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One-Pass Search Algorithm for Continuous Speech Recog-
nition Using Generalized LR Parsing: A CFG-Driven,
Frame-Synchronous HMM-Based Approach

Kengt Kira,” Yoneo Yano T and Tsuvosur MormoTo ff

In this paper, we present a novel continuous speech recognition algorithm that integrates
three major technologies: (1) hidden Markov models for speech, (2) a generalized LR parser
for handling context-free grammar (CFG) constraints, and (3) the one-pass search algorithm
for efficient searching. We also introduce three techniques that used in the development of the
algorithm: (1) LR path-merging, (2) the use of a shared tree-structured stack, and (3)
LR-parser-based dynamic network generation. By means of the proposed algorithm, an
optimal hypothesis can be found efficiently for a given speech signal according to a specified
CFG in a frame-synchronous process. We implemented an experimental Japanese speech
recognition system based on the proposed algorithm, using discrete-type context-independent
HMMs without duration control. The system attained a recognition accuracy of 84.1%-88.19%,
depending on the beam width. We also experimentally compared our algorithm with the
following two methods: (1) the one-pass search algorithm using the finite-state approxima-
tion for a CFG, and (2) the HMM-LR algorithm. The experiments showed that the proposed

algorithm attained higher accuracy when the beam width was small.

1. Introduction

In this paper, we will formulate a novel con-
tinuous speech recognition algorithm that inte-
grates three major technologies: (1) hidden
Markov models for speech,® (2) a generalized
LR parser for handling context-free grammar
(CFG) constraints,””*" and (3) the one-pass
search algorithm for efficient searching.®'19
By means of the algorithm, an optimal hypothe-
sis can be found efficiently for a given speech
signal according to a specified CFG in a frame-
synchronous process.

The algorithm amalgamates and extends
three techniques already proposed: (1) gram-
mar node path-merging in a syntax-directed
one-pass search, (2) the use of a tree-structured
representation of an LR parser’s state stack,
and (3) dynamic grammar network generation
and the predictive use of an LR parsing table.
In the first technique, syntactic constraints are
introduced into the one-pass search algorithm
by means of grammar node path-merging,
which searches for the best path reaching each
grammar state in each time frame. When the
syntactic constraints are described by a finite-
state automaton (FSA), a grammar state cor-
responds to a node in the FSA. In the case of
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context-free grammar (CFG), however, path-
merging is not straightforward. Kai et al.
introduced path-merging for CFGs based on
Earley’s parsing algorithm, but their method
requires the use of backtracking to identify a
grammar node. In this paper, we will introduce
LR path-merging, which does not require back-
tracking. The purpose of LR path-merging is to
represent acceptable sentences in a state transi-
tion network by considering an LR state
sequence as a grammar state. This network is
then used to guide the one-pass search in order
to select the path that best matches the input
speech. In the second technique, efficient repre-
sentation of an LR parser’s stack is achieved by
using a tree-structured or graph-structured
stack. Our algorithm uses a tree-structured
stack, in which the bottom of the stack corre-
sponds to the root node of the tree. This type
of stack is an efficient implementation of LR
path-merging, because a tree node represents a
stack content. The same kind of stack has been
used in other LR-parser-based speech recogni-
tion systems.”'® The third technique, dynamic
grammar network generation, is for in-
crementally generating the state transition net-
work needed by the speech recognizer.*¥ This
technique is used in our algorithm in combina-
tion with the predictive use of an LR parsing
table.”

This paper is organized as follows. Section 2
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describes our algorithm, emphasizing three key
techniques: (1) LR path-merging, (2) the use
of a shared tree-structured stack, and (3) LR-
parser-based dynamic network generation. In
Section 3, our algorithm is evaluated through
recognition experiments. In Section 4, our
algorithm is experimentally compared with
other algorithms, which include the one-pass
search algorithm using the finite-state approxi-
mation for a CFG, and the HMM-LR algorithm.
Finally, Section 5 presents our conclusions.

2. LR-Parser-Driven One-Pass Search

Algorithm

This section develops a novel continuous
speech recognition algorithm that integrates
(1) hidden Markov models, (2) a generalized
LR parser, and (3) the one-pass search algo-
rithm. The key ideas of this algorithm include
(1) LR path-merging, (2) shared tree-structured
stack, and (3) LR-parser-based dynamic net-
work generation. First, we will describe these
key ideas one by one, and after that we will
present the recognition algorithm.

2.1 LR Path-Merging

In the FSA-based one-pass search, recogni-
tion corresponds to finding the optimal path
through the complete FSA state network.
Thus, recognition paths (hypotheses) reaching
the same FSA state are merged; that is, all
non-optimal paths reaching that node are
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Fig.1 Example of a CFG.
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eliminated.

Since we are concerned with the LR-parser-
driven one-pass search, we perform path-
merging according to the LR state sequence
(the stack content of the LR parser). This
merging is supported by the fact that paths with
the same LR state sequence have an identical
grammatical function with respect to the subse-
quent word strings.

Let us give a simple example. We consider a
CFG in Fig. 1 and its LR parsing table in Fig. 2.
After recognizing “a man”, the LR parser will
have the following stack: “0 3” (the leftmost
item is the bottom of the stack). Once again,
for the partial sentence “a young man”, the
stack will be “0 3”. These two partial sentences
have different word strings in their surface
form, but are dominated by the same nonter-
minal NP and thus have the same stack con-
tent.  Accordingly, we can perform path-
merging for these two partial parses. Figure 3
shows the LR path-merging for the two partial
parses.

2.2 Shared Tree-Structured Stack

The simplest way to implement LR path-
merging is to associate each recognition path
with an LR state stack, and compare two
stacks by examining their elements one by one.
This method is, however, both memory-
consuming and time-consuming.

In order to implement LR path-merging
efficiently, we represent multiple stacks as a
single tree-structured stack, which is shared
among all recognition paths. Figure 4 shows as
an example the tree-structured stack that cor-
responds to the stacks in Fig. 3. In the shared
tree-structured stack, the bottom of the stack
corresponds to the root of the tree. Each node
has a pointer to its parent node, and thus if a
node is given, the stack content is uniquely

8 S NP VP DET ADJ NOUN VERB

a young man woman loves
0 |sl
1 15 5 5
2 s8 s5 s6
3 s10
4 acc
5 7 17
6 8 18
7 2 2
8 16 16
9 s5 s6
10 | x9
11 sl
12 rl
13 3 13
14 r4

3 2

12 11

13

14 2

Fig.2 LR parsing table for the CFG in Fig. 1.
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(reduce 7)

(reduce 2)

Fig.3 Example of LR path-merging.
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Fig.4 Example of a shared tree-structured stack.

determined.

2.3 Dynamic Network Generation

The concept of dynamic grammar network
generation' has become more widely known in
the past few years. The idea is to incrementally
generate a state transition network from a
complicated grammar in order to provide a
tractable recognition search space. The reali-
zation of dynamic grammar network genera-
tion is implementation-dependent, and various
methods have been reported.®'¢

Besides efficiency, generalized LR parsing
has another advantage : it can easily be used as
a language source model for symbol prediction/
generation.” More specifically, for any partial
sentence, the possible subsequent terminal sym-
bols can be predicted by referring to a parsing
table.

This predictive property makes it possible to
generate the state transition network dynami-
cally and efficiently. The initial network con-
tains an initial node whose label is 0, which is
the initial state of the LR parser. The initial
LR state expects some terminal symbols to be
shifted, and therefore these symbols and the
next states are added to the network. This
process is iterated during recognition.

The following is a specification of the
dynamic network generation algorithm based
on generalized LR parsing. An example of a
network generated by this algorithm is shown
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stack bottom

Fig.5 Example of a dynamically generated network.

in Fig.5, where dotted arrows indicate state
transitions. The algorithm generates a state
transition network with e-transitions, but e-
transitions can be easily eliminated.? We
denote a state transition of the e-free network
as 6 (v, x).
[Notations]
V' Set of active nodes.
R Set of 2-tuples <v, n),
where v is a node and #»
indicates the #-th pro-
duction.  The 2-tuple
{v, n> means that the
#n-th production is to be
applied on the node ».
S Set of 3-tuples <v, x, ),
where v is a node, x is a
terminal symbol, and s
is a state number. The
3-tuple <v, x, s> means
that “shift s” by the
symbol x is to be
applied on the node v.
ACTION[s, x] Action table of the LR
parser, where s is an
LR state number and x

is a terminal symbol.
GOTO[s, X] Goto table of the LR
parser, where s is an
LR state number and X
is a nonterminal sym-

bol.

Function that returns
the label (an LR state
number) of the node v.

STATE(v)

LHS(#) Function that returns
symbol in the left-hand
side of the #n-th produc-
tion.

LENGTH (%) Function that returns
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the length of the right-
hand side of the n-th

production.

ANCESTOR (v, m) Function that returns
an ancestor node whose

distance from v is m.

[Dynamic Network Generation Algorithm]
GENERATE-NETWORK
R&g
S
repeat
if Va6
remove one node v& V
for each terminal symbol x
if ACTION[STATE (v), x]="shift s"”
S&SUw, x, 87
else if ACTION[STATE (v), x]
=“reduce »n”
R&ER ULy, w
else if R+¢
call REDUCE
until R=¢ and V=4¢
call SHIFT

REDUCE
remove one element <v, n)ER
N<LHS (n)
m<=LENGTH (n)
v"=ANCESTOR (v, m)
s&GOTO(STATE(v), N)
if the node »” already exists
such that STATE (¢”) =s and
v'=ANCESTOR (27, 1)
if the state transition 6 (v, &) =v”
already exists
do nothing
else
create a new node v”
such that STATE (v”) =s and
v'=ANCESTOR (v”, 1)
create a new state transition §(v, €) ="
VeV u{e’)

SHIFT
for each <v, x, s>&€S
if the node v’ already exists
such that STATE (v") =s
and ANCESTOR (v, 1) =v
if the state transition (v, x) =0’
already exists
do nothing
else
create a new node v’
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such that STATE (v") =s and
ANCENTOR(v", 1) =v
create a new state transition 8 (v, x) =v’

2.4 Recognition Algorithm
At this point, the formulation of the recogni-
tion algorithm is straightforward. The recogni-
tion algorithm can be described as follows :
(1) Initialization
® Create an initial state transition net-
work.
@ Initialize the likelihood and backpointer
buffers.
(2) For each frame, performance of steps
(3) through (5)
(3) Dynamic network generation
(4) FSA-based one-pass Viterbi search
(5) Making nodes with low likelihood values
inactive
(6) Backtracking along the best sequence of
network states
Step 4 performs a conventional FSA-based
one-pass Viterbi search to update the likeli-
hAoods and backpointers, using a state transition
0 (v, x) created by the dynamic network gener-
ation algorithm.

3. Experimental Results

We implemented a Japanese speech recogni-
tion system based on the recognition algorithm
described above, and conducted an experimen-
tal performance evaluation.

3.1 Task and Grammar

Evaluation experiments were carried out,
using Japanese phrase-wise utterances from the
ATR conference vegistration task.>'® This task
consists of simulated dialogues between a secre-
tary and participants at an international confer-
ence. The CFG for this task has 1,973 produc-
tion rules, which use 744 Japanese words. In
our system, phone models are used as the basic
speech unit, and thus phonetic transcriptions
for words are included in the grammar. That
is, the terminal symbols of the CFG are phone
names.

The degree of sophistication of a recognition
task is usually measured by the test-set perplex-
ity."” The test-set perplexity is the information-
theoretic average branching factor of the lan-
guage model along the test sentences (test-set).
For a CFG, it can be calculated as follows: (1)
parse all sentences in the test-set, and count all
the distinct words that can follow each word,
and (2) compute the geometric mean of word
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Table 1 Phrase recognition performance.

Beam width Accuracy (%)
20 84.1
30 87.0
40 87.0
50 87.8
100 88.1

choices along the test-set. The test-set perplex-

ity of our CFG is 3.57/phone.

3.2 HMMs and Speech Data

In our experimental evaluation, we used sim-
ple phone models as the basic unit. They are
represented by discrete-type, context-
independent HMMs without duration control.
We trained a three-loop model for consonants
and a one-loop model for vowels, using the
ATR isolated word database.® To represent
phone models with less distortion, we used
separate vector quantization (multiple
codebooks), in which spectrum, LPC cepstral
difference, and power are quantized separately.

The speech data used in the evaluation were
sampled at 12 kHz, pre-emphasized with a filter
having a transform function of (1—0.97z7%),
and windowed by using a 256-point Hamming
window every 9 msec. Next, 12th-order LPC
analysis was carried out, and finally the VQ
code sequence was generated. For VQ
codebook generation, 216 phonetically balanced
words were used.

3.3 Results

Table 1 shows the recognition performance
for various beam widths. Here, the beam width
is equal to the number of active nodes at each
frame. As can be seen from the table, the
proposed algorithm attained high recognition
accuracy even for small beam widths, where
the recognition speed was almost real-time. It
is sometimes said that context-free grammar
constraints are computationally too demanding
for use in real-time speech recognition. How-
ever, we proved not only that they can be used,
but that CFG-based real-time continuous speech
recognition can even be attained with a high
degree of accuracy.

4. Experimental Comparison with Other
Methods

An experimental comparison was made
between the LR-parser-driven one-pass search
algorithm and the following speech recognition
methods :
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(1) A one-pass search algorithm using the
finite-state approximation for a CFG

(2) The HMM-LR algorithm

4.1 Finite-State Approximation for CFGs

Spoken language systems often use two
different grammar formalisms: FSAs for
speech recognition and CFGs (or augmented
CFGs) for language analysis. To circumvent
the problem of maintaing two grammars, a
finite-state approximation for a CFG is some-
times used in the recognition stage.?"!”

The first method to be compared is the tradi-
tional FSA-based one-pass search using the
finite-state approximation for a given CFG. In
our approximation, an LR parsing table is
converted into an FSA by eliminating reduce
and goto actions. The actual conversion proce-
dure is as follows :

(1) Construct the canonical collection of
item sets using a standard LR parsing
table construction algorithm.

(2) If there are two item sets I; and I, such
that [X—7 - |€L and [A—aX - BlE L,
then make an e-transition from state ; to
state k. By this procedure, the CFG is
converted into a nondeterministic FSA
with e-transitions.

(3) Finally, eliminate e-transitions from the
FSA created at Step 2, and get a target
FSA.

4.2 HMM-LR Algorithm

The HMM-LR speech recognition algo-
rithm®'? is one of the first algorithms to exploit
the effectiveness of LR parsing in the speech
recognition area. As the name implies, this
algorithm tightly couples hidden Markov
models and generalized LR parsing, in which the
predictive LR parser drives HMMs directly.
Two of its major advantages are that it can
obtain multiple recognition hypotheses and
that explicit HMM duration control is easily
incorporated.

The HMM-LR algorithm is similar to the
algorithm in this paper in that the LR parser is
used for symbol prediction/generation. How-
ever, it differs in using the frame-asynchronous
tree search to expand partial hypotheses.

The HMM-LR algorithm was adopted for the
large-scale speech-to-speech translation project
of Advanced Telecommunications Research
(ATR), and the implementation of this algo-
rithm is known as the ATR HMM-LR speech
recogmition system.”'” The ATR HMM-LR
system introduced many other techniques such
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as HMM state duration control and speaker
adaptation, and achieved an impressive perfor-
mance. For fair comparison, we used the core
part of this system in the subsequent recogni-
tion experiments.

4.3 Experimental Comparison

The three algorithms were compared under
the conditions described in Section 3. Because
these algorithms use different search strategies
and different beam search techniques, it is
difficult to compare them directly. We inves-
tigated the relationship between the following
two factors for various beam widths:

® Average CPU-time needed to recognize

one utterance in the test data

® Recognition accuracy

In other words, given the same amount of
recognition time, which algorithm will give the
most accurate results? Or, equivalently, in
attaining the same accuracy, which algorithm is
fastest ?

From the results shown in Fig.6, we can
conclude that the LR-parser-driven one-pass
search algorithm outperforms the other two
algorithms when the available recognition time
is short.

Of course, each algorithm has both strong
and weak points, and thus our experiments does
not necessarily imply the superiority of our
algorithm. Our algorithm produces only the
best recognition hypothesis, while the IIMM-
LR algorithm gives multiple N -best hypotheses.
Recently, some methods have been proposed to
find the N-best hypotheses in the one-pass
search algorithm.”*® We are considering extend-
ing our algorithm to the N -best problem.

100
90
Iy
& 80+
=
3
<
70 / &—2 LR One-Pass
i -4 FSA One-Pass
60-- m =@ HMM-LR
1 | i ] ]

T T T T
10 20 30 40 50
CPU time ( x100 msec.)

Fig.6 CPU-time vs. recognition accuracy.
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5. Conclusion

This paper has presented a novel continuous
speech recognition algorithm that integrates
three major technologies: (1) hidden Markov
models for speech, (2) a generalized LR parser
for handling CFG constraints, and (3) the one-
pass search algorithm for achieving an efficient
search. The heart of the algorithm is grammar
node path-merging based on the LR parser’s
state stack. To implement path-merging
efficiently, we have introduced the shared tree-
structured stack. We have also proposed an
efficient dynamic network generation algorithm
based on the generalized LR parsing technique.

Our evaluation experiments revealed that the
proposed algorithm attained high recognition
accuracy even for small beam widths, and that
CFG-based real-time continuous speech recogni-
tion is feasible.

The current implementation uses simple
HMMs, namely, discrete-type context-
independent HMMs. In future research, we
intend to implement a more accurate continu-
ous speech recognition system by incorporating
enhanced HMMs with continuous-density
observation functions and context-dependent
phone models.
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