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An Acceleration Process for Iterated Vectors
Generated by a Real Symmetric Matrix

Ken Icuchr |

We define an acceleration process for iterated vectors generated by a matrix iterative
process. We consider here an algorithm in which the acceleration process is applied once after
every m+2 iterations of a matrix iterative process. Then our aim is to determine the number
m (precisely m +2) required for each application of the acceleration process to beeffective.
Two examples are given to demonstrate the analytical results and to compare then with

Jennings’ acceleration process.

1. Introduction

We consider accelerating the convergence of
the vector sequence {x®} generated by a sta-
tionary iterative process of the form:

" =Hx"® +d for =0, 1, -

(1.1)
with a given starting vector ¥, where H is an
nX#n real symmetric matrix and d is an #-
column vector.

We consider an algorithm in which the fol-
lowing acceleration process? is applied to (1. 1)
once after every m—+2 iterations with a fixed
m:

,f :x(m“2)+{/12/ (1_/12) } (x(m+2)_x(m)) ’}
AZZ”x(m+2)___.r(m-%-l)HQ/Hx(erl) . x(m)"Z,

(1.2)
where | || denotes the Euclidean norm, that is,
lyl?==y"y for vector y. Then we determine the
least integer mu (precisely mp+2) required for
each application of the acceleration process to
be effective. The idea of repeating Aitken &*
process has been used and analysed in a gener-
alized vector version of the process by
Brezinski? for the computation of matrix
eigenvalues. Other version of this extension
can be found in Ref. 4). Jennings’ acceleration
process for vector sequence is found in Ref. 3).

In this paper, it is only shown that the vector
sequence generated by (1.1) get the rapid con-
vergence when the acceleration process is
applied after so many iterations of (1.1). If, by
repeating use of the acceleration process, the
rapid convergence were to be achieved, it
should be considered how many of the itera-
tions of (1.1) are needed before the accelera-
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tion process is used effectively. The accelera-
tion process (1.2) is sophisticated. Therefore,
the use of (1.2) may be restricted within some
particular cases, but it seems to be worthwhile
to know the way which the process (1.2) is
used effectively.

Now we introduce terms and notations
used in this paper. The procedure which the
acceleration process (1.2) is applied once, is
called a stage in our algorithm. Our algorithm
can be carried out through some procedures.
Therefore, at the »-th stage, (1.2) has been
applied 7 times. We assume that, in the 7-th
stage of our algorithm, the sequence f{x'®}
generated by (1.1) and the predicted vector &
given by (1.2) are denoted respectively by
{x®7} and . We further assume that a
starting vector for (1. 1) at the »-th stage is
denoted by £©7, and is given by x®"=x"""
with £®V=2.

Then, (1. 1) and (1. 2) are written as follows:

x(k+l,r):Hx(k,r)+ d

for =0, 1, -, m+1;, r=1, 2, ---
1.1y
j,(r):x(m-)—&r)_{_{/’[z/ (1 _/12) } (x(mf‘z,r)ix(m,r))
/12:Hx(m+2,7)_x(m4—l,r)s‘2/‘|x(m+l,r)7x(m,r)“2. }
(1.2)
2. Convergence Property

We first investigate the convergence prop-
erties of (1.1)" and (1.2)". We suppose that the
matrix H has » orthogonal eigenvectors u; (=
1, 2, .-+, m) corresponding to eigenvalues A; (j=
1, 2, -+, ») ordered such that

1> > 2 2 A = o = ). (2.1

Now putting a;=A4;/A4 (7=1,2, -, n), we haver

a=1 and 1>|alzlalzz[el (2.2)

Suppose further that the vector sequence

{#®} converges to the vector x. We define the
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error vector €*" of " and the error vector

£ of ¥ as follows:
RN =g — g (2.3)
EN=p—F". (2.4)

Here we derive the formula showing the

convergence property of the sequence {x'*"}.
Since x=Hx+d, using (1.1)" and (2.3)

e 7) = Helhb) = [ 707, (2.5)
The error vector " can be expressed by
n
g0 = Z}lc}”uj (2.6)
£

where the ¢/ are scalar constants.
Since Hu;=A;u;, fror (2.5) we obtain after a
little manipulation

n
e(k’”Z_Zlc}”)\fuj. 2.7
=
This can be written as
n
s(’”’:ﬂf‘_z;a}‘u}”
F=

for k=0, 1, -, m+2; r=1, 2, -,
(2.8)

where

w”=c/"u; for j=1,2, -, n. (2.9
The (2.7) or (2.8) shows the behaviour of the
error vector €*”. When (1.2)" is applied to the
three iterates: ™", ™47 and x™*27) it is
given in the following theorem how £ can he
expressed.
Theorem 1. If (1.1)" is iterated m +2 times
with the starting vector 2™ and if (1.2) is
applied to the last three iterates, ™", z™+17
and x™**7 then € and £ can be expressed
respectively, using

07 =us”|| /| uf™)
as follows:

(=2, 3, -+, m) (2.10)

gplul, @, m) (67)?

5(7'):/117’1 +2 Z _ u(r)

14 2 Q (A, @y, m) (67)?
+A1'”+2§2((_P2(/117 a;, m)

+ %Pa(aj; A, an, m) (657)2)

/04 33Q A, @, m) (67)2) g

(2.11)
where
’ _ (1= (- ad)’
Bk, @y m) ="~ gy

Pz(/h., a;, m)f-ajw

Pilar A, @, m)=al'a? aT=x I—p)?
(2.12)
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_ o (1—=ddAD) (I—a)?
Ol @ m) = S 1=

and
f(”
3Py, @, m) (67)7
=g — A 2 — Ju
1+§2Q(/h, a;, m) (0§7)2
~ A3 ((~ P, @, m)
+33Ps(az Ao, @, m) (07)?)
/(1+ 2 Q ks, @, m) (67)2) i,
(2.13)
Proof. we obtain from (1.2)’ using (2.3) and
(2.4)

5(7): e(m+2,r)+{/12/ (1 ;/12)}(5(711-#2,7)* 6(m,r))
Ao/ (1—2%)

. _ e(m+2,r)_e(m+1,‘f)”2

- (e(m+2,r)_2€(7n+l,r)+ S(W,T)’ €(m+2.r)* e(m,‘r))

(2.14)

denoting by (,) the inner product, so that (y,
y)=y'y for vector y.

By repeating use of (2.8), from (2.14) we
obtain (2.11) with (2.12). Using (2.4), we
have (2.13) from (2.11). This completes the
proof.

In our algorithm, we take & as the starting
vector for (1.1)" at the »+1-th stage. Then we
have the following results.

Theorem 2. 1If, in our algorithm, we put
O = g for r=1,2, -« (2.15)
with 2“P=29 then we have

épl(ﬂl, a;, m) (Hi(”)z
143104, @, m) (67)
(2.16)

w{THD = g2

u{”

and, for j=2, 3, ---, n

u]('r-f—l)

:/Hm'z(*[')z(/h, a;, m)
+ 2 Palas A @ m) (67)7)

/4 33Q M, @ m) (B9 wr.  (2.17)

Furthermore we have, for j=2, 3, -, 7, con-
sidering that all of 4{” is not zero:
6§r+1)

!*Pz(/h, aj, m) +§2P3(Qj; ﬂ1, a5, 'WL) (82'(7)) 2‘
épl(/h, a;, Wl) (01-(7))2

X 957 (2.18)
Proof. Setting £2=0 in (2.8) at the »+1-th
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stage, we have

n
e(o,r+1): 2 u](r+1).
J=1

(2.19)

Subtracting each side of (2.15) from x respec-
tively and using (2.3) and (2.4), we have

0= g (2.20)
with e®V=x—2©.

The right-hand side of (2.20) can be written
as (2.11). The left-hand side of (2.20) is
expressed as (2.8) at the »+1-th stage. Then
considering (2.9) and matchmg term of u{"™V
to term of u;"” (=1, 2, ---, n), we obtain (2.16)
and (2.17).

Dividing each side of (2.17) by corresponding

side of (2.16), we obtain
Hu(7+1)
Hu(7+l)
{1 o, @, m) + 5P (a; o, @i, m) (67)?

3Py (s, @ m) (67

()

X IZJE”’H‘ (2.21)
from which (2.18) is obtained using (2.10).
These complete the proof.

We shall consider how (1.2)" is applied
effectively. We begin by evaluating the magni-
tudes between the functions of (2.12).
Theorem 3. In our algorithm, there exists the
least integer m, which satisfies

A
If m = wmy, it holds that, for 1=2,3, -, m j=2,
3, -, m (i)

\Pi(as; Ay @, m)|<Pi(, ai, m). (2.23)
Proof. We define a function of real variable a

with |a|<|a| by

/(@) =laf 2= (2.24)
where £ is a real value with |3|<
a positive number. Since f (@) is continuous in
closed interval, then it has the maximum value.
By the differential calculus, it is easily seen that
f(a) takes on the extreme value,

2 [ m >%|g|m+z ,

mA2\m+2) 1- (2.25)
at

o= B (2.26)

Therefore, the maximum of f(a) is given by

max{mgxf(( m+2> \B[) mgxf(a/z) }

2 (_m >%IB\”‘*?
m+2\ m—+2 — B

= max{mgx
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max }a/zl”‘ — 5 }

2 / m |€le m+2
m+2\ m+2 > 1— a2’|“| }
(2.27)

Since |a|™?<1 for all m, if (2.22) holds, it
follows that, for all ¢ and j,

émax{

2__ 2
\arlj%ﬁ< 1. (2.28)
Since ( _m_ )21 /(1 +%)7, it is found that

m
m_ \z .
( ” +2) decreases as m increases. Therefore,

there exists the least integer mw which satisfy
(2.22). If m=wmo, (2.28) holds for all 7 and ;.
We have from (2.12)

Pilas, A, as, m) =al—R——— ldi—ap) Pi(A, a;, m).

1—a)
(2.29)
Taking the absolute value for the both sides of
(2.29) and using (2.28), we obtain (2.23). This
completes the proof.

To verify that |e™™| vanishes as » increases,
it is required that the value in parentheses of
the first term in (2.11) is less than unity.
Hence, we have the following theorems.
Theorem 4. In our algorithm, it holds that, for
all @; and m,

Pi(A, ai, m) <Q(A, ai, m).
Proof. We have from (2.12)

_ 2
P (A, a, Wz/):i Q A, ai, m).

1—a?2?
(2.31)
Since (1—a?) [ (1—a?2%) <1, we have (2.31).
Theorem 5. In our algorithm, it holds that, for
any value of 6" and all m,

gpl(/h, ai, m) (glgr))z

1+ éQ(/h, a:, m) (057)?

Proof.
o7

Lgnzpl(/hr a;, m) (687)2< gﬂzQ (A, az, m) (O57)*

from which we obtain (2.32).

In the next theorem, we show that, as 7
increases, all of |a?(6f)2(j=2, 3, ---, n) get
bounded in the magmtude within 0 and some
constant value.

Theorem 6. In our algorithm, when = na, if
057 satisfies
|P2 (/11, as,

(2.30)

<1. (2.32)

Using Theorem 4, we have, for any

m>‘§P1()\], a;, m) (5}7))2
(2.33)
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[&[(057)2 = (1—2)?% (1—ad)?  (2.34)
then it holds that
057+ < 6" (2.35)

Proof. When m=wmy, from Theorem 3 we
obtain, for all a; (j=1),

Z:Znyﬂ(a'y, /11, a;, m) ’ (651‘))2
< anpl(/h, a;, m) (6572

i=
(2%7)

Hence it follows that
| =P (A, a5, m) +%P3(C{j; A, ai, m) (657)2

(2.36)

<’F’2(/11, &;, Wl)i"f“%‘Pg((Zj, /11, a;, m)’(&m)z

<R @ m) (67)*+ 3 Pa(h am) (67

(i)
< ﬁ}zpml, @, m) (67)2. (2.37)

Substituting this result into (2.20), we have (2.
35). This establishes Theorem 6.

We now have the theorem concerning the
convergence of the sequence {x™"}2_,.
Theorem 7. In our algorithm, if m =m,, then
it holds that

1
lenl=la a1+ B (7))

(2.38)
where
faad 7= Ay 2=
i 2P, @, m) (09
I —=% [efPl[aa]].
et 1+ 2Q (A, a;, m) (87)*
(2.39)

Moreover, |e™"| vanishes as r increases.
Proof. Taking the inner product for (2.8), we
obtain

e 7= Syl (2.40)

from which we obtain (2.38) using (2.10).
Using (2.16) iteratively, and using (2.9), we
obtain (2.39). Next we show that the quantity
[e™] vanishes as 7 increases.
Substituting £=m into (2.38), we have

lem =l i1+ Sy (617

(2.41)
Since, for all @, and 0f” which satisfy (2.33),
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Theorem 6 holds, the magnitude of 67 is
bounded with increasing 7, so that the magni-
tude of a7 (6{")? get bounded within some
constant value. When 6/ does not satisfy
(2.33), we have for the 6" the following in-
equalities,

,Pz(/h, aj, Wl)|>Pl(A1, @, m) (9,7‘(7))2,

(2.42)

that is,

(7)< (1= )% (I—ad)® (2.43)

Since we have the following inequalities,

b 1 for A=>0,
(1-a)%/( Wu>2<{4/(14,11;)2 for 4 <0,
(2.44)

the magnitude of |&7|(4f)? is bounded with
increasing ».

Since [u{”| vanishes due to Theorem 5 as »
increases, |€™7| vanishes from (2.41). These
complete the proof.

3. Practical Considerations

For the practical purpose, the total number of
iterations of (1.1)’ are limited under a certain
degree of accuracy. In order to get the rapid
convergence, it can be seen from (2.38) and
(2.39) that we should take the value 7 as large
as possible, so that the integer m in (1.1)’
should be taken as small as possible.

4. Numerical Results

To demonstrate the analytical results, let us
use (1.2)" to accelerate the convergence of
stationary iterative process with specified H
and d. Then acceleration process (1.2)" is
applied with m =m, and the other m’s, and the
numerical results obtained for m=umy, are
compared with those for the other m'’s.

Here we mention Jennings’ acceleration proc-
ess to be compared with the present process
(1.2)"

‘i.(r):x(ﬂwz,r) —3 (x(mvz,r) _ x(m+1,7’)) , (4 . 1)
§= ( (x(7n+1,r) _ x(m,r)) T (x(m+2,r) - x(m+1,r)) )
/( (x(m t1,7r) x(m,'r))T(x(m+2,T)
—2x LT 4 ey Y (4.2)

The whole computations were carried out in
the single-precision arithmetics.

Example 1. The H is 15X 15 real symmetric
matrix and the d is 15-column vector as fol-

Table 1 Sample data of the least iteration number m, (precisely m, +2) of stationary iterative process (1. 1)’ required

before applying the acceleration process (1.2)

’

0.840 0.910 0.932 0.945

7’02‘

0.954

- 0.960 0.970 0.985 0.990

My 1 2 3 4

5

6 9 18 27
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Numerical result of Ex.1
T Total iteration number of (1.1)’

x ~e—o— Jennings
—x—x— Iguchi

X

200 +

0 1 2 3 4 5 6 7 8

Iteration number m in (1.2)°

Fig.1 Total iteration number of stationary iterative
process (1.1) to get the five correct digits to
the correct value when acceleration process
(1.2)" or (4.1) is applied once every after (1.1)"
is iterated m +2 times with specified value as

w.
lows:
0.315 —0.252 0.063
0.378 —0.252 0.063
0.378\
H= ) \\
symmetric 0.378 —0.252

d=(02,02, -, 02)"

The dominant eigenvalue of H is 4,=0.989
and the dominant ratio of the eigenvalues to A
is =0.943, so that we get mo=4 from (2.22).
The numerical results are shown in Fig. 1.
Example 2. The H is 4X4 symmetric matrix
and the d is 4-column vector as follows:

0.248 0.124 0.372 0.496
—0.372 0.124 0.620

symmetric 0.744 —0.2487¢
—0.124
0.01
_10.01
=001 |
0.01

The dominant eigenvalue of H is A= —0.996
and the ratios of the other eigenvalues to A are
a=—0.988, as=—0.583 and @=0.196, so that
we get mp=24 from (2.22). The numerical
results are shown in Fig. 2.

For the both examples, a starting vector xo
was taken as

xo=(1.0, 1.0, -+, 1.0)".

The value a:’s in the example 1 are all posi-
tive, and some of the value a:’s in the example
2 are negative.
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Numerical result of Ex.2
800 + Total iteration number of (1.1)’

—-o—o— Jennings
—x—x— Iguchi

600 T

400 +

X
200 + RN -

X
%

1 | | 1 1 } —} i
T T T T T T T T

0 5 10 15 20 25 30 35 40
Iteration number m in (1.2)’

Fig.2 Total iteration number of stationary iterative
process (1.1)" to get the five correct digits to
the correct value when acceleration process
(1.2)" or (4.1) is applied once every after (1.1)"
is iterated m +2 times with specified value as
m.

’

0.063

0.378 —0.252

0.315

The numbers of iterations of (1.1)" were
counted until the significant digits become cor-
rect to five decimals. When the process (1.1)"
for the examples 1 and 2 was iterated without
acceleration until the same accuracy was
achieved, the numbers of the iterations of (1.1)’
were respectively 1328 and 2292. It can be seen
from Fig.1 and Fig. 2 that the minimum total
numbers of the iterations of (1.1)" are taken in
the vicinity of m =wms. The justification of our
algorithm depends on the way of the distribu-
tion of the eigenvalues of H. Our numerical
results for two examples show the identification
to our analytical results.

5. Conclusions

We consider an algorithm in which the accel-
eration process (1.2)" is applied once after
every m+2 times iterations of (1.1)". Then if
we take the number m +2 larger than or equal
to mp+2, it is warranted that the vector
sequence {x™7}%., generated by (1.1)" con-
verges. If we take m equal or near to my, by the
application of our algorithm, the total number
of iterations of (1.1)" will be reduced to about
one-tenth of that required without acceleration.
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The value mu’s obtained by our analysis will
give the good estimations of their exact values
when some of the eigenvalues of H in (1.1)’ are
distributed in the neighborhood of the value

1
<7%0ﬂj'_L2>2|afzf. The acceleration process (1.2)’

is applied effectively in our algorithm when a; <
0 as well as when @;20. However, when Jen-
nings’ acceleration process (4.1) instead of the
process (1.2)’ was applied in our algorithm, it
was found by similar analysis as (1.2)’ that the
process (4.1) had good convergence property
only when @; =0, i=2, 3, -+, n.
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