3M-T

TERILEF 2RI 50 B

121D 2EAE

Reevaluating the Renamed Trace Cache Architecture

Yen-Chun Wang Kazuo Horio

Ryota Shioya

Masahiro Goshima Shuichi Sakai

Dept. of Information and Communication Eng,

University of Tokyo

Abstract

In order to exploit parallelism, modern

superscalar processors utilize register renaming
to solve data dependency problems. The
REMT(register mapping table) used in register
renaming Is said to be one of the most energy
consuming components in the processor due to its
high access frequency and large area.
Multi-port structure of the RMT can gain area
exponentially to its port number which can make
it unrealistic when implementing high width
processorsil]l. The RTCA, abbreviation for
Renamed Trace Cache Architecture(also known
as the anti-dualflow architecturel2]) is an
architecture proposed to solve these problem that
the RMT brings about. Within this architecture,
the path between two dependent operand is
explicitly shown in order to solve the dependency,
that in return can take off the renaming stage of
the pipeline. However, extra tags are needed in
addition to the trace cache that RCTA uses,
which can lead to degradation in performance.

In this paper, we evaluate and compare the
RCTA to a typical trace cache architecture. It 1s
shown that the increment in trace cache tags can
cause an amount of degradation in average fetch
IPC. Nevertheless, the shorten pipeline can
potentially maintain overall performance.

1. Introduction

Superscalar processors are usually separated
into the frontend side and backend side by
instruction issue buffers, such as issue queues or
reservation stations. With the urge of gaining
higher instruction-level parallelism(ILP), these
issue buffers tend to become larger. As the
instruction window grows larger, the port
number in the RMT also increases which leads to
large area. The RTCA is proposed to solve such
problems that RMT may cause.

In the RCTA, instructions are translated to a [-
n] form where the n stands for the distance
between the dependent operands. Since the
dependency is expressed explicitly in the
instructions, register renaming can be omitted.
The main problem of this form is that the

1-191

distance between operands is path relevant, in
other words, path information is also necessary to
determine the dependency.

The RCTA uses a trace cache architecture as a
base. Upon a trace cache miss, instructions are
translated to the [-n] form and stored in the trace
cache. This translation bandwidth can be chose
rather small, hence constraining the port
numbers of the mapping table used. On the other
hand, path information is represented by
additional tags in the trace cache, which can also
lead to higher miss rates.

The trace cache was proposed to increase the
instruction fetch bandwidth in the frontend side.
In this paper we evaluate the RCTA and
quantitatively show the impact it can have on the
fetch bandwidth compared to the trace cache
architecture. Although results show degradation
in average fetch group size, the shorter pipeline is
considered compensative in overall performance.

2. The Trace Cache Architecture

The trace cache was first proposed by
Rotenberg et al.[3] in order to achieve high
instruction fetch bandwidth. Instruction are
stored by their static compiled order in the
instruction cache, making instruction blocks of a
stream possibly scattered inside the cache. The
trace cache aligns the scattered block into a trace
and make it possible to fetch according to the
dynamic instruction stream.

A trace is a specified by a starting address and
a sequence of branch outcomes which describe the
path followed. Trace cache hit is determined by
comparing the address and multiple branch
outcomes. The trace cache utilizes temporal
locality and branch behavior.

3. The Renamed Trace Cache Architecture

The first step in the RCTA is translating
instructions into the [-n] form. Basically, this is
done in the same way as register renaming. The
relation of a instruction index and its
corresponding operand is stored in a mapping
table. When there is a pair of dependent operands

Copyright © 2010 Information Processing Society of Japan.
All Rights Reserved.



TR F AN 50 A4S

& G2k 2E8R:

encountered, the mapping table is accessed in
order to computed the difference between them,
which stands for the displacement of the
dependent operands. This difference is further
compared to the window size. The instruction is
translated into the [-n] form only when the
difference is small than the window size. In
addition, operands obtain values from physical
registers if instructions are in the [-n] form and
from logical registers if they are not.

Translation process only occurs when there is a
trace cache miss. Instructions finished
translating are then further stored in the trace
cache. As mentioned above, the displacement
between dependant operands in relevant to the
path the trace has taken. As result, path
information is necessary while fetching inside the
trace cache. The following are some chose
parameters.

o H Starting address of path.

o L Path length.

o pbflag Branch history contained.
® Jtarget Target of indirect branches
These parameters are transformed into

additional tags before storing into the trace cache.

Indexing and tag comparison is somehow
different from the instruction cache. Besides the
fetch address, a Lmin is chose to reduce conflict
miss. The path branch history and PC history
that Lmn corresponds to, along with the fetch
address, is used to compute the index.

After indexing into a set inside the trace cache,
the parameter L inside the traces are used for tag
comparison. First, L is used to find the starting
address H and past branch flags pbflag. If the
branch and PC history of length L is concurrent,
the followed path is matched. A multiple branch
predictor and particular hit logic is used to
compare the branches inside the trace. Trace hit
only occurs when the path tags and the tags of
the conventional trace cache are both assured
equal.

4.Simulation and Results

Onikiri processor simulator[4] and SPECCPU
CINT2000 benchmark are used in our simulation.
Integer benchmarks rather than floating point
benchmarks are chosen because they have more
complex control flows. The processor is 16-way
superscalar. 1K entry, 4-way trace cache is
assumed. The instruction cache is accessed after
the trace cache miss is confirmed.

The tag difference in the trace cache can affect
the frontend fetch bandwidth. The figure above
shows the difference in fetch IPC of the RCTA
and conventional trace cache architecture. Since

1-192

wTS

®RCTA

RCTA needs more tags to express the path
information, increase in total trace number is
obvious. The additional tag comparison can cause
higher conflict miss rate, which leads to a lower
fetch bandwidth. The Lui» chose to reduce conflict
miss in the figure above is set to the value 7.
Overall, the RCTA shows an average of 10.3%
degradation of fetch IPC. We quantitatively
express the impact of RCTA on fetch bandwidth.

5. Summary

The RCTA is proposed to solve RMT problems
of register renaming. Its unique translation can
explicitly show the displacement of dependent
instructions. In order to do this, additional tags
are needed in the trace cache to express path
information. On the other hand, because the
dependency of instruction are solved after this
translation, register renaming stage can be
skipped and achieve a shorter pipeline. Our
evaluation shows degradation in fetch IPC
compared to the conventional trace cache
architecture. This difference is considered
compensative in the shorter pipeline.

References

[1] Tatsumi, Y. and Mattausch, H. Fast
quadratic increase of multiport-storage-cell
area with port number. Electronics Letters,
Vol. 35, No.25, pp. 2185-2187 (1999).

[2] —HEE, HEFTTK, ALER, ZLEIER, KT
BE— BT —%T 7 F v BENFEER R
T LY R YT ASACSIS 2008,pp.245-
254(2008).

[3] E.Rotenberg, S. Bennett, J. E. Smith. Trace
Cache: A Low Latency Approach to High
Bandwidth Instruction Fetching. Proc. of the
29th MICRO,pp.24-35(1996).

[4] ENF/—, —HER LEE®R, KFE—:
Takyd e vIab—F% (R ORE, %k
EHFEREBY XF AU RT T A
SACSIS2007 (RZZ—), pp. 194-195 (2007).

Copyright © 2010 Information Processing Society of Japan.
All Rights Reserved.



