1ZF-6

BRLEFERE 70 [H2EARR

GPU ZRWET 7T 4 TRBENWC LBV TAIAL LT A AT V—RARA s by T

Szego Zoltan &%k mE BHE K&
HRERE

1. Introduction

Displacement mapping is a rendering technique
that adds high-quality details to a 3D model by
displacing the surface geometry according to some
information such as a height map. In recent years,
Doggett et al [1] proposed a method to adaptively
subdivide triangles wusing a recursive procedure;
however, the recursive nature of this algorithm makes
implementation on conventional GPUs difficult. In this
paper, we show a method that makes use of the latest
features of modern GPUs, and can perform adaptive
subdivision in real time. We demonstrate its
effectiveness in several applications such as
level-of-detail (LOD) control of displacement mapped
meshes.

2. Related work

There are several techniques to enhance the realism
of low-polygon 3D models at a relatively low rendering
cost. The technique most widely in use today in
mainstream games and applications is normal mapping
[2], which alters the shading for each pixel on the
low-polygon mesh according to a normal map generated
from its high-polygon version. This gives the illusion of
high detail on the mesh, however, every face remains
flat and therefore the shading looks incorrect for bumps
at an oblique angle.

Parallax mapping [3] and its numerous variants
displace the texture coordinates on the low-polygon
mesh according to a height map to give the illusion of
depth on the bumps on the surface. This gives
convincing results on the inside of the mesh; however,
its silhouette still retains its coarse polygonal look.

3. Displacement mapping

Unlike the previous techniques, displacement
mapping not only changes the shading on the surface of
the object, but actually moves the surface geometry to
its appropriate location according to a displacement
function, usually specified by a height map texture.
There are two main approaches to performing
displacement mapping, per-pixel evaluation [4] and
tessellation. In this paper we focus on the tessellation
approach, because determining the displacement at
each pixel has a high computational cost which
increases with the on-screen size of the object, and does
not offer any control over the LOD if a perfectly
accurate evaluation of the outline at every pixel is not
required.

Real-time Displacement Mapping on the GPU using
Adaptive Tessellation

Zoltan Szego, Yoshihiro Kanamori and Tomoyuki Nishita
The University of Tokyo

Figure 1. Left: a low-polygon version of the Armadillo model

shaded with normal mapping. Right: the same model with
displacement mapping.

Doggett et al [1] proposed a method to adaptively
tessellate a mesh according to certain criteria with
regard to the height map: the edges of each triangle are
split if there is enough variation in the corresponding
local normal vector or the average local height.
Additionally, a screen-space check for short edges
ensures that triangles which are small enough on the
screen do not get split any further.

4. GPU implementation using geometry shaders

The method proposed by Doggett et al depends on
some additions to the traditional graphics pipeline to
accommodate for the recursive way in which the
triangles are subdivided. While no such hardware
exists, the newest series of GPUs, supporting a set of
functionality called Shader Model 4, do contain an
additional stage in the pipeline called the geometry
shader, which can be used to create triangles on-the-fly.
Our method uses this functionality to implement the
above described adaptive subdivision algorithm.

Since the amount of output allowed from a
geometry shader is limited, we must perform the
subdivision in several passes in the algorithm used for
the GPU implementation, using two vertex buffers to
move the intermediate data back and forth
("ping-ponging"). The stream-out functionality of
Shader Model 4 GPUs can be used to save the results of
the geometry shader back into a vertex buffer in video
memory, bypassing the CPU entirely.

A height map, a normal map and a summed area
table (SAT) of the values in the height map are
required for the adaptive subdivision algorithm. The
SAT is used to compute the average height for any area
on the height map. These are accessed as textures from
the geometry shader. There are eight different possible
subdivision patterns for a triangle depending on which
of its three edges need to be split, these patterns are
also stored in a texture which is indexed by a 3-bit

4-409

Figure 2. Results of adaptive subdivision of a simple
input mesh - a quad consisting of two triangles.

number, with each bit corresponding to an edge of the
triangle in question. Edges are split the same way for
néighboring triangles, therefore ensuring that there
are no gaps in the resulting mesh.

Triangles are subdivided in several passes, and then
displaced according to the height map in the last pass,
after which they can be rasterized and shaded, for
example, by normal mapping.

5. Results

See Figure 1 for an example of the algorithm being
applied to a mesh that was simplified from a
high-polygon version, with the matching displacement
map created from the original detailed mesh. The
silhouette follows the original mesh accurately
compared to the coarse look of the low-polygon version.
The model's leg is magnified for a more detailed
comparison with the normal mapped version.

Figure 2 shows the tessellation result of adaptive
subdivision. Flat areas of the displacement map end up
with larger polygons, while areas needing more detail
are subdivided as needed.

The amount of detail resulting from the subdivision
is ultimately controlled by the user-specified thresholds
for the maximum allowable error in the local average
height and the normal vector. The screen-space edge
length limit serves as a form of LOD control, ensuring
that when the model is zoomed out, no unnecessary
details are created (see Figure 3 for an example). We
used a length limit of 10 pixels for all of our
experiments.

One of the most attractive applications of our
method is the efficient display of animated
displacement mapped models. The original meshes
corresponding to the low-polygon version might contain
hundreds of thousands of vertices, making their
animation inefficient, while their normal-mapped
counterparts retain the sharp edges and polygonal look
of the simplified mesh. With our method, by animating
only a small number of vertices and applying
displacement mapping to the result, the high-quality
mesh can be displayed at a reduced computational cost,
with the benefits of LOD. See Table 1 for details on
performance. The environment for our experiments

Table 1. Performance comparison for the Armadillo model

with four subdivision passes.

Rendered object | Input tris.| Qutput tris. | FPS static/anim|
Original model 345944 345944 | 339 10
Uniform subdivision 800 204800 113 88
Adaptive subdivision 800 =4400 714 98

5376 tris.
113 fps

11438 tris.
55 fps

Figure 3. LOD control of the same pose in an animated
mesh.

1020 tris. 2538 tris.
540 fps 215 fps

was a machine with an Intel Core 2 Extreme CPU at
2.9 GHz and an nVidia GeForce 8800 GTX GPU.

6. Conclusion and future work

In this paper we have described a method to
perform displacement mapping in real time on the GPU
using geometry shaders, and shown its effectiveness for
applications such as the visual enhancement of
animated low-polygon meshes.

For future research, we would like to find other
possible algorithms for handling the adaptive
subdivision, as well as other ways to speed up the
processing on the GPU.

References

[1] M. Doggett and J. Hirche: Adaptive view
dependent tessellation of displacement maps,
Proceedings of the ACM SIGGRAPH /
EUROGRAPHICS workshop on Graphics
hardware, pp. 59-66, 2000

[2] P. Cignoni, C. Montani, R. Scopigno, C. Rocchini:
A general method for preserving attribute values
on simplified meshes, IEEE Visualization 1998, pp.
59-66

[3] T. Kaneko, T. Takahei, M. Inami, N. Kawakami,
Y. Yanagida, T. Maeda, S. Tachi: Detailed Shape
Representation with Parallax Mapping,
Proceedings of ICAT 2001, pp. 205-208.

[4] J. Hirche, A. Ehlert, S. Guthe, M. Doggett:
Hardware accelerated per-pixel displacement
mapping, Proceedings of the 2004 conference on
Graphics interface, pp. 153-158, 2004.

4-410

