Vol.36 No.4

Regular Paper

Transactions of Information Processing Society of Japan

Apr. 1995

Time- and Space- Efficient Garbage Collection
Based on Sliding Compaction

Mitsucu Suzukl T and Mortoak: Terasuva

A new type of garbage collection (GC) based on sliding compaction is presented. It is called
LLGC, and performs sliding compaction in a time proportional to A plus Nf(N), where A is
the total size of data objects in use, N is the number of clusters of such objects (N<A), and
log N<f(N)<N. It requires an additional space whose size is less than A. The time cost of
NF(N) and the additional space cost result from a sorting scheme adopted in LLGC. When the
load factor is small, the time cost is far less than that of conventional sliding compaction GC,
which is proportional to the total storage space size, and the space cost is of no importance.
Therefore, LLGC has a great advantage of time economy in such a case. When the load factor

is large, it carries out conventional sliding compaction using no additional space.

The

advantages of LLGC are shown by experimental data for a successful implementation on

PLisp, a dialect of Lisp.

1. Introduction

Automatic storage management, called gar-
bage collection, or GC for short, is essential to
the implementations of Lisp, Prolog, and other
programming languages that provide dynamic
data structures. Therefore, GC has been im-
plemented on a great many software and hard-
ware bases for more than thirty years, since the
invention of Lisp and Algol.?

In this paper we present a new type of GC
called LLGC which is based on sliding compac-
tion. The initials LL mean “time of Linear
Log” and “use of Less Load factor”, which sum
up the features of our GC. The LLGC has a
great advantage of time economy in cases
where the load factor (@) is small; that is,
when the ratio of the size of all the data objects
in use to the total storage space is small. All
the data objects in use are called “active data
objects” hereafter, and their size is denoted by
the symbol A, while the total storage space size
is denoted by another symbol S. The load
factor is now written as a=A/S, using A and
S.

GC based on sliding compaction is called
sliding compaction GC, and has the merit of
managing data structures of variable size
efficiently as regards space. It performs a very
sophisticated task of object relocation; all
active data objects are gathered up into one end

T Department of Computer Science, University of
Electro-Communications
11 Graduate School of Information Systems, Univer-
sity of Electro-Communications

925

of the storage space with their allocated order
prereserved so that no “hole” of unused space is
made. Consequently their allocated order
remains unchanged forever in accordance with
“genetic order preserving”, in the terminology
of Terashima and Goto.? For instance, this is
indispensable for the implementation of Prolog
based on WAM.®» Notwithstanding this merit,
sliding compaction GC has been regarded as
very expensive, owing to time-consuming
nature of tasks such as pointer adjustment for
each active data object and multiple scans of
the storage space. The former problem was
successfully solved by the invention of fast and
bounded workspace algorithms that perform
each pointer adjustment within a constant time
independent of A or S.#% But the latter is still
unsolved. Its time cost is obviously propor-
tional to S, so that conventional sliding
compaction GC requires a time proportional to
S plus A.

LLGC has the feature of performing the slid-
ing compaction in a time proportional to A plus
Nf(N), where N is the number of clusters and
log N<f(N)<N. A cluster is defined as a
“prick” of successive active data objects or a
single active data object that has no neighbor-
ing ones, while an (active) data object is
defined as a collection of contiguous machine
words (or “fields” in our terminology) in which
part of a datum or a whole datum can be stored.
Therefore, the number of clusters is not greater
than that of all active data objects, or N<A
symbolically if A is counted by the field. LLGC
requires an additional space called a U-space,

926 Transactions of Information Processing Society of Japan

of a size less than A, in order to make a set of
storage addresses for each active data object.
The storage address points to the portion of a
storage space in which a data object is located.
A data object may have various values for its
storage address, but only one is stored in the
U-space as a storage address datum, such as
CAR’s and CDR’s for a CONS data object.
Therefore, the size of the U-space may be less
than A/2 in the case of a typical implementa-
tion where a CONS data object consists of two
machine words. The storage address data are
unique and without duplication, and this is
achieved by a slight modification of the mark-
ing process. They are then reduced to a set of
storage addresses that point only to each clus-
ter, and their size (ie., the number of storage
address data) becomes N. The form Nf(N)
depends on how such data are sorted in the
U-space from scratch; their order may be ir-
regular, and they need to be put into a specific
order by means of a sorting technique. It is
well-known that sorting requires a time propor-
tional to NF(N). A set of such sorted storage
address data is utilized in the following process,
which will require a time proportional to only
A.

If the load factor is very small, or A<S
symbolically, the time required by LLGC may
be drastically shortened, because A and Nf(N)
are far less than S, and the size of the U-space
is of no importance. The U-space is maintained
so that its size does not exceed a predestinated
value (e.g., S/10) for space economy. There-
fore, when the load factor becomes large, the
U-space may overflow ; in this case, LLGC can
carry out conventional sliding compaction GC
(with the U-space given up).

The design and software implementation of
LLGC are described in Section 3 with a data
representation in PLisp (Portable Lisp), on
which LLGC has been successfully implement-
ed. LLGC is superior to other types of sliding
compaction GC with respect to the total GC
time in the case of a small load factor, as is
shown by experimental data and also described
in Section 4. Recently, applications based on
Lisp have become very large, and require a lot
of storage space for their execution. There-
fore, they require a more efficient execution
time and working space for GC. This is the
design goal of LLGC.

Apr. 1995

2. Background

A GC scheme based on sliding compaction
was invented as early as the 1960s, as well as
other GC schemes based on copying collection®
and free listing.” Though sliding compaction
GC had the great merit of managing data struc-
tures of variable size efficiently for a small
storage space, it was known to be very costly in
time. Many sliding compaction schemes have
since been proposed to improve the time cost.®

One target of such improvement was the
pointer adjustment process, which seemed to be
costly in time or space, or both. Consequently,
fast and bounded workspace algorithms were
invented, which perform each pointer adjust-
ment within a constant time, using no addi-
tional space. One of them, known as Morris’s
algorithm,” scans through a storage space only
twice, including for data relocation, but an
extra one bit is required for each cell other than
a marking bit. Therefore, strictly speaking, it
cannot not be a bounded workspace algorithm.
For this reason, LLGC uses another algorithm,?
described in the next section.

Sliding compaction GC has a time cost pro-
portional to the sum of A and S. Of course, a
large part of the former may be eliminated by
using the fast and bounded workspace algo-
rithms described above. However, the latter
has been left untouched, being regarded as in-
dispensable to the sliding compaction GC. It
has gradually come to account for a large part
of the total cost.

The GC based on copying collection is also
called copying collection GC, and it is suitable
for data structures of variable size, as well as
those of fixed size. Moreover it requires a time
proportional only to A, and has therefore been
widely used in many Lisp implementations,
especially those using a large amount of stor-
age space. The demerit of the copying collec-
tion GC is its storage utilization ; only half of
the storage space is available to a copying
collection scheme at a time. The copying col-
lection GC may destroy the genetic order of
active data objects during the copying process.
This is another demerit.

Some reports have compared the actual time
costs of the two schemes based on sliding
compaction and copying collection. Koide and
Terashima used experimental data to show
that the balance point at which two schemes
are nearly equal in their processing time is 0.24

Vol.36 No.4

(by the load factor).'® This indicates that
(conventional) sliding compaction GC is infe-
rior to copying collection GC as regards time
economy unless the load factor is greater than
about 0.24.

LLGC overcomes such inferiority to some
extent. It performs sliding compaction in a
time proportional to A plus Nf(N). When the
load factor is very small (N<A<KS), the latter
is closer to A than to S. Consequently, LLGC
will perform sliding compaction in a time pro-
portional to A under such a condition. LLGC
uses a sorting technique in order to achieve its
purpose (i.e., the time cost described above).
Introduction of a sorting technique into a GC
scheme is not new in itself. Koide and Noshita
have already described the use of a sorting
technique to design a copying collection GC
that effectively preserves the genetic order,
which differs from our framework.'?

3. Implementation

This section presents the design and imple-
mentation of LLGC on Plisp, which is a dialect
of Lisp.

3.1 Data Representation of PLisp

PLisp is a compiler-based portable Lisp sys-
tem being designed as compatible with Com-
mon LISP,'® and is characterized by the use of
a large storage space such as 256 (2%*) MB, in
which many data type objects are located. A
data object of PLisp is made up of a storage
unit called a “field”, which corresponds to one
machine word, typically 32 bits. The field is
divided into two parts, namely, a tag part and
address part. They correspond to the upper
4 bits and the lower 28 bits, respectively, in the
case of a 32-bit machine word. The tag is what
is called a “pointer tag”. Fig.1 shows the tag
part of PLisp data.

The address part consists of four data types,
namely CONS data, block, symbol, and long
number, and represents a storage address by
the byte, in which its object is located. This is
used as a pointer, and can provide 256 MB of

0001 | CONS data

0011 | block (vector, array, etc.)

0101 | symbol

0111 | long number (long integer etc.)
1x00 | short real

1x01 | short integer

1x10 | character code

1x11 | indirect pointer (unused)

Note: 'x’ indicates a marking bit.

Fig.1 Tag part of PLisp data representation.

Time- and Space- Efficient Garbage Collection Based on Sliding Compaction 927

the storage space. Each data object is located
at a distance from a word boundary, so that the
lower two bits are usually set to zero and one of
them is used for marking at GC. The address
part of three data types—namely, short float-
ing-point number, short integer, and character
code—represents their value as an immediate
datum, using the full 28 bits. The second bit of
the tag part is reserved for marking. Therefore
no bits are available for other use.

3.2 A Fast and Bounded Workspace Al-

gorithm

This subsection presents a fast and bounded
workspace algorithm called Algorithm F,
which is used in the process for adjusting the
pointers of LLGC. The reason we use this
newly invented algorithm is that PLisp provides
no additional storage space nor any extra bit,
as other effective algorithms®* require. How-
ever, it is worth pointing out that these algo-
rithms can be also utilized for LLGC unless
such a restriction exists. Since the purpose of
this paper is not to give precise and full details
of Algorithm F, the following is merely a sum-
mary of it.

The basic idea of Algorithm F is a mixed
strategy consisting of two different schemes
used for pointer adjustment: a fast scheme
based on table search and a space efficient
scheme based on list search (or R-list search in
the terminology of Terashima and Goto.?

The former is very easy to implement, if a
continuous area is provided for a table. The
table is made after the marking process. As an
entry, it contains each pair of an integer called
the “offset register” and a bit string called the
“mark bit map”. An entry of the table corre-
sponds to a portion of a storage space called a
“subspace”, so that its mark bit map represents
all the mark bits of the subspace in one-to-one
correspondence. All subspaces are disjoined,
and form the total storage space. If the mark
bit map is m bits in length, typically m=32,
each subspace is made up of m fields. Each
offset register is an accumulated value obtained
by counting up the non-marked fields from one
end of the storage space to the first field of the
subspace (exclusive of the field itself) to which
its entry corresponds. A non-marked field is a
field that has not been marked at the marking
process. For a given pointer p that points to
any field, the number of non-marked fields
counting from the one end of the storage space
to p is given by adding an offset register of the

928 Transactions of Information Processing Society of Japan

entry to which p corresponds and the total
number of 0 bits in its mark bit map that are
bitwise inclusive ORed with —2?2¢¢= The
number indicates the distance that an active
data object part of which is located in p will
move toward the one end of the storage space
by the field, and is called an “offset value” with
which p needs adjusting at the time of such a
move. Obviously each pointer can be adjusted
in a constant time independent of N, A, or S.
This is not slower than Morris’s algorithm , as
shown by the experimental data in Terashima
and Sato.®

Algorithm F is modified to use each table
entry that has been constructed in its subspace
itself rather than a continuous area of an addi-
tional storage space. A table entry requires
two successive non-marked fields. Such entries
may be able to be constructed in the subspace,
because each PLisp data object is located in a
storage space using at least two flelds.

However, there may be one or more sub-
spaces in which no entries can be constructed
for lack of non-marked fields, while there is at
least one cluster called an “entry-free” cluster
in this subspace or subspaces. In such a case,
another scheme is used. A list (or an R-list®) is
made for entry-free cluster(s). FEach node is
located in two successive fields that follow each
entry-free cluster, and contains the offset value
for the cluster and a pointer to the next node.
Therefore, the offset value of any entry-free
cluster can be obtained by an R-list search
comparing the two storage addresses of the
cluster and its node. Obviously the time cost of
the R-list search is proportional to its length, so
that pointer adjustment based on this scheme
may be costly. However, many experimental
data obtained from the execution of the LLGC
show that the length remains very small (not
greater than 10) even if many data amounting
to more than m fields per object are constructed
intermittently. Therefore the time required for
the pointer adjustment can be regarded as a
constant per pointer.

A cluster called an “anchor” may exist on the
border of the end of the storage space toward
which active data objects move. Of course the
anchor is not subject to relocation, and its offset
value is zero. Therefore no table entry or R-list
node is constructed for the anchor.

It is clear that the offset value of any pointer
can be obtained by using a table entry or R-list.
The table entry is checked first. If it does not

Apr. 1995

exist, the R-list is searched, except for the
anchor. Hereafter, we call these entries and the
R-list simply the “offset table”.

3.3 LLGC

LLGC performs the following process se-
quentially : marking, offset table making,
pointer adjustment, and relocation. It is in-
voked when a storage space is exhausted
except for the U-space, or when a function GC
is called explicitly. Since active data objects
move toward the bottom (lower address) of the
storage space, the U-space is located at the top
(higher address) of the storage space.

The size of the U-space is decided at run
time, taking account of the load factor mea-
sured most recently, and is kept below S/10 for
efficiency. This means that the U-space is
always available when the load factor is less
than 0.1, and LLGC shows its time economy in
such a case. When the load factor is higher,
LLGC provides no U-space, and proceeds to
conventional sliding compaction GC.

3.3.1 Marking

The marking process marks all active data
objects and stores the storage address of its
first field in the U-space if this exists. The
former is done by traversing list structures and
scanning vectors and/or arrays from root(s),
which is the same as the marking process of
other GC methods, while the latter is specific to
LLGC. List structures are traversed in “post
order” ; CAR, CDR, and then the nodal addres-
ses are stored as a sequence of data. A
sequence generated for most LIST data may be
in order of increasing address, as if it has been
sorted, because on the construction of data
objects in Plisp, a specific order of data objects
is established such that any son is allocated
before its parent. Therefore, the post order
seems to have a good effect on sorting.

The task of storing a storage address datum
is performed within a constant time by the
following procedure, written in C.

void g_store(Object * obj) {

if (htp<ADmax_storage)
* (htp+ +)=(Object)obj;

}
where htp is a pointer to the U-space, and its
initial value is the beginning address of U-
space. The final address of the U-space is
ADmax_storage. Notice that this procedure
does nothing when the U-space overflows. It is
clear that the time cost of the marking process
is proportional to A.

Vol.36 No. 4

3.3.2 Offset Table Making

The offset table-making process sorts a set of
storage address data stored in the U-space and
makes an offset table by using the sorted data.
Therefore, if the U-space overflows or is not
provided, the former is omitted and an offset
table will be made by scanning through the
total storage space.

After the marking process, the U-space con-
tains a set of storage address data that point to
the first field of every active data object (see
Fig.2 (a)). Then the quantity of these storage
address data is reduced and a subset of them is
so made that consists of data pointing to the
first field of every cluster ; each datum is delet-
ed if it points to a field following a marked field
(see Fig.2 (b)). This requires a time propor-
tional to the size of the (original) set, or A
symbolically. Consequently, the subset contains
N storage address data of clusters, and these
data are sorted. Of course it is sufficient to
know all the active data objects.

Both quick sorting and insertion sorting are
implemented as sorting methods. They gener-
ate sequences of sorted storage address data in
times proportional to N log N and NXN ,
respectively, though quick sorting requires an
additional space of N implicitly in the worst
case. The sorted data of the sequence corre-
spond to clusters in order of increasing address
(see Fig.2 (c)).

The sequence in the U-space is used for skip-
ping non-marked fields between clusters. The
number of non-marked fields is needed for
offset table making, but they do not need to be

storage address storage space

ao
ap
ay
ag

anchor >~

@y

cluster
as

ar cluster

ag
a4 a4
5 ag
6 gy
7
8

A
o

a4

az

a3

(a) After (b) After (c) After (d) After
marking deletion sorting relocation

aq
ay
[T

B

U-space

Note: The order of storage address data in the U-space of (a) is an example.
The U-space size is somewhat exaggerated for the purpose of illustration.

Fig.2 Action of LLGC.

Time- and Space- Efficient Garbage Collection Based on Sliding Compaction 929

looked up. When a non-marked field is en-
countered after scanning of a cluster, the scan-
ning is simply transferred to the following
cluster pointed to by the next datum in the
sequence. This allows the offset table to be
made in a time proportional to A, not S, pro-
vided that such a sequence is available. Conse-
quently, the time cost of this process is propor-
tional to the sum of A and Nf(N).

When the U-space is not available, the offset
table is made by scanning the total storage
space. This requires a time proportional to S.
A chain called an “a-link” is also made simulta-
neously by using a pointer stored in a non-
marked field between clusters, in order to con-
nect them. It has the same effect on time
economy as the sorted storage address data.

3.3.3 Pointer Adjustment

The pointer adjustment process is carried out
mainly by Algorithm F. FEach pointer is
checked to determine whether it points to an
anchor before it is applied to Algorithm F. The
anchor is free from relocation, and every
pointer that points to the anchor needs not to be
adjusted.

Every pointer of every active data object
must be adjusted, and it turns out that only a
constant time is required to find the offset value
of each pointer by using Algorithm F. There-
fore, the time cost of the pointer adjustment
process is proportional to A by virtue of the
sorted data or a-link.

3.3.4 Relocation

The relocation process is separated from the
pointer adjustment process, because it may
destroy an offset table needed by the latter.
The relocation process relocates active data
objects by unmarking them. It is performed
within a constant time for each field, so that the
time cost of the relocation process is pro-
portional to A by virtue of the sorted data or
a-link.

4. Analysis of LLGC

LLGC has been successfully implemented on
PLisp, which runs on a workstation called Sony
NWS-3460 (its CPU is a MIPS R3000). The
test programs presented here are the Tarai and
the Bit functions designed by I. Takeuchi and
M. Nakanishi, respectively.'® The former has
been modified by the authors. The programs
are named Modified Tarai-4 and BitA-8, and
are shown in Fig.3 (a) and (b), respectively.

The Tarai function is often used as a simple

930 Transactions of Information Processing Society of Japan

(DEFUN TARAI (X Y Z w) (prog2
(setq w (list (coms ’X X) (cons ’Y Y) (cons °Z Z) X Y 7))
(COND ((GREATERP X Y)
(TARAI
(TARAI (SUBL X) Y Z ())
(TARAT (SUB1 Y) Z X ()
(TARAI (SUBL Z) X Y ())
o»
(T YN

(TARAI 8 4 0 ())

Fig.3 (a) Test program (Modified Tarai-4).

(DEFUN BITA (A) (COND
((NULL (CDR A)) &)
((NULL (CDDR A)) (LIST (CONS (CAR A) (CONS ’$ (CDR A)))))
(T (BIT1 (CDR A) (LIST (CAR A))))))
(DEFUN BIT1 (X J) (COND
((NULL X) NIL)
(T (NCONC (MAPAPPEND (BITA X)
(FUNCTION (LAMBDA (K) (MAPCAR (BITA J)
(FUNCTION (LAMBDA (L) (LIST L ’$ K)))))))
(BIT1 (CDR X) (APPEND J (LIST (CAR X)))))))))
(DEFUN MAPAPPEND (X F) (COND
((NULL X) NIL)
(T (NCONC (F (CAR X)) (MAPAPPEND (CDR X) F)))))

(BITA ’(abcdefgh))

Fig.3 (b) Test program (BitA-8).

Table 1 GC processing time.

Program Modified Tarai-4
Storage space Load factor {average) Total GC time (sec.)
K fields | Conventional | Sort version | Conventional | Sort version

1.2 0.475 0.569 3.99 5.53
1.6 0.354 0.403 2.40 2.85
2.0 0.278 0.318 1.78 2.07
2.4 0.232 0.261 1.53 1.51
2.8 0.203 0.217 1.25 1.08
3.2 0.177 0.187 1.24 0.97
3.6 0.155 0.167 0.96 0.88
4.0 0.140 0.148 0.95 0.76
Program BitA--8

Storage space Load factor (average) Total GC time (sec.)
K fields | Conventional | Sort version | Conventional | Sort version

18 0.709 — 0.36 —
20 0.627 - 0.26 —
25 0.503 0.510 0.17 0.48
30 0.500 0.505 0.23 0.32
31 0.499 0.450 0.22 0.21

benchmark for estimating the efficiency of func-
tion calls and recursion. It does little but wide
circulation on function call with a small number
of nests. Modified Tarai-4 acts as if the Tarai
function is being executed on a LISP 15
interpreter.” It consumes much storage space
in making both an association list and EVLIS’s
lists. BitA-8 also consumes much storage space
in making binary trees and fumarg closures,
even if it is compiled.

Table 1 shows the total GC time of these two
test programs, which is measured by LLGC in
two modes that use varying storage space
sizes: “conventional” LLGC performs conven-
tional sliding compaction GC using no U-space,
and “sort version” LLGC is guaranteed to use

Apr. 1995
6 é T T T T T T
A Conventional ‘o -
5F Sort version ‘e - |
4+~ oe _
Time R
(sec.) 3r % h
Os
2 - ow .
95.
1 ou0
» ‘.b.o"cf.ooo'o oo o o..
®cess0 *4
0 TN S R S S N |
0 1 2 3 4 5 6 7
Storage size (K field(s)=4KB)
Fig.4 (a) Total GC time.
0.03 T T T T T . T
Conventional ‘o -
0.025 Sort version - -
0.02 - o, 0%
o .
00
Time 0o
(so00-015 - o o 4
001 L ngse-c o 0900 . o° ‘._
0.005 -
0 I | 1 1 1 I !

0 2 4 6 8 10 12 14

1
oad factor

Fig.4 (b) Average GC time.

the U-space. The latter uses insertion sorting,
and the time cost of the sorting will be the
worst. Notice that the storage space totally
includes the U-space. This is why the load
factors of the two differ for the same storage
size. Fig.4(a) shows the total GC time of
Modified Tarai-4 graphically.

It is clear that the sort version is superior to
the other in time if the total storage space size
is relatively large. Fig. 4(b) shows this more
visually. Variations of the average GC time per
invocation are plotted for the execution of
Modified Tarai-4. The average time of the sort
version LLGC remains nearly level, because A
varies by only small amounts such as 550 +100
fields at each invocation. On the other hand, the
average time of the conventional LLGC seems
to be proportional to 1/e. Notice that this is a
unit of the horizontal axis. Since A/e=S is
always satisfied, the average time is propor-
tional to S, if A is fixed. This proves the

Vol. 36 No.4

well-known fact that conventional sliding
compaction GC requires a time proportional to
S.

However, the sort version is inferior when
the total storage space size becomes small. The
balance point of the load factor at which the
two versions are nearly equal in their GC time
is about 0.26. Our strategy of keeping the size
of the U-space less than S/10 seems to be good
in both time and space. These two programs
are typical of many test programs being execut-
ed that all show similar effects.

5. Concluding Remarks

We introduced a new type of GC called
LLGC. This has the great advantage of time
economy, which conventional sliding compac-
tion GC has never achieved. It requires a GC
time far less than the conventional sliding
compaction GC when the load factor is small.
Therefore, it will be suitable for large storage
use such as the 256 MB provided by PLisp.

The time efficiency of LLGC largely depends
on the cost of sorting, though a sequence of
storage address data seems to have a great
many sub-sequences that have been naturally
sorted.

LLGC makes no use of effective algorithms
such as Morris’s, but they can be applied to it.
Sliding compaction GC generates an anchor
that is free from relocation. It would be inter-
esting to design another type of LLGC that
processes the anchor exclusively.

Acknowledgement The authors thank the
anonymous referees for their valuable sugges-
tions.

References

1) McCarthy, J. et al.: LISP 1.5 Programmers
Manual, MIT Press, Mass. (1962).

2) Terashima, M. and Goto, E.: Genetic Order
and Compactifying Garbage Collectors, Inf.
Process. Lett., Vol. 7, No. 1, pp. 27-32 (1978).

3) Appleby, K., Carlsson, M., Haridi, S. and
Sahlin, D.: Garbage Collection for Prolog
Based on Wam, Comm. ACM, Vol. 31, No.6,
pp. 719-741 (1988).

4) Morris. F.L.: Time- and Space- Efficient
Garbage Collection Algorithm, Comm. ACM,
Vol. 21, No. 8, pp. 662-665 (1978).

5) Terashima, M. and Sato, K.: A Garbage
Collector Efficient for Varisized Cells (»in
Japanese), Trans. IPS Japan, Vol. 30, No. 9, pp.
1189-1199 (Sep. 1989).

6) Fenichel, R.R. and Yochelson, J.C.: A Lisp

Time- and Space- Efficient Garbage Collection Based on Sliding Compaction 931

Garbage Collector for Virtual Memory Com-
puter Systems, Comm. ACM, Vol. 12, No. 11,
pp. 611-612 (Nov. 1969).

7) ed. Bobrow, D. J.: Symbol Manipulation Lan-
guages and Techniques, North Holland, Am-
sterdam (1971).

8) Cohen, J.: Garbage Collection of Linked Data
Structures, ACM Comput. Surv., Vol. 13, No. 7,
pp. 341-367 (1981).

9) Terashima, M.: A Note on Time- and Space-
Efficient Garbage Collection (in Japanese),
Preprint of WGSYM (IPS]), 68-5 (Mar. 1993).

10) Koide, H.: A Hybrid Garbage Collection,
Master’s thesis, Department of Computer Sci-
ence, University of Electro-Communications,
Tokyo, Japan (1993).

11) Koide, H. and Noshita, K.: On the Copying
Garbage Collector Which Preserves the Gener-
ated Order (in Japanese), Trans. IPS Japan,
Vol. 34, No. 11, pp. 2395-2400 (1993).

12) Steele, G.L. Jr.: Common LISP, 2nd ed.,
Digital Press, Mass. (1990).

13) Takeuchi, I.: The 2nd Lisp Contest, Preprint
of WGSYM (IPSJ), 5-3 (Aug. 1978).

Mitsugu Suzuki was born in
Tokyo, Japan on August 1, 1964.
He received the B.E. degree and
the MLE. degree in computer
science from the University of
Electro-Communications,
Tokyo, Japan, in 1989 and 1991
respectively. He is now a doctoral student in
computer science at the University of Electro-
Communications. His current research inter-
ests include storage management and parallel
algorithms.

Motoaki Terashima was
. born in Shizuoka, Japan on June
8, 1948. He received the degrees
of B.Sc.(1973), M.Sc.(1975) and
D.Sc.(1978) in Physics from the
:: University of Tokyo for his
- work on computer science.
Since 1978, he has been a research associate of
the Department of Computer Science, Univer-
sity of Electro-Communications, and is current-
ly an associate professor of Graduate School of
Information Systems. He was a visiting
scholar at the Computer Laboratory of the
Cambridge University in 1992. His current
research interests include programming lan-
guage design and implementations, memory
management, and symbolic and algebraic
manipulation systems. He is a member of IPS],
ACM and AAAL

