any other P outside the proof tree,
then we may simply continue expanding the
proof without any action.

In the case of backward reasoning, the rea-
soning process is converse to the forward rea-
soning, so that the intermediate proof may
branch off to partially justified proof fragments
and the complete justification of those partially
justified proof fragments is delayed until the
completion of a final proof tree.

(3) Schematic reasoning

EUODHILOS allows us to construct an
abstract proof in the sense that schema/meta
variables ranging over syntactic domains of an
object language are permitted to occur in the
process of the proof, that is, we can make a
partially instantiated proof. Such schema vari-
ables are obviously very convenient for having
an indeterminate or unknown predicate (such
as invariant assertion in Hoare logic)
unspecified temporarily in the proof construct-
ing process.

A schematic proof, however, is not always
constructed since the schema variables in the

Vol.36 No.3

proof may not be fully instantiated so as to
promote further steps. Below we discuss how
schema variables communicate with objects in
EUODHILOS. Axioms are represented using
schema variables, but with (possibly) some
conditions on them. For example, the first-
order axiom: Vx.(PDQ)D(PDVx.Q) has the
condition that x is not free in P, where P and
Q, and x are schema variables ranging over
formulas and individual variables respectively.
Note that such a condition in axioms is viewed
as a side condition like those of inference rules.
Thus a proof using this axiom turns out to be
schematized to the extent that the schema
variables P- are instantiated as concrete for-
mulas. In the case of inference rules, a proof
process may be banned by its side conditions
unless schema variables are enough instantiat-
ed so as to be able to check side conditions. An
alternative to handle these situations would be
to delay checking side conditions until schema
variables are fully instantiated. To do so, every
side condition which has been inherited as un-
checked during the proof process would have to
be kept with the final theorem which is not
actually a theorem, but should be stored as a
conditional theorem.

(4) Reasoning by lemmas and derived rules

Theorems constructed on the sheets and
validated derived rules can be stored in the

A General-Purpose Reasoning Assistant System EUODHILOS 549

theorem database and derived rule database
respectively. They are referred to and reused
in the later proofs for other theorems. For
large and complex proofs, derived rules are
helpful for preventing proof trees from expand-
ing more than they needs, and avoiding the
repetition of the same subtrees in a proof tree.
It should be noted that derived rules sometimes
can play a role of so-called tactical reasoning'®
as well, although we have not yet implemented
tactic and tactical reasoning which seems to be
a promising way for large proof development.
After using EUODHILOS systematically and
over a long period of time, the theorems turn
out to build up theories.

(5) Connection and separation functions on
sheets of thought

(a) Connection by complete matching

Two proof fragments can be connected
through a common formula occurring in them
when one of them is a hypothesis and the other
a conclusion. The process begins by selecting
the two formulas and invoking the proper oper-
ations. As a result, the proof fragments are
connected into the one proof fragment. Sche-
matically, This amounts to attaining the follow-
ing inference figure which is viewed as one of
Tarski’s consequence relation common in all
logics.

['=C (on a sheet of thought) ACSH A (on a sheet of thought)

AT 3 A (on a sheet of thought)

where I', A and 3 might represent sequences of
formulas (possibly empty), and A and C denote
formulas in some defined logical system.

(b) Connection by the use of a rule of infer-
ence

This is essentially a forward reasoning and

may be called a distributed forward reasoning.
The process is similar to the above except that
the connection is done from proof fragments
scattered on several sheets of thought through
an appropriate rule of inference. Let us take an
example schema of modus ponens :

T'HADB(on a sheet of thought) A=A (on a sheet of thought)

' A-B (on a sheet of thought)

with the same proviso, adding that B represents
a formula.

(c) Connection by unification

Two proof fragments can be connected
through two unifiable formulas occurring in
them when one of them is a hypothesis and the
other a conclusion. The process begins by
selecting the two formulas and invoking the
proper operations. As a result, the proof frag-
ments are unified to the most general proof

fragment. It is, however, noted that the
unification can be done through schema vari-
ables at the moment.

Besides, a connection method such as analogi-
cal matching would become extremely
beneficial to intelligent reasoning system, which
is left as a future subject.

(d) Separation

The separation is converse to the connection
by complete matching. The separation process

-

begins by selecting a formula occurring in a
sheet of thought and invoking the proper opera-
tions. As a result, the proof fragment is
detached into the two fragments. Schemati-
cally, this amounts to the converse to the con-
nection by complete matching above. In natu-
ral deducion setting of a logical system, the
assumption numbers are automatically
managed by the system. We will illustrate this
by separating the following proof tree at the
location of formula B.
1 2
CIAFIASBE oy g

B
C’(...{L 2}) [D'|3
E

(.41, 2, 3D

We then get the two proof trees on a sheet of
thought as follows.

[A]l,[%W(DI{L 2}) and
[B]

~&(.4) pyp
C
i (.14, 5)

(6) Automated reasoning

In principle, there can be no mechanized way
of provability except some simple logics and it
will be up to the human, with the machine’s
help, to discover a proof. However, an inter-
active system like EUODHILOS depends too
much on user involvement in reasoning. Some
automated aspects should be incorporated in
the reasoning process. Two promising ways to
solve this problem may be taken into considera-
tion. First, tactic and tactical reasoning are
expected to provide flexibility in controlling the
search for proofs. They also allow for blending
automatic and interactive theorem proving
techniques invented so far in one environment.
Second, filling the gap between the scattered
proof fragments on several sheets of thought
would be easier than traversing a full proof
search space.

For the present, we have provided for EUOD-
HILOS an interface with automated facilities
such as automated theorem provers, theorem
database retriever, term rewriting systems, and
so on. This can be a particularly effective way
of combining and reusing tools for specific
problem domains in a generic environment. A
rewriting rule of EUODHILOS is semi-
automated in such a way that users set the
number up to which the rewriting rule is applied
to an initial expression. Then EUODHILOS
automatically generates many possible forms
of the expression which may be obtained by

550 Transactions of Information Processing Society of Japan

Mar. 1995

successive applications of the rewriting rule.

(7) Drafting proofs

It would be quite usual to take many days for
a proof to be completed, in particular for a
large and complex proof. EUODHILOS has not
only a theorem database but also a work area
for temporarily storing scattered proof frag-
ments on sheets of thought which have not been
fully justified yet, but some of which may turn
out to constitute a final proof.

3.7 Human-Computer Interface for Rea-

soning

In the interactive reasoning system, it is up to
the user to guide the search for a proof and
discover a proof with the machine’s help. And
the process of finding a proof is often one of
trial and error, and various attempts can
become very large. Therefore a good user
interface should make it easy to manage proofs.
In EUODHILOS the following facilities are
now available as a human-computer interface
for ease in communicating and reasoning with a
computer, in particular facilities for inputting
formulas and formula visualization.

(a) Formula editor

This is a structure editor for logical formulas
and makes it easy to input, modify and display
complicated formulas. In addition to ordinary
editing functions, it provides some proper func-
tions for formulas such as rewriting functions.

(b) Software keyboard and Font editor

These are used to make and input special
symbols often appearing in various formal sys-
tems. It is a matter of course that provision of
special symbol which reasoners are accustomed
to use makes it possible to reason as usual on a
computer.

(c) Stationery for reasoning

Independently of the logic under considera-
tion, various reasoning tools such as decision
procedures become helpful and useful in reason-
ing processes. In a sense it may also play a role
of a model which makes up for a semantical
aspect of reasoning. Currently, a calculator for
Boolean logic is realized as a desk accessory.

3.8 Implementation

Exploiting the bit-map display with multi-
window environment, mouse, icon, pop-up-
menu, etc., EUODHILOS is implemented in
ESP language (an object-oriented Prolog) on
PSI-II/SIMPOS. Needless to say, Prolog
serves as a good implementation language for
theorem provers and interactive reasoning sys-
tems since they directly implement search and

Vol.36 No.3

unification which are essential operations for
traversing a search space for a proof and
manipulating formulas and proofs. Object-
oriented facilities of ESP have played an impor-
tant role in the implementation of EUOD-
HILOS as well since it is a kind of generic or
meta system in which each logic is to be con-
structed as an instance object of a class “logic”.
In this paper, however, we will not go into the
implementation issues of EUODHILOS any
further. It will be described elsewhere.

4. Experiments and Experiences with
EUODHILOS

We have applyied EUODHILOS to various
types of reasoning®”. Logics and proof exam-
ples that we have dealt with so far on EUOD-
HILOS include

(1) first-order logic (NK): various pure logi-
cal formulas, the unsolvability of the
halting problem and an inductive proof,

(2) second-order logic: the equivalence
between the principle of mathematical
induction and the principle of complete
induction,

(3) propositional modal logic (T): modal
reasoning about programs,

(4) intensional logic (IL)'": the reflective
proof of a metatheorem and Montague’s
semantics of natural language,

(5) Martin-Lof’s intuitionistic type theory
and

(6) Hoare logic'” and dynamic logic'®: rea-
soning about program properties.

(7) General logic*®,

(8) Relevant logics?®b),

(9) A logic of knowledge.

Note that these logics constitute a currently
well-known and wide range of logics or formal
systems.

In this section, in order to demonstrate the
potential and usefulness of EUODHILOS, we
first show how EUODHILOS can be used to
specify a logic and construct a proof under the
specified logic, taking up an intuitionisic type
theory. Then, we will list some other proof
experiments with different logics, together with
brief annotations. The important point here is
not the complexity of the examples, but rather
the holistic understanding of a whole story
played with EUODHILOS. These proof experi-
ments with different logical systems would help
to convince the readers of the potential and
usefulness of EUODHILOS in a much wider

2),21)
’

A General-Purpose Reasoning Assistant System EUODHILOS 551

range of applications. (See Ref. 37) for the
detailed definition of each logic and proof
examples in the experiments.)

4.1 Martin-L6f’s Intuitionistic Type The-

ory and a Constructive Proof

The first reasoning system we have chosen as
an example is a tiny subset of the intuitionistic
type theory described in Ref. 21) and 2). The
principal expression in the intuitionistic type
theory is a judgement of the form “a&p”, reads
“a is a proof of a proposition p” in formulas-as-
types interpretation, where “a” is an expression
in A-calculus and “p” is a first-order formula
interpreted as a type. The judgement is natu-
rally and well described in the framework of
DCG. The intuitionistic type theory is defined
by a number of natural deduction style infer-
ence rules?” which are of course best suited to
our treatment of rules.

Tiny language for the type theory

The language definition basically consists of
four parts: an object language, a meta lan-
guage, interface between the meta and object
languages and an operator definition as can be
seen in Fig. 1.

It is noted that the syntax definition for the
meta language is provided for defining infer-
ence rules schematically, and the operators
have precedence in the indicated order as well
as their associativity, and the functors or predi-
cates, e. g., “inl” in the term “inl (x) 7, are listed
simply by themselves or the non-terminals by
which they are denoted, under the heading
“predicate”. The operator declaration is to tell
the parser that the terminal declared to be an
operator or the terminal denoted by the non-
terminal is entitled to become the principal
operator of the internal structure for an expres-
sion generated by the grammar rule.

Inference Rules

The intuitionistic type theory is defined by a
number of natural deduction style inference
rules. For the purpose of illustration we con-
sider just four rules and one rewrite rule. These
are the rules for function introduction and
elimination, the two rules for V-introduction
(see Fig.2), and the rewrite rule in lieu of the
definition ~A=AD 1 (see Fig.3).

We have specified both the language system
and derivation system for a tiny subset of
intuitionistic type theory. It should be noted
that EUODHILOS allows an object logic to be
represented in a way that directly reflects the
proof-theoretic nature of the logic speculation

552 Transactions of Information Processing Society of Japan Mar. 1995

SYNTAX : Intuitionistic_type_theory
save make test structure print reshape exit

% Meta_language

meta_term --> meta_term1;

meta_type -> "A" | "B";

meta_term1 --> "F" | meta-const | meta_variable;
meta_const -->"a" | "b";

meta_variable -> "X";

% Object_language

"o

judgement --> term,"e " type;

term --> bind_op,variable,".", terml
term,"e " terml
(" term,")"|
""" terml
‘inl","(" term,")"|"inr"," (" term,")"|
variablelconstant!

meta_term1,"("term,")"Imeta_term;

type --> type,">" typel
type,"v",typel
"~" typel
"C'type,)"
basic_type;

variable --> "x"I"f";
constant --> "¢"|"d";
basic_type —-> "p"I"L";
bind_op --> "A";

% Interface between meta and object languages

type --> meta_type;
variable --> meta_variable;

operator

non ety *SMleft "o left; "A"; e ;
predicate

"inl","inr", meta_term1.

Fig.1 Syntax definition of intuitionistic type theory
by the augmented DCG.

and in the almost same way as used in ordinary
logic text books. Hence we think that our
approach is much more tractable and usable to
a wide class of users than other methods of
logic representation®®.

We may often want to revise or modify the
defined logical system, due to the inconve-
niences encountered later. By the inconve-
niences, we mean the logical system being too
weak, too strong, redundant, or irrelevent.
Once a logical system has been specified, the
revision or modification of it is critical and
must be done carefully since already estab-
lished facts may not be guaranteed to hold.
The current version of EUODHILOS does not
warrant such a theory revision as yet. A revi-
sion, however, is safe in the case where the
logical system is augmented by adding symbols,
axioms and inference rules to the old system as
far as the addition is consistent with the old
one.

Appendix 1 displays the proof of the theorem

INFERENCE RULE: Intitionistic_type_theory
name: A-I

(X e Al
F(X) e B

AXFX) e ADB

** side condition**
X is not free in B

INFERENCE RULE: Intuitionistic_type_theory
name: A-E

aeA FeA>DB

Feae B

** side condition*#

INFERENCE RULE: Intuitionistic_type_theory
name: inl-I

inl(a) e AV B

*¥ side condition**

INFERENCE RULE: Intuitionistic_type_theory
name: inr-I

inr(b) e Av B

** side condition**

Fig. 2 Inference rules of intuitionistic type theory.

REWRITING_RULE: Intuitionistic_type_theory
name: def

Aol

~A

Fig.3 Rewriting rule of intuitionistic type theory.

~~(PV~P). The theorem means that the
law of the double negation of the excluded
middle cannot be refuted. This is an instance of
Glivenko’s theorem that if P is any tautology of
the classical propositional calculus then the
proposition ~~P is always constructively
valid. In this paper, we will not go into the
details about how the proof has been construct-
ed using our various proof facilities and
methods any further. Interested readers should
refer to the paper?®?.

4.2 Hoare Logic and Program Veri-

fication

Hoare logic'” is the most well known logic
for the axiomatic semantics of a programming
language and the verification of a program.
The principal formula in Hoare logic is a form
of P{S}Q, reads “if P holds, then after execut-

Vol.36 No.3

ing the program S, Q holds”, where P and Q are
first-order formulas and S is a program in an
ALGOL-like programming language. These
syntactic objects are easily described in the
DCG framework, as well as the inference rules
of Hoare logic which is a kind of Hilbert-type
logical system:.

The screen layout of the proof of the follow-
ing partial correctness assertion of a factorial
program is shown in Appendix 2:

true {z:=1;y:=0;while~ (y=x)do

y:=y+1;zz=2z*% od} z=x!
with the precondition “true” and postcondition
“z=x!". For such a proof, we have often used
an external theorem retriver which was con-
nected to EUODHILOS through the theorem
prover interface of EUODHILOS, in order to
search for arithmetical theorems from its theo-
rem database.

4.3 Dynamic Logic and Reasoning about

Programs

Dynamic logic'® is a kind of multi-modal
logic which is an extension of classical logic.
The principal formulas in dynamic logic are the
dynamic formulas of the form [alp and the
dual<a>p, read informally “after executing
the program a the proposition p holds”, where

[P}

a” is a regular or context-free program and
“p” is a first-order or dynamic formula. They
can be easily dealt with in the framework of
DCG. One of the example proofs in this logic is
the following properties of a factorial program:
Termination:
x=0D <z:=1;
(x>0)%zi=xXzx:=x—1)%
(x=0)?>true
Partial Correctness:
x=nD[z:=1;
(x>0)2zi=xXzx:=x—1)%
(x=0)?] (z=n!)
Total Correctness:
x=0Ax=nD <z:=1;

(x=0)?> (z=n!)
4.4 Intensional Logic, Reflective Proof
and Montague’s Semantics
Intensional logic*? is a higher-order modal
logic based on the simple type theory, which
requires context-sensitive constraints on terms.
It includes a lot of complicated logical concepts
which however are all well described within the
framework of DCG and the rule description
conventions. The following metatheorem,
FP:t=>F Vx:a. P:it (Generalization rule) is

A General-Purpose Reasoning Assistant System EUODHILOS 553

ingeniously proved using the idea of the
reflection principle (Ref. 44)):

E%S(AL (Reflection-1)

A .
oweis (A) (Reflection-2)

In Montague’s language theory, natural lan-
guage sentences are first translated into expres-
sions in intensional logic, which in turn are
analyzed by using the possible world semantics.
Under the defined intensional logic, the follow-
ing complicated intensional formula:

(Ap: (s, (e,t)). Ax:e. (fish: (e,t)
* x:eAp: (s, (et)) {xe}))
- "2yee. (believe: ((s,t), (e,t))
« “(walk:(e,t) * vie) - jie)
which is a translation of a natural language
sentence “John believes that a fish walks”,
easily and precisely reduces to a more simple
and legible one:
I x:e. (fish: (e,t)
» x:eAbelieve: ((s,t), (e,t))
- T(walk:(e,t) * x:e) - je).

For other logical experiments, we will merely
list the typical theorems which were proved by
using EUODHILOS.

4.5 First-Order Logic (with NK)

(1) Smullyan’s logical puzzles (originally
examples in combinatory logic)

Axioms:

1. Yxmex=x°x (Mockingbird condition)
2. VxVydzVwzew=x-(yvw) (Composi-
tion)

Theorems:

1. FVx3dy(x - y=y) (Every bird of the
forest is fond of at least one bird)

2. - dx(x+*x=x) (At least one bird is
egocentric or narcissistic)

(2) Unsolvability of the halting problem®

F~3x(AX)&Vy(C(y) DVzD(x,y,2)))
(no algorithm to sclve the halting prob-
lem exists)
where the meaning of each predicate is as
follows; A(x): x is an algorithm, C(y): y is a
computer program in some programming lan-
guage and D(x, y, z): x is able to decide
whether y halts given input z.
(3) Proof by structural induction on list
= VxVyVz.append(append(x,y),z)
=append (x, append (y, z))
(associativity of append function)

(4) Category theory

An elementary category theory have been
built up on EUODHILOS, proving a number of

554 Transactions of Information Processing Society of Japan

theorems. ,
4.6 Second-Order Logic and a Simple
Equivalence Proof
=VYP[P(0) AVn(P®n) DPn+1)) DVnP[n)]
=VR[Vn(ViG<nDR())DR(n))
OVnR(n)]

(The principle of the mathematical induction
is equivalent to the principle of the complete
induction.)

4.7 Propositional Modal Logic (T) and
Modal Reasoning about Programs

F<>pA[(D) D<> (pAQg)

(A strong correctness assertion is implied
from a termination assertion and a weak cor-
rectness assertion.)

4.8 General Logic

General logic is a kind of Gentzen-type for-
mal system which yields a unified account of a
fairly wide range of logical systems. Diverse
logics are displayed as variations on a single
theme*®. Such a general logic have been very
successfully and smoothly handled on EUQD-
HILOS by specifying those variations on a
single theme as rewriting rules®®. The proof
examples in the various systems covered in
Slaney’s general logic include:

p,aVrp&qVr
X;B:A & ~AFX:~B
(Reductio ad absurdum)
true: Jy.(gy)->Vxg(x))
(Baffling formula), etc.
4.9 Relevant Logic
The relevant logic we have taken is an im-
plicational fragment of relevant logic, R..2,
Dependency for this logic is specified as a tag of
a formula, differently from the usual set-
theoretic dependency calculus, and then the tag
Is a composite formed from combinators satis-
fying some reduction rules. Tag of R-. is to
stipulate dependency of an inference so as to
vield a conclusion relevantly from an anteced-
ent. For example, the following tag rule C of
R-> can obviously be handled as a rewriting
rule in EUODHILOS;

%%(Tag rule C: CaBr=ayp).

5. Related Work

(Distribution)

In recent years, there has been a growing
interest in using computers as an aid for
manipulating formal systems (e. g., Ref. 8), 14),
15) and 28)). Here, we will have to restrict
ourselves to seeing only the distinction of a
formal system description language in each

Mar. 1995

approach since there have not yet been so much
work as to the other aspects such as proving
methodology for computer-assisted reasoning
and reasoning-oriented human-computer inter-
face, to such an extent that comparative studies
become possible.

In Ref. 34), Prolog is employed as a logic
description language as well as an implementa-
tion language of a proof constructor. In Ref. 9)
and 24), A-Prolog, which is a higher-order ver-
sion of Prolog and hence more expressive than
Prolog, is proposed to specify theorem provers.
In Ref. 14) and 15), a typed A-calculus with
dependent types is used for building a logical
framework (LF) which allows for a general
treatment of syntax, inference rules, and
proofs. It also has the advantage of a smooth
treatment of discharge and variable occurrence
conditions in rules. In Ref. 32), the axioms and
inference rules of a formal logical system can
be expressed as productions and semantic equa-
tions of an attribute grammar. Then, depen-
dencies among attributes, as defined in the
semantic equations of such a grammar, express
dependencies among parts of a proof. In Ref.
28), a logic is to be encoded to a subset of a
higher-order logic. What they are aiming prin-
cipally at seems to be automatic check of rule
conditions basically in one way reasoning, with
which we are confronted in applying a rule. In
our approach, we take into account this in the
framework of our various proof methods, that
is, in the environment that allows us to reason
forward, reason backward, reason in a mixture
of them and so on. In Ref. 13), the metalan-
guage (ML) for interactive proof in LCF1?, 3
polymorphically typed, functional program-
ming language, is used to show how logical
calculi can be represented and manipulated
within it. In Ref. 1), constructing a general-
purpose proof checker is undertaken through
devising a theory of proofs. It is “general
purpose” in that it may take as input the
axiomatization of a formal theory together
with a proof written within this theory. A
theory of proofs is a kind of a specification
language for formal system from the viewpoint
of software engineering, and also a formal
system description language. His approach is
based on the rigorous approach to program
construction: to define a theory and then to
apply it.

Our approach to a general reasoning system
differs from the other ones cited above in three

Vol.36 No.3

respects. First, in EUODHILOS one can spec-
ify his or her own logic in a more direct and
tractable way than others which require us to
learn a formal system or meta-logic for encod-
ing a logic. Second, much emphasis has been
placed on reasoning facilities and proof
methods which EUODHILOS should have in
order to make proof construction more power-
ful and easier. Third, EHODHILOS has a
unique reasoning-oriented interface not only for
raising user-friendliness but also helping us
conceive ideas for constructing the proofs.
Dawson’s generic logic environment® is very
similar to our approach in many ways, but it
only deals with logics in sequent presentations
with all-introduction rules.

6. Concluding Remarks and Future
Research Topics

In this paper, we have presented the unique
features of a general-purpose reasoning assis-
tant system EUODHILOS. We have shown the
advantages and potential of our approach
through a number of formal systems and their
proof examples. Specifically, the following
have been demonstrated:

(i) Advantages of generality

The generality of EUODHILOS have been
tested by using it to define various logics and to
verify proofs expressed within them. All the
logics with their proofs were created in several
hours. If we had had to develop a reasoning
system with the same functions as EUOD-
IHILOS for each logic from scratch, it would
have taken much time to do it, and we would
have had to repeat almost the same task for
constructing a reasoning system every time we
were working on a new logic. EUODHILOS
has demonstrated the usefulness of generality
in a much wider range of applications®”.

(i1) Definite clause grammar approach to
the definition of logical syntax

The definite clause grammar formalism was
employed for specifying logical syntax. We
have found it more natural and easier for users
to define a logical syntax, compared to the
other approaches to logical system description
languages mentioned before. And the DCG
framework allowed us to automatically gener-
ate a parser with the function which generates
the internal structure of an expression, and an
unparser (generator). Therefore a user does
not need to commit himself in those generations
at all. Another positive feature is that the

A General-Purpose Reasoning Assistant System EUODHILOS 555

framework requires less expressive knowledge
from the user in order to describe the logics.
This shows the advantage of a logic program-
ming approach to a general reasoning system.
It is needless to say that the search and
unification operations, which the logic program-
ming have, are essential for traversing a search
space for a proof and manipulating formulas
and proofs, especially in a general setting for a
general reasoning system.

The utilities such as a formula editor and a
syntax checker to test an user-defined logical
language are also provided to EUODHILOS
and have been served to check the intended
syntax. We have shown that the definite clause
grammar formalism greatly lighten a user’s
burden in setting up his own language, together
with those utilities?®.

(iii) Proving methodology based on sheets
of thought

Lots of experiments for proving have convin-
ced us that reasoning by several sheets of
thought naturally coincides with human
thought processes, such as analysis and synthe-
sis in scientific exploration, from the part to the
whole and vice versa. It may be also expected
that they turn out to give a promising way
towards proving in the large (see Ref. 38) for
the detailed discussion about the proof methods
of EUODHILOS).

(iv) Visual interface for reasoning

We have tried to analyze intrinsically how
reasoning-oriented human-computer interface
should be. However, it is not so easy to objec-
tively assess the interface. We just have found
that the visual interface for reasoning not only
has been useful but also has served to easily
define the logics and to conceive ideas for con-
structing the proofs.

An attempt at constructing a general-purpose
reasoning assistant system is, however, at the
initial stage of research and development, and
lacks a number of significant issues which
should be taken into consideration. We shall
touch upon some of future research themes
which may be helpful to augment and improve
EUODHILOS.

(a) TFlexible proof architecture and proof
representations

EUODHILOS forces us to handle various
logic presentations in a single tree form of
proofs. However, other proof trees as in Fitch
style presentation of an axiomatic system seem
not to be tractable within our proof architec-

-

ture. For example, modus ponens rule in Fitch
style is represented as follows:

formulal
formula?2
formulal Dformula?2

This says that “formulal Dformula2” is deriva-
ble if “formula2” is derived under the assump-
tion “formulal”. Another example is proof net,
a natural deduction-like proof representation
in linear logic. For these, A graphical drawing
method to design proof architecture would be
desirable.

Our tree form representation of proofs tends
to make proof construction expand too much in
both direction: horizontally and vertically.
This tendency becomes crucial for large proof
development. A better solution to proof repre-
sentation might be to use tree form proofs in
combination with a certain proof abridgement
method and/or indented proof format.

(b) Investigation of higher-level supporting
functions for reasoning

Issues of designing a language for proof
tactics/tacticals and amalgamating an object
theory and a meta theory are inevitable, in
particuler for the large proof development in
applications. They would be helpful to attain
the naturalness and efficiency of proofs at the
same time.

It is also a remarkable recognition that rea-
soning generally consists of the manipulation of
information, not symbols and they are just one
of the many forms in which information can be
couched®*®. We believe that when we intrinsi-
cally consider reasoning it becomes crucial to
incorporate such an aspect into syntactical
reasoning.

(c) Theory revision and theory inheritance

Various theories or logics are involved in a
larger proof. Let us consider the following
situation: There exists a number of theories or
logics together with various kinds of databases,
they may be mutually dependent in the sense of
the referential relations and we want to modify
or revise a theory or underlying logic. Then
obviously, relational inconsistencies among the-
ories may arise with such a modification and
revision of theories or logics. The reader will
notice that this is a kind of non-monotonic
phenomenon. On the other hand, theory inheri-
tance among theories is expected to yield a way
to build up a large theory from its components
since it could allow the theorems and proofs of

556 Transactions of Information Processing Society of Japan

Mar. 1995

a smaller and weaker theory to be inherited as
those of a bigger and stronger theory. In doing
so, we might need such a concept as theory
morphism.

(d) Opening up a new application field of
reasoning by EUODHILOS

The unique features and potentials of EUOD-
HILOS could suggest a new direction to CAI
system for logics. Especially our system will
provide a settting for a general-purpose
computer-aided learning system which is new
and promising for learning various logics and
solving reasoning tasks. Besides we are partic-
ularly interested in clarifying the feasibility of
using EUODHILOS as a tool of logical model
construction and a specialized use of EUOD-
HILOS such as a reasoning tool for computer-
aided programming.

Acknowledgements The first author would
like to thank Prof. J. A. Robinson (Syracuse
University), Prof. R. K. Meyer, Prof. M. A.
McRobbie and Dr. J. K. Slaney (Australian
National University) for their valuable com-
ments and discussions on an earlier version of
this paper.

Earlier versions of the paper were presented
at the Automated Reasoning Project in Aus-
tralian National University, Department of
Computer Science in Victoria University of
Wellington, Department of Computer Science
in University of Queensland and Computer
Laboratory in Cambridge University. This
paper benefited from discussions at all these
places.

This work is part of a major research and
development of the Fifth Generation Computer
System project conducted under a program set
up by the MITIL.

References

1) Abrial, J. A.: The Mathematical Construc-
tion of a Program, Science of Computer Pro-
gramming, Vol. 4, pp. 45-86 (1984).

2) Backhouse, R. and Chisholm, P.: Do-it-
yourself Type Theory (Part 1), Bull. of
EATCS, No. 34, pp. 68-110, (Part 2), ibid., No.
35, pp. 205-245 (1988).

3) Barwise, J. and Etchemendy, J.: A Situation-
Theoretic Account of Reasoning with Hyper-
proof (extended abstract), STASS Meeting
(1988).

4) Batog, T.: The Axiomatic Method in Phonol-
0gy, Routledge & Kegan Paul LTD (1967).

5) de Bruijn, N. G.: A Survey of the Project

Vol.36 No.3

automath, Seldin and Hindley (eds.), 70 H. B.
Curry : Essays on Combinatory Logic, Lambda
calculus and Formalism, pp. 579-606, Academic
Press (1980).

6) Burkholder, L.: The Halting Problem,
SIGACT NEWS, Vol.18, No.3, pp. 48-60
(1987).

7) Constable, R. L., et al.: Implementing Maih-

ematics with the Nuprl Proof Development
System, Prentice-Hall (1986).

8) Dawson, M.: A Generic Logic Environment,
Ph. D. thesis, Dept. of Computing, Imperial
College (1991).

9) Felty, A. and Miller, D.: Specifying Theorem
Provers in a Higher-Order Logic Programming
Language, LNCS, Vol. 310, pp. 61-80 (1988).

10) Fujimura, T.: Why Does Logic Matter to
Philosophy?, Philosophy of Science, Vol. 14,
The Journal of Philosophy of Science Society,
Japan, pp. 1-5 (1981) (in Japanese).

11) Gallin, D.: Intensional and Higher-Order
Modal Logic, with Applications to Montague
Semantics, North-Holland (1975).

12) Gordon, M. J., Milner, A. J. and Wadsworth,
C. P.: Edinburgh LCF, LNCS, Vol. 78, Springer
(1979).

13) Gordon, M. J. C.: Representing a Logic in the
LCF Metalanguage, Neel, D. (ed.), Tools and
Notions for Program Construction, pp. 163-185,
Cambridge U. P. (1982).

14) Griffin, T. G.: An Environment for Formal
System, ECS-LFCS-87-34, Univ. of Edinburgh
(1987).

15) Harper, R, Honsell, F. and Plotkin, G.: A
Framework for Defining Logics, Proc. of Sym-
posium on Logic in Computer Science, pp. 194-
204 (1987).

16) Harel, D.: Dynamic Logic, Gabbay, D. and
Guenthner, F. (eds.), Handbook of Philosophi-
cal Logic, Volume II : Extensions of Classical
Logic, pp. 497-604, D. Reidel (1984).

17) Hoare, C. A. R.: An Axiomatic Basis for
Computer Programming, CACM, Vol. 12, No.
10, pp. 576580, 583 (1969).

18) Ketonen, J. and Weening, J. S.: EKL—An
Interactive Proof Checker, User’s Reference
Manual, Dept. of Computer Science, Stanford
Univ. (1984).

19) Kunst, J.: Making Sense in Music I—The
Use of Mathematical Logic, Interface, Vol.5,
pp. 3-68 (1976).

20) Langer, S. K.: A Set of Postulates for the
Logical Structure of Music, Monist, Vol. 39, pp.
561-570 (1925).

21) Martin-Lof, P.: Intuitionistic Type Theory,
Bibliopoplis (1984).

22) Matsumoto, Y., Tanaka, H., Hirakawa, H.,

A General-Purpose Reasoning Assistant System EUODHILOS 557

Miyoshi, H. and Yasukawa, H.: BUP: A
Bottom-up Parser Embedded in Prolog, New
Generation Computing, Vol.1, pp.145 - 158
(1983).

23) Meyer, R. K.: A General Gentzen System for
Implicational Calculi, Relevance Logic News-
letter, Vol. 1, No. 3, pp. 189-201 (1976).

24) Miller, D. and Nadathur, G.: A Logic Pro-
gramming Approach to Manipulating For-
mulas and Programs, Proc. of IEEE Sympo-
stum on Logic Programming, pp.380-388
(1987).

25) Minami, T. Sawamura, H., Satoh, K. and
Tsuchiya, K.: EUODHILOS: A General-
Purpose Reasoning Assistant System—Concept
and Implementation—, LNCS 383, pp. 172-187,
Springer-Verlag (1990).

26) Ohashi, K., Yokota, K., Minami, T., Sawamu-
ra, H. and Ohtani, T.: An Automatic Genera-
tion of a Parser and an Unparser in the Definite
Clause Grammar, Trans. IPS Japan, Vol. 31,
No. 11, pp. 1616-1626 (1990). (in Japanese)

27) Parker, J. H.: Social Logics: Their Nature
and Uses in Social Research, Cybernetica, Vol.
25, No. 4, pp. 287-307 (1982).

28) Paulson, L. C.: The Foundation of a Generic
Theorem Prover, /. of Automated Reasoning,
Vol. 5, pp. 363-397 (1989).

29) Peirce, C. S.: Collected Papers of C. S. Peirce,
Hartshorne, Ch. and Weiss, P. (eds.), Harvard
Univ. Press (1974).

30) Pereira, F. C. N. and Warren, D. H. D.:
Definite Clause Grammars for Language Analy-
sis—A Survey of the Formalism and a Compar-
ison with Augmented Transition Networks,
Avrtif. Intell., Vol. 13, pp. 231-278 (1980).

31) Prawitz, D.: Natural Deduction, Almqvist &
Wiksell (1965).

32) Reps, T. and Alpern, B.: Interactive Proof
Checking, ACM Symp. on Principles of Pro-
gramming Languages, pp. 36-45 (1984).

33) Robinson, J. A.: Private communication
(1989).

34) Sawamura, H.: A Proof Constructor for
Intensional Logic, with S5 Decision Procedure,
IIAS R. R., No. 65 (1986).

35) Sawamura, H. and Minami, T.: Conception
of General-Purpose Reasoning Assistant Sys-
tem and Its Realization Method, 87-SF-22,
WGEFS, IPS, 1987 (in Japanese)

36) Sawamura, H.: Specifying General Logics
and Constructing Proofs: A Case Study in
EUODHILOS (1992). (in preparation)

37) Sawamura, H., Minami, T., Ohtani, T., Yo-
kota, K. and Ohashi, K.: A Collection of Logi-
cal Systems and Proofs Implemented in EUOD-
HILOS 1, ITAS-RR-91-13E, Fujitsu Lab. (1991).

558 Transactions of Information Processing Society of Japan

38) Sawamura, H., Minami. T. and Ohashi, K.:
Proof Methods based on Sheet of Thought in
EUODHILOS, ITAS-RR-92, Fujitsu Lab. (1992).

39) Sawamura, H., Minami, T. and Meyer, R. K.:
Representing a Logic in EUODHILOS, IIAS-
RR-92, Fujitsu Lab. (1992). (in preparation)

40) Slaney, J.: A General Logic, Australasian].
of Philosophy, Vol. 68, No. 1, pp. 74-88 (1990).

41) Thistlewaite, P. B., McRobbie, M. A. and
Meyer, R. K.: Automated Theorvem-Proving in
Nomn-classical Logics, Pitman Publishing (1988).

42) Turner, A.: Logics for Artificial Intelligence,
Ellis Horwood Limited (1984).

Mar. 1995

43) Trybulec, A. and Blair, H.: Computer Assist-
ed Reasoning with MIZAR, [JCAI'S85, pp. 26-28
(1985).

44) Weyhrauch, R. W.: Prolegomena to a Theory
of Mechanized Formal Reasoning, Artif. Intell.,
Vol. 13, pp. 133-179 (1980).

45) Zanardo, A. and Rizzotti, M.: Axiomatiza-
tion of Genetics 2. Formal Development, /.
Theoretical Biology, Vol.118, pp.145-152
(1986).

(Received August 31, 1992)
(Accepted October 13, 1994)

Appendix 1. Intuitionistic Type Theory and a Constructive Proof

o
o) pe 0

INFORMATION

Dan g -t 2%

TS Uoon

The EUODHILOS system consists of two
major parts: one for defining a user’s logical
system and the other for constructing proofs on
sheets of thought. Most of the interaction is
performed using a mouse, though some facil-
ities such as syntax/rule editors clearly require
keyboard input.

The screen only displays some sheets of
thought which appeared in the example proof

SOFT_KEYBOARD . name: DE }nuue:kl
SYNTAX - er e
INFERENCE_RULE § 1 (niT(2)) acn feass 1 Fooes
REWRITING_RULE : [f€(PY(PDOL))IDL]) inl(x)EPY(PIL) qy —
5 (>EE{1,2}) f0acB 4 AX.F(X)eAx8
AXIOM 1 s@inl (x)EL ;
PROVER ? (AI{1}) t: :::: conditon 2% :: z::: co::x(on %
. = ne %% ne
DERIVED_RULE Ei e e 483
THEOREM <] 1nr (Ax. f81nl (x)) €PV(P3L)
PROOF i =
0 0 a 0 pe 0 AR BOARD
B2 TBlar
DL %m EEER FEURLTINC RULE Mas
: t][2][3]f+][s][e 7“LJ‘><]E£ EW
el J2][=]) lameraer
inlI{2} ~
[$€(PV(PLY)DL] inl (x)EPV(PDL) 000 G0 ARV
—_— e (EE, 2)) ==«][slx][] — Alleffs]im
f01n1 (OEL ~A Bie
— L)) zllxllellv : n T fﬂ
Ax. £81n] (x)€PDL O a 0 0
[E———— TS X738 1 [14 -
inr (Ax. §0inl (x))EPV(PDL) (fe(PV(PDL))D1] 3 G {}QOE ﬁ B
(1)) } 4
fO1nr (Ax. $8in1 (x))EL [xeP]
(AI{}) 3 (UnlI{4})
[\ f. fuinr (Ax: £8in1(x))E(PV(PI1)21) Y] [fE(PV(PDL))DL] * inl(x)E€PV(PDL)
(OE{3,4})
foinl ()L
SHEET_OF _THOUGHT :Martin_Lofs_type_theory e —— S R T- 5
.._ — u - o Ax. fOini (x)€EPDL
(7] ——— UnrI{3)) 3
o 1nr (Ax. $81n1 (x))EPV(PDL) L4€(PV(P2L))D1]
(2E(3))
ka.i.inr(xx.{linl(x))!(PV(Pbisbiiz;; fO1inr (Ax. fBinl (x))EL
° (I
Af. f@inr (Ax. §8inl (x)) E~~ (PV~P) Af. 1@inr (Ax. f@inl (x))€PV(PD1)DiDL
(def(})

Af. f0inr (Ax. f8inlt (X)) E~~ (PV~P)

process of the theorem, the double negation of
the excluded middle. Each sheet is a special
window surmounted by a title and a row of
command buttons (icons) pointed at by means
of a mouse. Four icons from the left allow the
user to scroll up, down, left and right respec-
tively. The fifth icon allows the user to resize
a sheet of thought. The sixth button actually
has four modes to which there appear four

Vol.36 No.3

icons; pencil and eraser icons for proof editing,
and up and down arrows for indicating the
direction of reasoning : forward and backward.
The seventh icon represents copy and move
modes. The two icons from the right allow the
user to save and quit, or quit without save
respectively.

On the screen are laid four sheets of thought
at work, in addition to the logic menu, two
inference rules, a rewriting rule and software

Appendix 2.

A General-Purpose Reasoning Assistant System EUODHILOS

559

keyboard. The sheet 1 contains a proof frag-
ment. It is expanded in a few proof steps as
seen in the sheet 4. The sheet 5 contains a
proof fragment which was obtained by applying
a rewriting rule “def” to our goal backward.
The final proof on sheet 2 is obtained by con-
necting the conclusion highlighted on sheet 4 to
the premise encompassed by a rectangular
frame on sheet 5.

Hoare Logic and a Partial Correctness Proof of a Program

AXIOM @ Hoare_logic
save wff_editor reshape

INFORMATION save make test structure % new ¥x
h_formula --> formula, left_brace, program,[name: repetition ** exit %%
SOFT_KEYBOARI "
arit
SYNTAX left_brace —-> " {"; arith2
INFERENCE_RULE right_brace --> "}"; FAG{A}F arith3
REWRITING_RULE ——————— arithd
— variable —=> a”}"b”{"x"]"y" i "z" | "qr i vpn;
AXIOM constant ——> "1nivon; ' | Eluhd loGdofod) A6 ariths
PROVER %% Side conditon %% arithé
program —--> program,semi_colon,programi; #% Define X% arith?
DERIVED_RULE program --> programi; division_al
THEOREM -alg
PROOF programi --> assignment.statement; factorial_alg
programi --> while, formuia,"do”, program,"od"; ged_alg
*x EXIT %x programi --> repeat,program,”until”, formula; tautologyt

P(T/X) {X: =T} P(X)

SHEET_OF_THOUGHT :Hoare_logic -

OO DTG

z=y! AN (Y=Xx) Dz=yt

z=y ! Avy=xoze (U+l) = (y+1d e

(arith{})

ZzE(y+1)=(y+1)! {y: =y+i} z¥y=y!
<

truedi=0?! 1=0! {z:=1}=z=0!?
(conseqi {})
true{z:=1}2=0¢ 2=0! {y: =0} z=y!

{comp {})

true{z:=1;y: =0} z=y!?

at (3>
z=y! Avysx {yi =y+1} zky=y! zxy=y! {2: =z%y}

(com

z=yl Any=x{y: =y+1; z: =z%y) z=y!

(repeti{})
z=y! {while~y=xdoy: =y+1; z: =z%kyod} z=y! A~ry=x
(

~~E
z=y! {while~y=xdoy: =y+1; z: =zxyod} z=y! Ay=x

true{z:=1;y: =0; (while~y=xdoy: =y+1; z:

(comp
=z%yod)} z=y! Ay=x

true {z:=1;y: =0; (while~y=xdoy: =y+1; z: =z%yod) } z=x!

560 Transactions of Information Processing Society of Japan Mar. 1995

Hajime Sawamura received
the B. E.,, M. E. and Doctor of
Engineering degrees from Hok-
kaido University in 1972, 1975
and 1993 respectively. Since
1980 he has been with Institute
for Social Information Science,
Fujltsu Laboratorles Ltd., where he is currently
a research fellow of computational logic group.
During 1990-1991, he was a visiting fellow of
Australian National University. His research
interests include computational logic, logical
foundation of computer software and artificial
intelligence. He is a member of IPS], JSAI,
JSSST, and Philosophy of Science Society of
Japan.

Toshiro Minami received
the B. E. degree in Electronics
from Kyushu Institute of Tech-
nology in 1973 and the M.S. in
Mathmatics from Kyushu Uni-
. versity in 1975. He has been
working for Institute for Social
Information Science, Fujitsu Laboratories Ltd.
since 1984. He was a visiting fellow of Aus-
tralian National University in 1993. His
research interests include computational logic,
category theory and artificial intelligence. He
is a member of IPS] and EATCS.

Kaoru Yokota received the
B. A. degree in psychology from
Keio University in 1985. From
1985 to 1992, she worked at
Fujitsu Laboratories Ltd. She
was engaged in the research and

. development of reasoning assis-
tant system.

Kyoko Ohashi received the
Bachelor degree in mathematics
from Tsuda College in 1986. In
1986, she joined Fuyjitsu Labora-
tories Ltd. She was engaged in
the research and development of
reasoning assistant system. Her
current research interests are object-oriented

analysis and repository. She is a member of
IPS].

